DISJUNCTIVE RADO NUMBERS FOR $x_{1}+x_{2}+c=x_{3}$

Dusty Sabo
Department of Mathematics, Southern Oregon University, Ashland, OR 97520 USA
sabo@sou.edu
Daniel Schaal
Department of Mathematics and Statistics, South Dakota State University, Brookings, SD 57007 USA
daniel.schaal@sdstate.edu
Jacent Tokaz
Department of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332 USA
jtokaz@hotmail.com

Received: 10/19/05, Revised: 5/22/07, Accepted: 5/26/07, Published: 6/19/07

Abstract

Given two equations E_{1} and E_{2}, the disjunctive Rado number for E_{1} and E_{2} is the least integer n, provided that it exists, such that for every coloring of the set $\{1,2, \ldots, n\}$ with two colors there exists a monochromatic solution to either E_{1} or E_{2}. If no such integer n exists, then the disjunctive Rado number for E_{1} and E_{2} is infinite. Let $R(c, k)$ represent the disjunctive Rado number for the equations $x_{1}+x_{2}+c=x_{3}$ and $x_{1}+x_{2}+k=x_{3}$. In this paper the values of $R(c, k)$ are found for all natural numbers c and k where $c \leq k$. It is shown that $$
R(c, k)=\left\{\begin{array}{cll} 4 c+5 & \text { if } & c \leq k \leq c+1 \\ 3 c+4 & \text { if } & c+2 \leq k \leq 3 c+2 \\ k+2 & \text { if } & 3 c+3 \leq k \leq 4 c+2 \\ 4 c+5 & \text { if } & 4 c+3 \leq k \end{array}\right.
$$

1. Introduction

Let \mathbb{N} represent the set of natural numbers and let $[a, b]$ denote the $\operatorname{set}\{n \in \mathbb{N}, a \leq n \leq b\}$. A function $\Delta:[1, n] \rightarrow[0, t-1]$ is referred to as a t-coloring of the set $[1, n]$. Given a t-coloring Δ and a system L of linear equations or inequalities in m variables, a solution $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ to the system L is monochromatic if and only if

$$
\Delta\left(x_{1}\right)=\Delta\left(x_{2}\right)=\cdots=\Delta\left(x_{m}\right)
$$

In 1916, I. Schur [24] proved that for every $t \geq 2$, there exists a least integer $n=S(t)$ such that for every t-coloring of the set $[1, n]$, there exists a monochromatic solution to $x_{1}+x_{2}=x_{3}$. The integers $S(t)$ are called Schur numbers. It is known that $S(2)=5$, $S(3)=14$ and $S(4)=45$, but no other Schur numbers are known [25]. In 1933, R. Rado generalized the concept of Schur numbers to arbitrary systems of linear equations. Rado found necessary and sufficient conditions to determine if an arbitrary system of linear equations admits a monochromatic solution under every t-coloring of the natural numbers $[6,17,18,19]$. For a given system L of linear equations, the least integer n, provided that it exists, such that for every t-coloring of the set $[1, n]$ there exists a monochromatic solution to L is called the t-color Rado number (or t-color generalized Schur number) for the system L. If such an integer n does not exist, then the t-color Rado number for the system L is infinite. In recent years the exact Rado numbers for several families of equations and inequalities have been found $[4,9,10,12,13,14,23]$. In [5] it was determined that the 2-color Rado number for the equation $E(c): x_{1}+x_{2}+c=x_{3}$ is $4 c+5$ for every integer $c \geq 0$.

Recently several other problems related to Schur numbers and Rado numbers have been considered $[1,2,3,7,8,16,20,21,22]$. Specifically, the concept of disjunctive Rado numbers (or disjunctive generalized Schur numbers) has recently been introduced [11, 15]. Given a set L of linear equations, the least integer n, provided that it exists, such that for every 2 -coloring of the set $[1, n]$ there exists a monochromatic solution to at least one equation in L is called the disjunctive Rado number for the set L. If such an integer n does not exist, then the disjunctive Rado number for the set L is infinite. Given a set of linear equations, it is clear that the disjunctive Rado number for this set is less than or equal to the 2 -color Rado number for each equation in the set.

In this paper, the disjunctive Rado numbers are determined for the set consisting of the two equations

$$
E(c): x_{1}+x_{2}+c=x_{3} \text { and } E(k): x_{1}+x_{2}+k=x_{3}
$$

for all natural numbers c and k where $c \leq k$. This disjunctive Rado number will be denoted by $R(c, k)$.

2. Main Result

Theorem For all natural numbers c and k where $c \leq k$,

$$
R(c, k)=\left\{\begin{array}{cll}
4 c+5 & \text { if } & c \leq k \leq c+1 \\
3 c+4 & \text { if } & c+2 \leq k \leq 3 c+2 \\
k+2 & \text { if } & 3 c+3 \leq k \leq 4 c+2 \\
4 c+5 & \text { if } & 4 c+3 \leq k
\end{array}\right.
$$

Proof. It should be noted that the third interval in the expression of $R(c, k)$ could be expanded to include the values of $k=3 c+2$ and $k=4 c+3$ without changing the expression.

The lower bounds can be established by exhibiting a coloring that avoids a monochromatic solution to both $E(c)$ and $E(k)$ for each of the intervals in the expression of $R(c, k)$. Consider the coloring $\Delta^{\prime}:[1,4 c+4] \rightarrow[0,1]$ defined by

$$
\Delta^{\prime}(x)= \begin{cases}0 & 1 \leq x \leq c+1 \\ 1 & c+2 \leq x \leq 3 c+3 \\ 0 & 3 c+4 \leq x \leq 4 c+4\end{cases}
$$

It is easy to check that the coloring Δ^{\prime} avoids a monochromatic solution to $E(c)$, so every restriction of Δ^{\prime} to a smaller domain does as well. We leave it to the reader to show that Δ^{\prime} also avoids a monochromatic solution to $E(k)$ when $c \leq k \leq c+1$ or $4 c+3 \leq k$, that $\left.\Delta^{\prime}\right|_{[1,3 c+3]}$ avoids a monochromatic solution to $E(k)$ when $c+2 \leq k \leq 3 c+2$ and that $\left.\Delta^{\prime}\right|_{[1, k+1]}$ avoids a monochromatic solution to $E(k)$ when $3 c+3 \leq k \leq 4 c+2$.

We shall now establish upper bounds for $R(c, k)$. As was mentioned in the introduction, every 2 -coloring of the set $[1,4 c+5]$ contains a monochromatic solution to $E(c)$, so for the cases $k \in[c, c+1]$ and $k \geq 4 c+3$, the upper bound of $4 c+5$ is already established. Hence we must consider only two cases.

Case 1: Assume that $k \in[c+2,3 c+2]$. We will establish that

$$
R(c, k) \leq 3 c+4
$$

Assume by way of a contradiction that there exists a coloring $\Delta:[1,3 c+4] \rightarrow[0,1]$ that does not admit a monochromatic solution to either $E(c)$ or $E(k)$. Without loss of generality we may assume that $\Delta(1)=0$, and so $\Delta(c+2)=1$ to avoid a monochromatic solution to $E(c)$. Let $s \leq c+2$ be the least integer such that $\Delta(s)=1$. Thus it must be the case that $\Delta(2 s+c)=0$. We now establish that for every $n \in[0,2 c+4-2 s]$ we have $\Delta(s+n)=1$ and $\Delta(2 s+c+n)=0$. To prove this we will use induction on n, with the case $n=0$ already established. We assume $\Delta\left(s+n_{0}\right)=1$ and $\Delta\left(2 s+c+n_{0}\right)=0$ for some $n_{0} \in[0,2 c+3-2 s]$. Now, $\Delta(s-1)=0$ and $\Delta\left(2 s+c+n_{0}\right)=0$, so $\Delta\left(s+n_{0}+1\right)=1$ or else ($s-1, s+n_{0}+1,2 s+c+n_{0}$) would be a monchromatic solution to $E(c)$. Also, since $\Delta(s)=1$, we must have $\Delta\left(2 s+c+n_{0}+1\right)=0$ or else $\left(s, s+n_{0}+1,2 s+c+n_{0}+1\right)$ would be a monchromatic solution to $E(c)$.

Now, by the inductive result we have that $[1, s-1] \cup[2 s+c, 3 c+4]$ contains only elements of color 0 . For any $k \in[c+2,3 c+2]$ there exist integers x_{1} and $x_{2} \in[1, s-1]$ and $x_{3} \in[2 s+c, 3 c+4]$ such that $x_{1}+x_{2}+k=x_{3}$. This is a contradiction.

Case 2: Assume that $k \in[3 c+3,4 c+2]$. We will show that

$$
R(c, k) \leq k+2
$$

by showing that every coloring $\Delta:[1, k+2] \rightarrow[0,1]$ contains a monochromatic solution to either $E(c)$ or $E(k)$.

Let a coloring $\Delta:[1, k+2] \rightarrow[0,1]$ be given. Without loss of generality we may assume that $\Delta(1)=0$. Then we may assume that $\Delta(c+2)=1$ and $\Delta(k+2)=1$ in order to avoid monochromatic solution to $E(c)$ and $E(k)$ respectively. Now, if $\Delta(3 c+4)=1$, then $(c+2, c+2,3 c+4)$ is a monochromatic solution to $E(c)$, so we may assume that $\Delta(3 c+4)=0$. If $\Delta(2 c+3)=0$, then $(1,2 c+3,3 c+4)$ is a monochromatic solution to $E(c)$, so we may assume that $\Delta(2 c+3)=1$. If $\Delta(k-3 c-1)=1$, then $(k-3 c-1,2 c+3, k+2)$ is a monochromatic solution to $E(c)$, so we may assume that $\Delta(k-3 c-1)=0$. Finally, if $\Delta(k-2 c)=0$, then $(1, k-3 c-1, k-2 c)$ is a monochromatic solution to $E(c)$, and if $\Delta(k-2 c)=1$, then $(c+2, k-2 c, k+2)$ is a monochromatic solution to $E(c)$. Therefore, every coloring $\Delta:[1, k+2] \rightarrow[0,1]$ contains a monochromatic solution to either $E(c)$ or $E(k)$. Hence,

$$
R(c, k) \leq k+2
$$

when $k \in[3 c+3,4 c+2]$ and the proof of the Theorem is complete.

Acknowledgements

This material is partially based upon work supported by the National Science Foundation Grant \#DMS-9820520 and the University of Idaho REU. This work was also supported by a South Dakota Governor's 2010 Individual Research Seed Grant.

References

[1] A. Bialostocki, G. Bialostocki, and D. Schaal, A zero-sum theorem, Journal of Combinatorial Theory Series. A vol 101 (2003), 147-152.
[2] A. Bialostocki, P. Erdös, H. Lefmann, Monochromatic and zero-sum sets of nondecreasing diameter, Discrete Math. 137 (1995), no. 1-3, 19-34.
[3] A. Bialostocki, H. Lefmann, T. Meerdink, On the degree of regularity of some equations, Selected papers in honour of Paul Erdös on the occasion of his 80th birthday, (Keszthely, 1993), Discrete Math. 150 (1996), no. 1-3, 49-60.
[4] A. Bialostocki, D. Schaal, On a Variation of Schur Numbers, Graphs and Combinatorics, vol 16 (2000), 139-147.
[5] S. Burr, S. Loo, On Rado Numbers I, preprint.
[6] W. Deuber, Developments Based on Rado's Dissertation "Studien zur Kombinatorik", Survey in Combinatorics (1989), 52-74, Cambridge University Press.
[7] H. Harborth, S. Maasberg, Rado numbers for Fibonacci sequences and a problem of S. Rabinowitz, in: G. E. Bergum at al., eds., Applications of Fibonacci Numbers, Vol. 6 (Cluwer Acad. Publ.) 143-153.
[8] H. Harborth, S. Maasberg, Rado numbers for homogeneous second order linear recurrences - degree of partition regularity, Congressus Numerantium, Vol 108 (1995), 109-118.
[9] H. Harborth, S. Maasberg, Rado numbers for $a(x+y)=b z$, Journal of Combinatorial Theory Series A, Vol. 80, num. 2 (1997), 356-363.
[10] H. Harborth, S. Maasberg, All two-color Rado numbers for $a(x+y)=b z$, Discrete Math., 197/198 (1999), 397-407.
[11] B. Johnson, D. Schaal, Disjunctive Rado Numbers, Journal of Combinatorial Theory Series A, Vol 112, num. 2 (2005), 263-276.
[12] S. Jones, D. Schaal, Some 2-color Rado numbers, Congressus Numerantium, 152 (2001), 197-199.
[13] S. Jones, D. Schaal, A class of two-color Rado numbers, Discrete Mathematics, 289 (2004), no. 1-3, 63-69.
[14] W. Kosek, D. Schaal, Rado Numbers for the equation $\sum_{i=1}^{m-1} x_{i}+c=x_{m}$ for negative values of c, Advances in Applied Mathematics, vol 27 (2001), 805-815.
[15] W. Kosek, D. Schaal, A Note on Disjunctive Rado Numbers,Advances in Applied Mathematics, vol. 31 (2003), iss. 2, 433-439.
[16] B. Landman, A. Roberton, On Generalized Van der Waerden Triples, Discrete Mathematics, 256 (2002), 279-290.
[17] R. Rado, Verallgemeinerung eines Satzes von van der Waerden mit Anwendungen auf ein Problem der Zahlentheorie, Sonderausg. Sitzungsber. Preuss. Akad. Wiss. Phys.- Math. Klasse, 17 (1933), 1-10.
[18] R. Rado, Studien zur Kombinatorik, Math. Z. 36 (1933), 242-280.
[19] R. Rado, Note on Combinatorial Analysis, Proc. London Math. Soc. 48 (1936), 122-160.
[20] A. Robertson, D. Schaal, Off-Diagonal Generalized Schur Numbers, Advances in Applied Mathematics, vol. 26 (2001), 252-257.
[21] A. Robertson, Difference Ramsey Numbers and Issai Numbers, Advances in Applied Mathematics, 25 (2000), 153-162.
[22] A. Robertson, D. Zeilberger, A 2-Coloring of [1,N] Can Have $\mathrm{N}^{2} / 22+\mathrm{O}(\mathrm{N})$ Monochromatic Schur Triples, But Not Less!, Electronic Journal of Combinatorics 5 (1998), R19.
[23] D. Schaal, On Generalized Schur Numbers, Congressus Numerantium, vol. 98 (1993), 178-187.
[24] I. Schur, Über die Kongruenz $x^{m}+y^{m} \equiv z^{m}(\bmod p)$. Jahresber. Deutsch. Math. Verein. 25 (1916), 114-117.
[25] W. Wallis, A. Street, J. Wallis, Combinatorics: Room Squares, Sum-free Sets, Hadamard Matrices, Lecture Notes in Math., vol. 292, Springer- Verlag, Berlin and New York, 1972.

