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DISJUNCTIVE RADO NUMBERS FOR x1 + x2 + c = x3
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Abstract

Given two equations E1 and E2, the disjunctive Rado number for E1 and E2 is the least
integer n, provided that it exists, such that for every coloring of the set {1, 2, . . . , n} with
two colors there exists a monochromatic solution to either E1 or E2. If no such integer n
exists, then the disjunctive Rado number for E1 and E2 is infinite. Let R(c, k) represent
the disjunctive Rado number for the equations x1 + x2 + c = x3 and x1 + x2 + k = x3. In
this paper the values of R(c, k) are found for all natural numbers c and k where c ≤ k. It
is shown that

R(c, k) =






4c + 5 if c ≤ k ≤ c + 1
3c + 4 if c + 2 ≤ k ≤ 3c + 2
k + 2 if 3c + 3 ≤ k ≤ 4c + 2
4c + 5 if 4c + 3 ≤ k.

1. Introduction

Let N represent the set of natural numbers and let [a, b] denote the set {n ∈ N, a ≤ n ≤ b}.
A function ∆ : [1, n] → [0, t − 1] is referred to as a t-coloring of the set [1, n]. Given a
t-coloring ∆ and a system L of linear equations or inequalities in m variables, a solution
(x1, x2, . . . , xm) to the system L is monochromatic if and only if

∆(x1) = ∆(x2) = · · · = ∆(xm).
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In 1916, I. Schur [24] proved that for every t ≥ 2, there exists a least integer n = S(t)
such that for every t-coloring of the set [1, n], there exists a monochromatic solution to
x1 + x2 = x3. The integers S(t) are called Schur numbers. It is known that S(2) = 5,
S(3) = 14 and S(4) = 45, but no other Schur numbers are known [25]. In 1933, R.
Rado generalized the concept of Schur numbers to arbitrary systems of linear equations.
Rado found necessary and sufficient conditions to determine if an arbitrary system of linear
equations admits a monochromatic solution under every t-coloring of the natural numbers
[6, 17, 18, 19]. For a given system L of linear equations, the least integer n, provided that it
exists, such that for every t-coloring of the set [1, n] there exists a monochromatic solution to
L is called the t-color Rado number (or t-color generalized Schur number) for the system L.
If such an integer n does not exist, then the t-color Rado number for the system L is infinite.
In recent years the exact Rado numbers for several families of equations and inequalities have
been found [4, 9, 10, 12, 13, 14, 23]. In [5] it was determined that the 2-color Rado number
for the equation E(c) : x1 + x2 + c = x3 is 4c + 5 for every integer c ≥ 0.

Recently several other problems related to Schur numbers and Rado numbers have been
considered [1, 2, 3, 7, 8, 16, 20, 21, 22]. Specifically, the concept of disjunctive Rado numbers
(or disjunctive generalized Schur numbers) has recently been introduced [11, 15]. Given a
set L of linear equations, the least integer n, provided that it exists, such that for every
2-coloring of the set [1, n] there exists a monochromatic solution to at least one equation in
L is called the disjunctive Rado number for the set L. If such an integer n does not exist,
then the disjunctive Rado number for the set L is infinite. Given a set of linear equations,
it is clear that the disjunctive Rado number for this set is less than or equal to the 2-color
Rado number for each equation in the set.

In this paper, the disjunctive Rado numbers are determined for the set consisting of the
two equations

E(c) : x1 + x2 + c = x3 and E(k) : x1 + x2 + k = x3

for all natural numbers c and k where c ≤ k. This disjunctive Rado number will be denoted
by R(c, k).

2. Main Result

Theorem For all natural numbers c and k where c ≤ k,

R(c, k) =






4c + 5 if c ≤ k ≤ c + 1
3c + 4 if c + 2 ≤ k ≤ 3c + 2
k + 2 if 3c + 3 ≤ k ≤ 4c + 2
4c + 5 if 4c + 3 ≤ k.
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Proof. It should be noted that the third interval in the expression of R(c, k) could be
expanded to include the values of k = 3c+2 and k = 4c+3 without changing the expression.

The lower bounds can be established by exhibiting a coloring that avoids a monochromatic
solution to both E(c) and E(k) for each of the intervals in the expression of R(c, k). Consider
the coloring ∆′ : [1, 4c + 4] → [0, 1] defined by

∆′(x) =






0 1 ≤ x ≤ c + 1
1 c + 2 ≤ x ≤ 3c + 3
0 3c + 4 ≤ x ≤ 4c + 4.

It is easy to check that the coloring ∆′ avoids a monochromatic solution to E(c), so every
restriction of ∆′ to a smaller domain does as well. We leave it to the reader to show that
∆′ also avoids a monochromatic solution to E(k) when c ≤ k ≤ c + 1 or 4c + 3 ≤ k, that
∆′ |[1,3c+3] avoids a monochromatic solution to E(k) when c + 2 ≤ k ≤ 3c + 2 and that
∆′ |[1,k+1] avoids a monochromatic solution to E(k) when 3c + 3 ≤ k ≤ 4c + 2.

We shall now establish upper bounds for R(c, k). As was mentioned in the introduction,
every 2-coloring of the set [1, 4c + 5] contains a monochromatic solution to E(c), so for the
cases k ∈ [c, c + 1] and k ≥ 4c + 3, the upper bound of 4c + 5 is already established. Hence
we must consider only two cases.

Case 1: Assume that k ∈ [c + 2, 3c + 2]. We will establish that

R(c, k) ≤ 3c + 4.

Assume by way of a contradiction that there exists a coloring ∆ : [1, 3c + 4] → [0, 1] that
does not admit a monochromatic solution to either E(c) or E(k). Without loss of generality
we may assume that ∆(1) = 0, and so ∆(c + 2) = 1 to avoid a monochromatic solution
to E(c). Let s ≤ c + 2 be the least integer such that ∆(s) = 1. Thus it must be the
case that ∆(2s + c) = 0. We now establish that for every n ∈ [0, 2c + 4 − 2s] we have
∆(s + n) = 1 and ∆(2s + c + n) = 0. To prove this we will use induction on n, with the
case n = 0 already established. We assume ∆(s + n0) = 1 and ∆(2s + c + n0) = 0 for some
n0 ∈ [0, 2c + 3 − 2s]. Now, ∆(s − 1) = 0 and ∆(2s + c + n0) = 0, so ∆(s + n0 + 1) = 1 or
else (s − 1, s + n0 + 1, 2s + c + n0) would be a monchromatic solution to E(c). Also, since
∆(s) = 1, we must have ∆(2s + c + n0 + 1) = 0 or else (s, s + n0 + 1, 2s + c + n0 + 1) would
be a monchromatic solution to E(c).

Now, by the inductive result we have that [1, s − 1] ∪ [2s + c, 3c + 4] contains only ele-
ments of color 0. For any k ∈ [c + 2, 3c + 2] there exist integers x1 and x2 ∈ [1, s − 1] and
x3 ∈ [2s + c, 3c + 4] such that x1 + x2 + k = x3. This is a contradiction.

Case 2: Assume that k ∈ [3c + 3, 4c + 2]. We will show that

R(c, k) ≤ k + 2
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by showing that every coloring ∆ : [1, k + 2] → [0, 1] contains a monochromatic solution to
either E(c) or E(k).

Let a coloring ∆ : [1, k + 2] → [0, 1] be given. Without loss of generality we may assume
that ∆(1) = 0. Then we may assume that ∆(c + 2) = 1 and ∆(k + 2) = 1 in order to
avoid monochromatic solution to E(c) and E(k) respectively. Now, if ∆(3c + 4) = 1, then
(c+2, c+2, 3c+4) is a monochromatic solution to E(c), so we may assume that ∆(3c+4) = 0.
If ∆(2c + 3) = 0, then (1, 2c + 3, 3c + 4) is a monochromatic solution to E(c), so we may
assume that ∆(2c + 3) = 1. If ∆(k − 3c − 1) = 1, then (k − 3c − 1, 2c + 3, k + 2) is a
monochromatic solution to E(c), so we may assume that ∆(k − 3c − 1) = 0. Finally, if
∆(k − 2c) = 0, then (1, k − 3c − 1, k − 2c) is a monochromatic solution to E(c), and if
∆(k − 2c) = 1, then (c + 2, k − 2c, k + 2) is a monochromatic solution to E(c). Therefore,
every coloring ∆ : [1, k + 2] → [0, 1] contains a monochromatic solution to either E(c) or
E(k). Hence,

R(c, k) ≤ k + 2

when k ∈ [3c + 3, 4c + 2] and the proof of the Theorem is complete.
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