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Abstract

The question of which terms of a recurrence sequence fail to have primitive prime divisors
has been significantly studied for several classes of linear recurrence sequences and for elliptic
divisibility sequences. In this paper, we consider the question for sequences generated by
the iteration of a polynomial. For two classes of polynomials f(x) ∈ Z[x] and initial values
a1 ∈ Z, we show that the sequence (an) given by an+1 = f(an) for n ≥ 1 has only finitely
many terms which have no primitive prime divisor.

1. Introduction and Statement of Results

Given a sequence (an) = (a1, a2, . . . ) of integers, we say that a term an of the sequence has
a primitive prime divisor if there exists a prime p such that p|an, but p ! ai for i < n. For
a given sequence (an), we can ask a natural question: which terms of the sequence have
primitive prime divisors?

This question has received a lot of attention in the case where (an) is a sequence generated
by a binary linear recurrence an+2 = c1an+1 + c2an. Results going back to Zsigmondy [17]
show that for a certain class of such sequences, including the Mersenne numbers an = 2n−1,
every term in the sequence past the 6th must have a primitive prime divisor. Recently,
the problem has been solved in its entirety for a class of second-order linear recurrence
sequences known as Lucas sequences. The result, proved by Bilu, Hanrot, and Voutier in [4],
is the culmination of years of work on the topic by a number of mathematicians, including
Carmichael [7] and Schinzel [15].

These results, though very important, are far from the whole story. Even within linear
recurrences, when one departs from Lucas sequences the situation can become very different.
For example, in [9], Everest, Stevens, Tamsett, and Ward examine the problem for the
sequences an = n2 + β, which can be represented as ternary linear recurrences. They show,
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among other results, that infinitely many terms of (an) fail to have primitive prime divisors.

In the case of nonlinear recurrence sequences, however, only elliptic divisibility sequences
(see [10, Chapter 10], and [8]) seem to have received any attention. In particular, the
subject of primitive prime divisors in recurrence sequences generated by the iteration of
nonlinear polynomials appears not to have been studied. The topic of the current paper is
the simplest case of such sequences. We consider first-order polynomial recurrence sequences:
those generated by iterating a polynomial f ∈ Z[x] of degree ≥ 2 on initial input a1 ∈ Z.

The material explored in this paper falls under the general category of arithmetic dy-
namics. In particular, the material in section 3 on rigid divisibility sequences is connected
with questions about the topology of orbits in certain p-adic dynamical systems. For more
information in this direction, see, for example, [11], [5], [6], [3], [2], and [1].

We use the following terminology throughout the paper: if f is a polynomial in x, and
(an) satisfies an+1 = f(an) for n ≥ 1, we say that (an) is the sequence generated by f starting
at a1, denoted by (f, a1). A polynomial f has integer coefficients and (an) is integral unless
stated otherwise.

In Section 2, we consider monic polynomials f ∈ Z[x] where (f, 0) is finite. (That is, the
orbit of 0 under f is preperiodic.) We prove the following theorem.

Theorem 1.1. Suppose f(x) is a monic polynomial of degree d ≥ 2, such that f(x) $= xd

and (f, 0) is finite. If (an) = (f, a1) is unbounded, then only finitely many terms of (an) do
not have a primitive prime divisor.

We also give stronger results for some explicit families of polynomials f ; for example, we
show that if f(x) = x2 − kx + k, (f, a1) is unbounded, and 4 ! vp(k) for all p|k, then at most
one term of (f, a1) has no primitive prime divisor (we let vp denote the p-adic valuation).

In Section 3, we consider sequences (an) = (f, f(0)) for monic f ∈ Z[x]. An easy induction
shows that such sequences satisfy an+k ≡ ak (mod an) and thus gcd(an, am) = agcd(m,n) for
all m, n ∈ N. Such a sequence is known as a strong divisibility sequence. We call such a
sequence a rigid divisibility sequence if, additionally, an $= 0 for all n, and there is associated
to each prime p an integer ip such that vp(an) = ip for all n such that p|an. We prove the
following theorem.

Theorem 1.2. Let f(x) be a monic polynomial of degree ≥ 2. If (an) = (f, f(0)) is an
unbounded rigid divisibility sequence, then only finitely many terms of (an) have no primitive
prime divisor.

We also give methods which allow us to prove that many polynomials f generate rigid
divisibility sequences. For example, our methods allow us to show that if
f(x) = x3 + 3kx2 + 3k2x − k for some integer |k| ≥ 2, then every term of (f,−k) has a
primitive prime divisor.
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Remark : It follows from our methods that the set of n for which an has no primitive prime
divisor is effectively computable when (an) satisfies the hypotheses of Theorem 1.1 or of
Theorem 1.2. However, the method of computation is essentially brute force and is not of
interest here.
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2. Polynomials f for which (f, 0) is Finite

2.1. Classification and General Results

In order to prove Theorem 1.1, we will first classify all possible (f, 0) such that (f, 0) is finite.
Then, we will prove the theorem in several parts.

Proposition 2.1. Let f(x) be a monic polynomial such that (f, 0) is finite. Then one of
the following is true.

i: f(0) = 0, and f(x) = xP (x) for some monic polynomial P (x).

ii: f(0) = k and f(k) = 0 for some nonzero k ∈ Z, thus
f(x) = (x − k)[xP (x) − 1] for some monic P (x).

iii: f(0) = k and f(k) = k for some nonzero k ∈ Z, thus
f(x) = (x − k)xP (x) + k for some monic P (x).

iv: f(0) = 1, f(1) = k, and f(k) = 1 for some nonzero k ∈ Z, thus
f(x) = x(x − k)[(x − 1)P (x) − 1] + 1 for some monic P (x).

v: f(0) = −1, f(−1) = k, and f(k) = −1 for some nonzero k ∈ Z, thus
f(x) = x(x − k)[(x + 1)P (x) + 1] − 1 for some monic (or zero) P (x).

vi: All iterates fn(0), n ≥ 1, are ±1 or ±2.

Proof. We first observe the following.

Lemma 2.2. An integer, under iteration of a monic integer-coefficient polynomial, cannot
belong to a cycle of length greater than two.

Proof. This is a special case of Theorem 12.9 in [14].
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Since (f, 0) is finite, 0 must eventually be periodic. By Theorem 2 in [13], if (f, 0)
contains a cycle of length one, it contains at most three distinct terms, and if it contains
a cycle of length two, it contains at most four distinct terms. Using these facts we can
proceed to systematically characterize all polynomials f such that (f, 0) is finite. Each of
the possible cases can be analyzed with straightforward algebra; we only include one such
case as an example as the others proceed similarly.

Suppose f(0) = a, f(a) = b, and f(b) = a, with a $= b. In this case, 0 and b are both
roots of f(x) − a, so f(x) = x(x − b)P (x) + a. Since f(a) = b, we substitute a into the
equation to obtain b = f(a) = a(a − b)P (a) + a, or equivalently, (b − a) = a(a − b)P (a).
Since a $= b, we obtain −1 = aP (a), from which a = ±1 and P (a) = −a. Renaming b as k,
we can write the polynomials given by these two cases. In the case a = 1,

f(x) = x(x − k)[(x − 1)Q(x) − 1] + 1

for a monic Q(x), which gives case iv. In the case a = −1, we have

f(x) = x(x − k)[(x + 1)Q(x) + 1] − 1,

where Q(x) is either 0 or a monic polynomial; this is case v.

We may now begin to prove Theorem 1.1 for each of the cases of Proposition 2.1. We
first do this for case i, then for case ii, and finally for cases iii-vi together. We then follow
by giving explicit bounds on the number of terms in (an) with no primitive prime divisors
for sequences generated by polynomials falling into each of the cases iii-vi.

In all that follows, we will use the standard notation vp(a) to mean the p-adic valuation
of a; so that pvp(a)‖a.

Proposition 2.3. Suppose that f(x) satisfies i of Proposition 2.1, and that f(x) $= xd. If
(an) = (f, a1) is unbounded, then only finitely many terms of (an) do not have a primitive
prime divisor.

Proof. Since f(x) $= xd, we may write f(x) = xkP (x), where d > k ≥ 1 and P (x) =
d−k∑

i=0

cix
i

is a monic polynomial of degree d − k such that c0 $= 0. Call b = c0.

One important property of the polynomial f is that ak|f(ak), so that a1|a2| · · · |an for
all n. It therefore suffices to show that, for all but finitely many n, an+1 has a prime factor
which is not a prime factor of an. In particular, since P (an)|an+1, it suffices to show that
P (an) shares all its prime factors with an for only finitely many an.

Now suppose that p|an. Examining P (an) modulo p, we see that P (an) ≡ b (mod p), so
it follows that if p|P (an) as well, then p|b. Therefore, if P (an) has all of its prime factors
in common with an, it also has all of its prime factors in common with b. There are only
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two ways that this can happen: either P (an)|b, or vp(P (an)) > vp(b) for some p|b. Since
|P (x)| > b for all but finitely many integers x, there are only finitely many x such that P (x)
is a divisor of b, so in particular there are only finitely many an such that P (an)|b.

We next show that, for each p|b, there is at most one an such that vp(an) > vp(b). To do
this, consider vp(ai) as i increases. We have vp(ai+1) = kvp(ai) + vp(P (ai)) ≥ vp(ai), so that
vp(ai) is nondecreasing. Now suppose that vp(P (an)) > vp(b). Then we have
vp(am) ≥ vp(an+1) ≥ vp(P (an)) > vp(b) for all m > n. Since P (am) ≡ b (mod pvp(am)), it
follows that vp(P (am)) = vp(b). Thus, the first an such that vp(P (an)) > vp(b) is also the
last, and there is at most one such an for each p. In particular, this means that there are
only finitely many an such that vp(P (an)) > vp(b) for some p|b.

There are therefore only finitely many an such that P (an) shares all of its prime factors
with b, and thus only finitely many an+1 such that an+1 = anP (an) shares all of its prime
factors with an. It follows that only finitely many terms of (an) have no primitive prime
divisor.

Many interesting sequences are given by recursions of this form. For instance, the se-
quence (x2+x, 1) appears in the Online Encyclopedia of Integer Sequences ([16]), as A007018.
The sequence 22n − 1 (A051179 in [16]) is also of this form, as it is (x2 + 2x, 1). For both of
these, we can see, going through the above proof for the specific case, that every term past
the first has a primitive prime divisor.

We now proceed to case ii, making use of Proposition 2.3 in the proof.

Proposition 2.4. Suppose f(x) falls into case ii in Proposition 2.1. If the sequence
(an) = (f, a1) is unbounded, then only finitely many terms of (an) do not have a primitive
prime divisor.

Proof. Since f(f(0)) = 0, it follows that f(f(x)) falls into case i of Proposition 2.1. Since
(a2n) and (a2n−1) are unbounded by hypothesis, it follows by Proposition 2.3 that the se-
quences (a2n) and (a2n−1), considered separately, each have only finitely many terms which
are not primitive prime divisors. Furthermore, a1|a3| · · · |a2n−1| · · · , and a2|a4| · · · |a2n| · · · .

Now, let us consider gcd(a2r, a2s−1). Suppose without loss of generality (the other case is
identical) that 2r > 2s−1. Then, since a2s−1|a2r−1, it follows that gcd(a2r, a2s−1)| gcd(a2r, a2r−1).
But since f(0) = k, we see that a2r = f(a2r−1) ≡ k (mod a2r−1). It follows that gcd(a2r, a2r−1)|k,
and hence that gcd(a2r, a2s−1)|k, for any r, s ≥ 1.

Now suppose that a2r, considered as part of the sequence (a2n), has a primitive prime
divisor p. Then a2r, considered as part of the sequence (an), can only fail to have a primitive
prime divisor if p| gcd(a2r, a2s−1) for some s ≤ r. But by the above this can only happen
if p|k, and since only finitely many primes divide k, there are only finitely many terms
a2r which have a primitive prime divisor considered as part of (a2n), but fail to have one
when considered as part of (an). The same follows for terms of the form a2s−1. Since we
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know by the above that there are only finitely many terms in (a2n) and in (a2n−1) with no
primitive prime divisor, the number of terms of (an) with no primitive prime divisor is finite,
as required.

One interesting sequence in this category is (x2−4x+3, 2) = 2,−1, 8, 35, . . . . The second
and third terms (but no others) fail to have primitive prime divisors.

Proposition 2.5. Suppose that f(x) satisfies one of the cases iii-vi of Proposition 2.1. If
the sequence (an) = (f, a1) is unbounded, then the number of terms of (an) which have no
primitive prime divisor is finite.

Proof. We begin by observing that an+1 = f(an) ≡ f(0) (mod an), and by induction,
an+m ≡ fm(0) (mod an). It follows that gcd(an+m, an)|fm(0). By hypothesis, fm(0) takes
on only finitely many distinct values, and all of these values are nonzero. Letting c be the
product of these distinct values, it follows that gcd(ar, as)|c for all r $= s. There are only
finitely many n such that an|c, so consider an, having no primitive prime divisor, with an ! c.
Since gcd(an, ar)|c for all r, if an has no primitive prime divisor, then all of the primes
dividing it must also divide c. Thus, since an ! c, there must be some prime p such that
vp(an) > vp(c) ≥ 1. Now since gcd(an, ar)|c for all r $= n, it follows that vp(ar) ≤ vp(c) for all
r $= n. Hence, for each p|c, there is at most one n such that vp(an) > vp(c). This means that
the number of n for which an ! c but an has no primitive prime divisor is bounded above by
the number of prime factors of c, and is thus finite. Hence the total number of n such that
an has no primitive prime divisor is finite, as required.

Propositions 2.1, 2.3, 2.4, and 2.5 together comprise a proof of Theorem 1.1.

2.2. Stronger Bounds in Specific Cases

The proof of Proposition 2.5 suggests that in some cases we may be able to give better bounds
than mere finiteness on the number of terms in (f, a1) with no primitive prime divisor.

Proposition 2.6. Suppose that f(x) satisfies case vi in Proposition 2.1. If (an) = (f, a1)
is unbounded, then at most two terms of (an) have no primitive prime divisor.

Proof (sketch). In this case, (f, 0) contains only the initial 0 and numbers from the set
{±1,±2}. It follows that gcd(an, am)|2, so if an has no primitive prime divisor, then an = ±2k

for some k ≥ 0, and there can be at most one such an with k > 1. Considering each possible
(f, 0) separately (we leave the details to the reader), we see that in each case, if ±2k (k > 1)
occurs, it must be the first time 2 occurs as a divisor of some an, and so that term has a
primitive prime divisor. Thus, the terms with no primitive prime divisors must be ±1 or ±2.
However, similar casewise consideration shows that at most two of the numbers {±1,±2}
can occur in the sequence.
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One such sequence is (x2−2, 3) (A001566 in [16]), in which the terms are in fact relatively
prime (they are all odd and gcd(an, am)|2 as noted above).

Though we cannot prove a constant bound for all polynomials falling under any one of
the other cases of Proposition 2.1, we can still produce an explicit bound when f(x) falls
under one of the cases iii-v of Proposition 2.1.

Theorem 2.7. Suppose that f(x) falls under one of the cases iii-v of Proposition 2.1. The
orbit of 0 in those cases depends on a parameter k $= 0. If the sequence (an) = (f, a1)
is unbounded, then the number of terms of (an) which have no primitive prime divisor is
bounded above by log2 |k| + 3.

Proof. By the same argument as in the proof of Proposition 2.5, we know gcd(an, am)|k, and
thus the number of n such that an ! k but an has no primitive prime divisor is bounded
above by the number of distinct prime factors of k. Let α be the number of distinct prime
factors of k.

Now consider the n such that an|k. We have two cases: either f(x) falls under case iii,
or it falls under one of the cases iv or v. In the former case, we see from the characterization
given in Proposition 2.1 that the linear coefficient of f(x) is divisible by k, call it ck. Suppose
that p|k and vp(k) > vp(an) = j > 0; then an+1 = f(an) ≡ ckan + k ≡ 0 (mod pj+1), so that
vp(an+1) ≥ j + 1 > vp(an). Therefore, for each 0 < i < vp(k), there is at most one an|k such
that vp(an) = i.

The latter case proceeds similarly. From the characterization of the polynomials for
cases iv and v given in Proposition 2.1 it follows that the linear coefficient of f(f(x)) must
be divisible by k. It follows as in the previous paragraph that vp(an+2) ≥ j + 1 > vp(an).
Furthermore, if p|k and p|an, we have by induction that an+2s+1 ≡ ±1 (mod p), and thus
p ! an+2s+1, for s ≥ 0. Thus, for each 0 < i < vp(k), there is at most one n such that
vp(an) = i: if there is one of the form a2n, there are none of the form a2n+1, and vice-versa.

Furthermore, in all cases there are at most two an|k such that vp(an) = 0 for all p|k
(namely ±1), and at most one an|k such that vp(an) = vp(k) for all p|k (since k itself cannot
be in an unbounded (f, a1)). It follows that the number of n such that an|k is at most




∑

p|k

(vp(k) − 1)



 + 3 =




∑

p|k

vp(k)



 − α + 3 ≤ log2




∏

p|k

pvp(k)



 − α + 3 = log2 |k|− α + 3.

Therefore, the total number of an which have no primitive prime divisor is bounded above
by log2 |k| + 3, as required.

We note that the bound log2 |k|+ 3 can be reduced to log2 |k|+ 2 by more detailed case
analysis. It is doubtful, however, that this better bound is sharp either, and in any case such
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tightenings are less interesting than the much stronger result which can be obtained in the
following special case.

Theorem 2.8. Let f(x) = x2 − kx + k, with k $= 0, and suppose that (an) = (f, a1) is
unbounded. For n ≥ 1, let Bn = {p : v2(vp(k)) = n}, and for n ≥ 0, define βn by β0 = 0
and βn = min{βn−1 + |Bn|, n}. Since Bn = ∅ for all sufficiently large n, we may define
β = max βn. Then the number of terms of (an) with no primitive prime divisor is bounded
above by max{1, β}. In particular, this means that if vp(k) is not divisible by 4 for any p|k,
then at most one term of (an) has no primitive prime divisor.

We note that several well-known sequences fall into this class. Sylvester’s sequence
(number A000058 in [16]) is the sequence (x2−x+1, 2), while (x2−2x+2, 3) is the sequence
of Fermat numbers. It is not hard to see that these sequences, and in general all sequences
in the family (x2 − kx + k, k + 1), have all terms coprime. Theorem 2.8 can be seen as
a generalization that gives us partial results even when the starting point is changed. For
instance, the sequence (x2 − 4x + 4, 6) begins 6, 16, 196, · · · , and the second term fails to
have a primitive prime divisor. Theorem 2.8 tells us that this is the only such term in the
sequence.

Proof. We begin with a lemma.

Lemma 2.9. Let n ≥ 2, and suppose that an ! k but that an has no primitive prime divisor.
Then there is some prime p|k such that vp(k) = 2n−1vp(a1).

Proof. As in Theorem 2.7, gcd(an, am)|k, so that if an has no primitive prime divisor, then
an shares all its prime factors with k. Thus, if additionally an ! k, then vp(an) > vp(k) for
some prime p|k.

Now, suppose that vp(am) = i, and vp(k) = j. Write am = capi and k = ckpj. Then

am+1 = c2
ap

2i + cackp
i+j + ckp

j. (1)

If 2i < j, we can factor out p2i from (1) to obtain vp(am+1) = 2i; similarly, if 2i > j, we can
factor out pj to obtain vp(am+1) = j. It follows that

vp(am+1) > vp(k) is only possible if vp(k) = 2vp(am). (2)

Additionally, we obtain by induction on m that

vp(am) = 2m−1vp(a1) provided that vp(am) < vp(k). (3)

Now suppose that vp(an) > vp(k) for some p|k. Then by (2), vp(k) = 2vp(an−1). It
follows that vp(an−1) < vp(k), so by (3) we have vp(an−1) = 2n−2vp(a1). Therefore,
vp(k) = 2n−1vp(a1) as required.
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We now return to the proof of Theorem 2.8. Since (an) is unbounded, 1 $∈ (an). Hence if a1

has no primitive prime divisor, then a1 = −1, in which case it follows by induction on n that
vp(an) = 0 for all p|k. It follows that in this case, all other terms of (an) have a primitive
prime divisor.

Straightforward computation reveals that an > k for n ≥ 3 and
∣∣∣ k
a2

∣∣∣ < 4. If a2|k and an

has no primitive prime divisor for some n ≥ 3, then an ! k and by Lemma 2.9,

vp(k) = 2n−1vp(a1) = 2n−2vp(a2) for some prime p|k. (4)

Now vp(k)− vp(a2) ≤ 1 since 4 >
∣∣∣ k
a2

∣∣∣ ∈ N, and vp(a2) = 2vp(a1) is even if vp(a2) < vp(k), so

(4) cannot hold for n ≥ 3. It follows that if a2|k, then an has a primitive prime divisor for
n ≥ 3.

Therefore, when either a1 has no primitive prime divisor or a2|k, the number of terms of
(an) with no primitive prime divisor is at most 1. Now, suppose that neither of the above
cases holds.

Define A = {n : an has no primitive prime divisor}. Suppose that n ∈ A; then n ≥ 2.
Since an ! k, by Lemma 2.9 there is some prime p|k such that vp(k) = 2n−1vp(a). For each
n ∈ A, choose one such prime pn. Then v2(vpn(k)) ≥ n− 1, so that there is some m ≥ n− 1
such that pn ∈ Bm.

Define Ap = {pn : n ∈ A}. It follows that

Ap ⊂
n⋃

i=1

Bi for all sufficiently large n. (5)

Similarly,
∣∣∣∣∣Ap ∩

n⋃

i=1

Bi

∣∣∣∣∣ ≤ n, (6)

since only p2 through pn+1 could be in this intersection.

We therefore have |Ap ∩ B1| ≤ min{|B1|, 1} = β1, and by induction together with (6),
∣∣∣∣∣Ap ∩

n⋃

i=1

Bi

∣∣∣∣∣ =

∣∣∣∣∣Ap ∩
n−1⋃

i=1

Bi

∣∣∣∣∣ + |Ap ∩ Bn| ≤ min{βn−1 + |Bn|, n} = βn. (7)

By (5), there exists an n such that Ap ∩
n⋃

i=1

Bi = Ap. It follows from this and (7) that

|Ap| =

∣∣∣∣∣Ap ∩
n⋃

i=1

Bi

∣∣∣∣∣ ≤ βn ≤ max
n≥0

βn = β. (8)
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Recall that (8) covers all cases except where a2|k or 1 ∈ A; as noted above these other
cases yield at most one an with no primitive prime divisor. Since |Ap| = |A| is the number
of terms of (an) with no primitive prime divisor, it follows that the number of such terms is
bounded above by max{1, β} as required.

A slight weakening of this result gives a bound which is easier to evaluate.

Corollary 2.10. Let (an) be as in Theorem 2.8. Then the number of terms of (an) with no
primitive prime divisor is bounded above by max{1, log2 log2 |k|}.

Proof. Write m = max{n|Bn $= ∅}. Then β = βm ≤ m. By definition of Bn,
m = max

p|k
{v2(vp(k))}. It follows that v2(vp(k)) ≤ log2(vp(k)) ≤ log2 log2 |k|, so

m ≤ log2 log2 |k|. The result then follows by Theorem 2.8.

3. Sequence Factorization and Rigid Divisibility Sequences

We now turn to another class of iterated polynomial recurrence sequences: those that are
rigid divisibility sequences (see p. 2 for a definition). A special case of such sequences and a
special case of the sequence factorization discussed in section 3.2 appear in section 5 of [12].

It turns out that it is often more convenient and useful to consider sequences satisfying
a stronger condition than rigid divisibility. Accordingly, we say that a strong divisibility
sequence (an) is a superrigid divisibility sequence if an $= 0 for all n, and
acn+k ≡ ak (mod pvp(an)+1) for any integers c, k ≥ 1 whenever p|an.

3.1. Basic Results on Rigid Divisibility Sequences

We begin by showing that all superrigid divisibility sequences are rigid divisibility sequences.

Proposition 3.1. If (an) is a superrigid divisibility sequence, then (an) is also a rigid di-
visibility sequence.

Proof. Let m be minimal such that the prime p divides am. Then, since (an) is a strong
divisibility sequence, it follows that p|an if and only if m|n. It therefore suffices to show that
vp(acm) = vp(am); we will then choose ip = vp(am). Since (an) is a superrigid divisibility
sequence, acm ≡ am (mod pvp(am)+1), from which it follows that vp(acm) = vp(am). This
holds for all primes p dividing some element of the sequence, so (an) is a rigid divisibility
sequence.

Next, we exhibit a class of polynomials f such that (f, f(0)) is a superrigid divisibility
sequence, and thus a rigid divisibility sequence.
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Proposition 3.2. Suppose that f(x) is a monic polynomial with linear coefficient 0; i.e.,
f(x) = x2P (x) + k. Let (an) = (f, f(0)), and suppose that a1, a2 $= 0 (this always occurs if
|k| ≥ 2). Then (an) is a superrigid divisibility sequence.

Proof. We first show that an $= 0 for all n. By hypothesis, a1 = f(0) and a2 = f 2(0) are
nonzero. Hence if an = fn(0) = 0, then 0 is contained in a cycle of length greater than two.
This is impossible by Lemma 2.2, so it follows that an $= 0 for all n.

Now suppose that p|an and write vp(an) = i ≥ 1. We can thus write an = #pi for some
# not divisible by p. Then an+1 = #2p2iP (#pi) + k ≡ k ≡ a1 (mod pi+1), since i + 1 ≤ 2i.
Inducting on m, we see that an+m = f(an+m−1) ≡ f(am−1) ≡ am (mod pi+1). In particular,
choosing m = (c − 1)n + r gives acn+r ≡ a(c−1)n+r ≡ · · · ≡ ar (mod pi+1). Since this holds
for all n and all p|an, (an) is a superrigid divisibility sequence.

We now prove our key result about rigid divisibility sequences, Theorem 1.2.

Proof of Theorem 1.2. We prove this theorem by showing that the sequence (an) eventually
grows too quickly to be divisible only by primes occurring earlier. Suppose that an is a term
with no primitive prime divisor. Then p|an implies that p|am for some m < n. Since (an) is
a rigid divisibility sequence, this means that vp(an) = vp(agcd(n,m)). Therefore, for any p|an,
vp(an) = vp(ad) for some d|n. It follows that

an |
∏

d|n, d<n

ad. (9)

We next prove a lemma.

Lemma 3.3. Let f(x) be a monic polynomial of degree ≥ 2, and suppose that (an) = (f, a1)
is unbounded. Then there exists some positive integer N such that |aN | > |am| for all m < N ,
and for all n > N ,

|an| >
n−1∏

i=N

|ai|. (10)

Proof. It suffices to prove this lemma when an → +∞, as the proof in the case an → −∞ is
identical.

Let r be the degree of f(x) and b be the coefficient of xr−1 in f(x). Choose some positive
c > −b. Then there is some X such that for all x > X, f(x) > x(x − c) + c. Now, let N
be minimal such that aN > X, aN > c, and aN > |am| for all m < N . We will show the
stronger statement that

an >

[
n−1∏

i=N

|ai|
]

+ c. (11)
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Certainly, aN+1 = f(aN) > aN + c = |aN | + c, so the inequality (11) is true for n = N + 1.
We now prove (11) by induction on n:

an > an−1(an−1 − c) + c > an−1

([
n−2∏

i=N

|ai|
]

+ c − c

)
+ c =

[
n−1∏

i=N

|ai|
]

+ c.

Since (11) is strictly stronger than (10), this completes the proof of the lemma.

Next, we note that if d|n and d < n, then d ≤ n
2 . Let N be as in Lemma 3.3 and choose

n ≥ 2N . Then we have that

∏

d|n, d<n

|ad| <
∏

d|n, d<n

|aN+d−1| <
n−1∏

i=N

|ai| < |an|.

It follows that an cannot satisfy (9), so an must have a primitive prime divisor. Since this
holds for all n ≥ 2N , it follows that only finitely many terms of (an) have no primitive prime
divisor, as required.

It is worth noting why we proved Lemma 3.3 in above manner, rather than appealing to
a general growth rate for sequences generated by iterating polynomials. (The growth rate
is doubly exponential.) The reason is that the above proof can be easily adapted in special
cases to yield bounds on the last term which could fail to have a primitive prime divisor –
see, for instance, Corollaries 3.7 and 3.8 below. Appealing to a general growth rate result
instead would make this adaptation more difficult.

There are some well-known rigid divisibility sequences, to which the above theorem
applies. For instance, the sequence (x2 + 1, 1) (number A003095 in [16]) is a rigid divisiblity
sequence by Proposition 3.2. Thus by the Theorem 1.2 it has only a finite number of terms
with no primitive prime divisor. Indeed, every term but the first has a primitive prime
divisor, as we can see by the argument above together with the fact that every term is
strictly greater than the product of all the previous ones. (This fact is a stronger version of
Lemma 3.3 for this sequence.)

3.2. Sequence Factorization

Theorem 1.2 shows that all rigid divisibility sequences have only finitely many terms an which
fail to have a primitive prime divisor. While Proposition 3.2 gives one class of polynomials
which generate rigid divisibility sequences, it by no means exhausts them. For this reason,
as well as independent interest, we introduce the notion of sequence factorization.

Proposition 3.4. Let f(x) be a monic polynomial of degree d ≥ 2, and let (an) = (f, f(0)).
Let f(x) have roots r1, . . . , rd, not necessarily distinct and not necessarily integers. For each
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1 ≤ i ≤ d, define fi(x) = f(x + ri) − ri, and let (ai,n) = (fi, fi(0)). Then for every n ≥ 1,

an =
d∏

i=1

ai,n. (12)

Additionally,

ai,n = an−1 − ri for n ≥ 2. (13)

Remark : If a root ri of f(x) is not an integer, the corresponding polynomial fi is not in Z[x],
and the sequence (ai,n) is not integral.

Proof. We proceed by induction. Since ai,1 = fi(0) = −ri, and a1 = f(0) =
∏

i(−ri), (12)
holds for n = 1. Also, ai,2 = fi(ai,1) = fi(−ri) = f(−ri + ri) − ri = f(0) − ri = a1 − ri,
so (13) holds for n = 2. Now suppose that (12) holds for n, and that (13) holds for n + 1.
Then, writing f(x) =

∏
i(x − ri), we have

an+1 = f(an) =
d∏

i=1

(an − ri) =
d∏

i=1

ai,n+1,

so that (12) holds for n + 1, and

ai,n+2 = fi(ai,n+1) = fi(an − ri) = f(an − ri + ri) − ri = an+1 − ri,

so that (13) holds for n + 2. Hence both equations hold by induction.

If a root rk of f(x) is an integer, we call the corresponding sequence (ak,n) = (fk, fk(0))
a factor of the sequence (an) = (f, f(0)). This definition makes sense even when the other
roots ri of f are not all integers: since all of the ri must be algebraic integers, so are the

iterates ai,n of fi(x) for all i, and thus so is
an

ak,n
=

∏

i#=k

ai,n. It follows that ak,n|an for all n.

We can now use the tool of sequence factorization to prove that many more sequences
are rigid divisibility sequences.

Proposition 3.5. Let f(x) be a monic polynomial of degree d. Suppose that all of the roots
ri of f(x) are integers, and let (ai,n) = (fi, fi(0)) be the corresponding factors of the sequence
(an) = (f, f(0)). If (an) is a rigid divisibility sequence, then (ai,n) is a rigid divisibility
sequence for all 1 ≤ i ≤ d.

Proof. Let p be a prime, and suppose that p|ak,n for some given k and n. Since ak,n|an, it
follows that p|an. Let m be minimal such that p|am (it follows that m|n as in the proof of
Proposition 3.1), and set vp(am) = α. Let vp(ai,m) = αi for all 1 ≤ i ≤ d. Then by (12), it
follows that α =

∑
αi. Since (ai,n) is a strong divisibility sequence (see remark preceding
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Theorem 1.2), gcd(ai,n, ai,m) = ai,gcd(n,m) = ai,m for all i, so vp(ai,n) ≥ vp(ai,m) = αi. Since
(an) is a rigid divisibility sequence,

∑
vp(ai,n) = vp(an) = α =

∑
αi. It follows that

αi = vp(ai,n) for all i; in particular, vp(ak,n) = αk = vp(ak,m). Since this held for all n such
that p|ak,n, it follows that αk = vp(ak,m) is the exponent ip required in the definition of a
rigid divisibility sequence.

A special case of Proposition 3.5, the case of f(x) = x2 − k2, can be seen in Theorem
5.6 in [12].

In case the roots of f(x) are not all integers, we can still find new rigid divisibility
sequences provided that (an) is a superrigid divisibility sequence.

Proposition 3.6. Let f(x) be a monic polynomial. Suppose that ri ∈ Z is a root of f(x), and
let (bn) = (fk, fk(0)) be the corresponding factor of (an) = (f, f(0)). If (an) is a superrigid
divisibility sequence, then (bn) is a rigid divisibility sequence.

Proof. Suppose that p|bn. Since bn|an, we also have p|an. Since (an) is a superrigid divisibility
sequence, it then follows that acn+k−1 ≡ ak−1 (mod pvp(an)+1) unless k = 1 (a0 is not defined).
We then have that bcn+k = acn+k−1 − ri ≡ ak−1 − ri = bk (mod pvp(an)+1) for k $= 1. Finally,
since bn|an, vp(bn) ≤ vp(an), and thus bcn+k ≡ bk (mod pvp(bn)+1) unless k = 1. Since this
held for any n and p, (bn) satisfies the definition of a superrigid divisibility sequence for all
k $= 1. Unfortunately, since this does not necessarily hold for k = 1, (bn) is not necessarily
a superrigid divisibility sequence.

Choosing k = n > 1 and p|bn, we obtain bcn ≡ bn (mod pvp(bn)+1), so that
vp(bcn) = vp(bn). Furthermore, when n = 1, c ≥ 3, and p|b1, bc = b(c−2)+2 ≡ b2 (mod pvp(b1)+1),
so that vp(bc) ≥ min{vp(b2), vp(b1) + 1}. Since gcd(bc, bc+1) = b1, we therefore have
vp(b1) = vp(gcd(bc, bc+1)) ≥ min{vp(b2), vp(b1) + 1}. It follows that vp(b2) ≤ vp(b1), and since
b1|b2, vp(b1) = vp(b2). Therefore, bc ≡ b2 $≡ 0 (mod pvp(b2)+1), and we obtain
vp(bc) = vp(b2) = vp(b1) for p|b1. Hence if m is minimal such that p|bm, we may choose
ip = vp(am), so (bn) is a rigid divisibility sequence.

To demonstrate the utility of these results, we give two families of sequences all of whose
terms have primitive prime divisors.

Corollary 3.7. Let k be an integer, |k| ≥ 2. Let f(x) = x2+2kx−k, and let (an) = (f, f(0)).
Then if k $= −2, every term of (an) has a primitive prime divisor, and if k = −2, only a2

fails to have a primitive prime divisor.

Proof. We first check that (an) is a factor of the sequence (cn) generated by g(x) = x2 − k2

starting at g(0) = −k2. By Proposition 3.2, (cn) is a rigid divisibility sequence. Since the
roots of g(x) are both integers, it follows from Proposition 3.5 that (an) is a rigid divisibility
sequence as well. It follows immediately from Theorem 1.2 that at most finitely many terms
of (an) have no primitive prime divisor; a proof like that in Lemma 3.3 shows that if k $= 2,
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then |an| >
n−1∏

i=1

|ai| for n ≥ 3, and if k = 2, this is true for all n ≥ 4. In all cases except

k = −2, we can check that a2 has a primitive prime divisor. (In the case k = 2, we also
check a3.) The fact that all other terms have a primitive prime divisor then follows as in
Theorem 1.2, completing the proof.

Another example demonstrates the usefulness of Proposition 3.6 in a case where Propo-
sition 3.5 does not apply.

Corollary 3.8. Let k be an integer, |k| ≥ 2. Let f(x) = x3 + 3kx2 + 3k2x − k, and let
(an) = (f, f(0)). Then every term of (an) has a primitive prime divisor.

Proof. We observe that (an) is a factor of the sequence (cn) generated by g(x) = x3 − k3

starting at g(0) = −k3 (corresponding to the only integer root k of g(x)). By Proposition 3.2,
(cn) is a superrigid divisibility sequence. Then by Proposition 3.6, (an) is a rigid divisibility

sequence. Calculations along the lines of Lemma 3.3 show that for n ≥ 2, |an| >
n−1∏

i=1

|ai|; it

follows as in Theorem 1.2 that an has a primitive prime divisor for n ≥ 2, completing the
proof.
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