A NOTE ON BOOLEAN LATTICES AND FAREY SEQUENCES

Andrey O. Matveev
Data-Center Co., RU-620034, Ekaterinburg, P.O. Box 5, Russian Federation
aomatveev@dc.ru, aomatveev@hotmail.com

Received: 2/7/07, Accepted: 4/10/07, Published: 4/18/07

Abstract

We establish monotone bijections between the Farey sequences of order m and the halfsequences of Farey subsequences associated with the rank m elements of the Boolean lattice of subsets of a $2 m$-set. We also present a few related combinatorial identities.

Subject class: 05A19, 11B65. Keywords: Boolean lattice, Farey sequence.

1. Introduction

The Farey sequence of order n, denoted by \mathcal{F}_{n}, is the ascending sequence of irreducible fractions $\frac{h}{k} \in \mathbb{Q}$ with $0 \leq h \leq k \leq n$, see, e.g., [2, Chapter 27], [3, §3], [4, Chapter 4], [5, Chapter III], [8, Chapter 6], [9, Chapter 5]; their numerators and denominators are presented in sequences A006842 and A006843 in Sloane's On-Line Encyclopedia of Integer Sequences. For example, $\mathcal{F}_{6}=\left(\frac{0}{1}<\frac{1}{6}<\frac{1}{5}<\frac{1}{4}<\frac{1}{3}<\frac{2}{5}<\frac{1}{2}<\frac{3}{5}<\frac{2}{3}<\frac{3}{4}<\frac{4}{5}<\frac{5}{6}<\frac{1}{1}\right)$.

For any integer $m, 0<m<n$, the ascending sets

$$
\begin{equation*}
\left(\frac{h}{k} \in \mathcal{F}_{n}: h \leq m\right) \tag{1}
\end{equation*}
$$

are interesting Farey subsequences [1].
Let C be a finite set of cardinality $n:=|C|$ greater than or equal to two, and A its proper subset; $m:=|A|$. Denote the Boolean lattice of subsets of C by $\mathbb{B}(n)$; the empty set is denoted by $\hat{0}$, and the family of l-element subsets of C is denoted by $\mathbb{B}(n)^{(l)}$. Let $\operatorname{gcd}(\cdot, \cdot)$ denote the greatest common divisor of two integers. The ascending sequence of fractions

$$
\begin{aligned}
\mathcal{F}(\mathbb{B}(n), m): & =\left(\frac{|B \cap A|}{\operatorname{gcd}(|B \cap A|,|B|)} / \frac{|B|}{\operatorname{gcd}(|B \cap A|,|B|)}: B \subseteq C,|B|>0\right) \\
& =\left(\frac{h}{k} \in \mathcal{F}_{n}: h \leq m, k-h \leq n-m\right),
\end{aligned}
$$

considered in [7], has the properties very similar to those of the standard Farey sequence \mathcal{F}_{n} and of Farey subsequence (1).

The Farey subsequences $\mathcal{F}(\mathbb{B}(2 m), m):=\left(\frac{h}{k} \in \mathcal{F}_{2 m}: h \leq m, k-h \leq m\right)$ arise in analysis of decision-making problems [6]. One such subsequence is

$$
\begin{aligned}
\mathcal{F}(\mathbb{B}(12), 6)=\left(\frac{0}{1}<\frac{1}{7}<\frac{1}{6}<\frac{1}{5}\right. & <\frac{1}{4}<\frac{2}{7}<\frac{1}{3}<\frac{3}{8}<\frac{2}{5}<\frac{3}{7}<\frac{4}{9}<\frac{5}{11}<\frac{1}{2} \\
& \left.<\frac{6}{11}<\frac{5}{9}<\frac{4}{7}<\frac{3}{5}<\frac{5}{8}<\frac{2}{3}<\frac{5}{7}<\frac{3}{4}<\frac{4}{5}<\frac{5}{6}<\frac{6}{7}<\frac{1}{1}\right) .
\end{aligned}
$$

The fractions in the above-mentioned Farey (sub)sequence are indexed starting with zero.
In Theorem 5 of this note we establish the connection between the standard Farey sequence \mathcal{F}_{m} and the halfsequences of $\mathcal{F}(\mathbb{B}(2 m), m)$.

2. The Farey Subsequence $\mathcal{F}(\mathbb{B}(n), m)$

Recall that the map $\mathcal{F}_{n} \rightarrow \mathcal{F}_{n}$, which sends a fraction $\frac{h}{k}$ to $\frac{k-h}{k}$, is order-reversing and bijective. The sequences $\mathcal{F}(\mathbb{B}(n), m)$ and $\mathcal{F}(\mathbb{B}(n), n-m)$ have an analogous property:

Lemma 1 [7] The map

$$
\begin{equation*}
\mathcal{F}(\mathbb{B}(n), m) \rightarrow \mathcal{F}(\mathbb{B}(n), n-m), \quad \frac{h}{k} \mapsto \frac{k-h}{k} \tag{2}
\end{equation*}
$$

is order-reversing and bijective.

If we write the fractions $\frac{h}{k} \in \mathbb{Q}$ as the column vectors $\left[\begin{array}{l}h \\ k\end{array}\right] \in \mathbb{Z}^{2}$, then map (2) can be thought of as the map

$$
\left[\begin{array}{l}
h \\
k
\end{array}\right] \mapsto\left[\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
h \\
k
\end{array}\right] .
$$

Let $a^{\prime} \in \mathbb{B}(n)$ and $0<m:=\rho\left(a^{\prime}\right)<n$, where $\rho\left(a^{\prime}\right)$ denotes the poset rank of a^{\prime} in $\mathbb{B}(n)$. For a subset $A \subset \mathbb{B}(n)$, let $\mathfrak{I}(A)$ and $\mathfrak{F}(A)$ denote the order ideal and filter in $\mathbb{B}(n)$, generated by A, respectively. The subposet $\mathfrak{F}\left(\mathfrak{I}\left(a^{\prime}\right) \cap \mathbb{B}(n)^{(1)}\right)$, of cardinality $2^{n}-2^{n-m}$, can be partitioned in the following way:

$$
\begin{aligned}
& \mathfrak{F}\left(\mathfrak{I}\left(a^{\prime}\right) \cap \mathbb{B}(n)^{(1)}\right)=\left(\mathfrak{I}\left(a^{\prime}\right)-\{\hat{0}\}\right) \dot{\cup} \\
& \bigcup_{\substack{\frac{h}{k} \in \mathcal{F}(\mathbb{B}(n), m): \\
\frac{0}{1}<\frac{h}{k}<\frac{1}{1}}} \bigcup_{1 \leq s \leq\left\lfloor\min \left\{\frac{m}{h}, \frac{n-m}{k-h}\right\}\right\rfloor}\left(\mathbb{B}(n)^{(s \cdot k)} \cap\left(\mathfrak{F}\left(\mathfrak{I}\left(a^{\prime}\right) \cap \mathbb{B}(n)^{(s \cdot h)}\right)-\mathfrak{F}\left(\mathfrak{I}\left(a^{\prime}\right) \cap \mathbb{B}(n)^{(s \cdot h+1)}\right)\right)\right),
\end{aligned}
$$

$$
\text { where }\left|\mathbb{B}(n)^{(s \cdot k)} \cap\left(\mathfrak{F}\left(\mathfrak{I}\left(a^{\prime}\right) \cap \mathbb{B}(n)^{(s \cdot h)}\right)-\mathfrak{F}\left(\mathfrak{I}\left(a^{\prime}\right) \cap \mathbb{B}(n)^{(s \cdot h+1)}\right)\right)\right|=\binom{m}{s \cdot h}\binom{n-m}{s \cdot(k-h)} .
$$

Since $\left|\mathfrak{I}\left(a^{\prime}\right)-\{\hat{0}\}\right|=2^{m}-1$, we obtain

$$
2^{n}-2^{n-m}=2^{m}-1+\sum_{\substack { \frac{h}{k} \in \mathcal{F}(\mathbb{B}(n), m): \\
\begin{subarray}{c}{\frac{0}{1}<\frac{h}{k}<\frac{1}{1}{ \frac { h } { k } \in \mathcal { F } (\mathbb { B } (n) , m) : \\
\begin{subarray} { c } { \frac { 0 } { 1 } < \frac { h } { k } < \frac { 1 } { 1 } } }\end{subarray}} \sum_{1 \leq s \leq\left\lfloor\min \left\{\frac{m}{h}, \frac{n-m}{k-h}\right\}\right\rfloor}\binom{m}{s \cdot h}\binom{n-m}{s \cdot(k-h)} .
$$

If $a^{\prime \prime} \in \mathbb{B}(n)$ and $\rho\left(a^{\prime \prime}\right)=n-m$, then Lemma 1 implies

$$
2^{n}-2^{m}=2^{n-m}-1+\sum_{\substack{\frac{h}{k} \in \mathcal{F}(\mathbb{B}(n), n-m): \\ \frac{0}{1}<\frac{h}{k}<\frac{1}{1}}} \sum_{1 \leq s \leq\left\lfloor\min \left\{\frac{n-m}{h}, \frac{m}{k-h}\right\}\right\rfloor}\binom{n-m}{s \cdot h}\binom{m}{s(k-h)},
$$

and we come to the following conclusion:

Proposition 2 Fractions from the Farey subsequences $\mathcal{F}(\mathbb{B}(n), m)$ and $\mathcal{F}(\mathbb{B}(n), n-m)$ satisfy the equality:

$$
\begin{aligned}
& \sum_{\substack{\frac{h}{k} \in \mathcal{F}(\mathbb{B}(n), m): \\
\frac{0}{1}<\frac{h}{k}<\frac{1}{1}}} \sum_{\substack{1 \leq s \leq\left\lfloor\min \left\{\frac{m}{h}, \frac{n-m}{k-h}\right\}\right\rfloor}} \sum_{\substack{\frac{h}{k} \in \mathcal{F}(\mathbb{B}(n), n-m): \\
\frac{0}{1}<\frac{h}{k}<\frac{1}{1}}}\binom{m}{s \cdot h}\binom{n-m}{s \cdot(k-h)} \\
& = \\
& =2^{n}-2^{m}-2^{n-m}+1 .
\end{aligned}
$$

3. The Farey Subsequence $\mathcal{F}(\mathbb{B}(2 m), m)$

Denote the left and right halfsequences of $\mathcal{F}(\mathbb{B}(2 m), m)$ by

$$
\mathcal{F} \leq \frac{1}{2}(\mathbb{B}(2 m), m):=\left(f \in \mathcal{F}(\mathbb{B}(2 m), m): f \leq \frac{1}{2}\right)
$$

and

$$
\mathcal{F}^{\geq \frac{1}{2}}(\mathbb{B}(2 m), m):=\left(f \in \mathcal{F}(\mathbb{B}(2 m), m): f \geq \frac{1}{2}\right)
$$

respectively.

Lemma 3 [6] The maps

$$
\begin{aligned}
& \mathcal{F}(\mathbb{B}(2 m), m) \rightarrow \mathcal{F}(\mathbb{B}(2 m), m), \quad \frac{h}{k} \mapsto \frac{k-h}{k}, \quad\left[\begin{array}{c}
h \\
k
\end{array}\right] \mapsto\left[\begin{array}{ccc}
-1 & 1 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
h \\
k
\end{array}\right], \\
& \mathcal{F}^{\leq \frac{1}{2}}(\mathbb{B}(2 m), m) \rightarrow \mathcal{F}^{\leq \frac{1}{2}}(\mathbb{B}(2 m), m), \quad \frac{h}{k} \mapsto \frac{k-2 h}{2 k-3 h}, \quad\left[\begin{array}{l}
h \\
k
\end{array}\right] \mapsto\left[\begin{array}{cc}
-2 & 1 \\
-3 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
h \\
k
\end{array}\right],
\end{aligned}
$$

and

$$
\mathcal{F}^{\geq \frac{1}{2}}(\mathbb{B}(2 m), m) \rightarrow \mathcal{F}^{\geq \frac{1}{2}}(\mathbb{B}(2 m), m), \quad \frac{h}{k} \mapsto \frac{h}{3 h-k}, \quad\left[\begin{array}{c}
h \\
k
\end{array}\right] \mapsto\left[\begin{array}{cc}
1 & 0 \\
3 & -1
\end{array}\right] \cdot\left[\begin{array}{l}
h \\
k
\end{array}\right],
$$

are order-reversing and bijective.

Corollary 4 The maps

$$
\mathcal{F}^{\leq \frac{1}{2}}(\mathbb{B}(2 m), m) \rightarrow \mathcal{F}^{\geq \frac{1}{2}}(\mathbb{B}(2 m), m), \quad \frac{h}{k} \mapsto \frac{k-h}{2 k-3 h}, \quad\left[\begin{array}{l}
h \\
k
\end{array}\right] \mapsto\left[\begin{array}{cc}
-1 & 1 \\
-3 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
h \\
k
\end{array}\right],
$$

and

$$
\mathcal{F}^{\geq \frac{1}{2}}(\mathbb{B}(2 m), m) \rightarrow \mathcal{F}^{\leq \frac{1}{2}}(\mathbb{B}(2 m), m), \quad \frac{h}{k} \mapsto \frac{2 h-k}{3 h-k}, \quad\left[\begin{array}{c}
h \\
k
\end{array}\right] \mapsto\left[\begin{array}{cc}
2 & -1 \\
3 & -1
\end{array}\right] \cdot\left[\begin{array}{l}
h \\
k
\end{array}\right],
$$

are order-preserving and bijective.

Let $f_{t_{3}^{1}}, f_{t_{2}^{1}}, f_{t_{3}^{2}}, f_{t_{1}^{1}} \in \mathcal{F}(\mathbb{B}(2 m), m), m>1$, where

$$
f_{t_{3}^{1}}:=\frac{1}{3}, \quad f_{t_{2}^{1}}:=\frac{1}{2}, \quad f_{t_{3}^{2}}:=\frac{2}{3}, \quad f_{t_{1}^{1}}:=\frac{1}{1}
$$

then Lemma 3 and Corollary 4 imply that $t_{2}^{1}=2 t_{3}^{1}, t_{3}^{2}=3 t_{3}^{1}$, and $t_{1}^{1}=4 t_{3}^{1}$. This in particular means that the number $|\mathcal{F}(\mathbb{B}(2 m), m)|-1=: t_{1}^{1}$ is divisible by four.

4. The Farey Sequence \mathcal{F}_{m} and the Farey Subsequence $\mathcal{F}(\mathbb{B}(2 m), m)$

Let h be a positive integer, and $[i, l]:=\{j: i \leq j \leq l\}$ an interval of positive integers. Let

$$
\phi(h ;[i, l]):=|\{j \in[i, l]: \operatorname{gcd}(h, j)=1\}| ;
$$

thus, $\phi(h ;[1, h])$ is the Euler ϕ-function. Recall that for a nonempty interval of positive integers $\left[i^{\prime}+1, i^{\prime \prime}\right]$ it holds $\phi\left(h ;\left[i^{\prime}+1, i^{\prime \prime}\right]\right)=\sum_{d \in\left[1, \min \left\{i^{\prime \prime}, h\right\}\right]: d \mid h} \bar{\mu}(d) \cdot\left(\left\lfloor\frac{i^{\prime \prime}}{d}\right\rfloor-\left\lfloor\frac{i^{\prime}}{d}\right\rfloor\right)$, where $d \mid h$ means that d divides h, and $\bar{\mu}(\cdot)$ stands for the Möbius function: $\bar{\mu}(1):=1$; if $p^{2} \mid d$, for some prime p, then $\bar{\mu}(d):=0$; if $d=p_{1} p_{2} \cdots p_{s}$ is the product of distinct primes $p_{1}, p_{2}, \ldots, p_{s}$, then $\bar{\mu}(d):=(-1)^{s}$.

Let m be an integer, $m>1$. For every integer $h, 1 \leq h \leq m$, we have

$$
\begin{aligned}
\left|\left\{\frac{h}{k} \in \mathcal{F}(\mathbb{B}(2 m), m): \frac{h}{k}<\frac{1}{2}\right\}\right|=\phi(h ;[2 h+1 & , h+m]) \\
=\sum_{d \in[1, h]: d \mid h} \bar{\mu}(d) \cdot\left(\left\lfloor\frac{h+m}{d}\right\rfloor-\frac{2 h}{d}\right) & =\sum_{d \in[1, h]: d \mid h} \bar{\mu}(d) \cdot\left(\left\lfloor\frac{m}{d}\right\rfloor-\frac{h}{d}\right) \\
& =\phi(h ;[h+1, m])=\left|\left\{\frac{h}{k} \in \mathcal{F}_{m}: \frac{h}{k}<\frac{1}{1}\right\}\right|
\end{aligned}
$$

hence, the sequences $\mathcal{F} \leq \frac{1}{2}(\mathbb{B}(2 m), m)$ and \mathcal{F}_{m} are of the same cardinality. Noticing that fractions $\frac{h_{j}}{k_{j}}$ and $\frac{h_{j+1}}{k_{j+1}}$ are consecutive in \mathcal{F}_{m} if and only if the fractions $\frac{h_{j}}{k_{j}+h_{j}}$ and $\frac{h_{j+1}}{k_{j+1}+h_{j+1}}$ are consecutive in $\mathcal{F} \leq \frac{1}{2}(\mathbb{B}(2 m), m)$, we arrive, with the help of Lemma 3 and Corollary 4, at the following conclusion:

Theorem 5 Let m be an integer, $m>1$. The maps

$$
\mathcal{F}^{\leq \frac{1}{2}}(\mathbb{B}(2 m), m) \rightarrow \mathcal{F}_{m}, \quad \frac{h}{k} \mapsto \frac{h}{k-h}, \quad\left[\begin{array}{c}
h \\
k
\end{array}\right] \mapsto\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
h \\
k
\end{array}\right],
$$

and

$$
\mathcal{F}_{m} \rightarrow \mathcal{F}^{\leq \frac{1}{2}}(\mathbb{B}(2 m), m), \quad \frac{h}{k} \mapsto \frac{h}{k+h}, \quad\left[\begin{array}{c}
h \\
k
\end{array}\right] \mapsto\left[\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
h \\
k
\end{array}\right],
$$

are order-preserving and bijective; the maps

$$
\mathcal{F}^{\geq \frac{1}{2}}(\mathbb{B}(2 m), m) \rightarrow \mathcal{F}_{m}, \quad \frac{h}{k} \mapsto \frac{k-h}{h}, \quad\left[\begin{array}{c}
h \\
k
\end{array}\right] \mapsto\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
h \\
k
\end{array}\right],
$$

and

$$
\mathcal{F}_{m} \rightarrow \mathcal{F}^{\geq \frac{1}{2}}(\mathbb{B}(2 m), m), \quad \frac{h}{k} \mapsto \frac{k}{k+h}, \quad\left[\begin{array}{l}
h \\
k
\end{array}\right] \mapsto\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
h \\
k
\end{array}\right],
$$

are order-reversing and bijective.

Direct counting gives $|\mathcal{F}(\mathbb{B}(2), 1)|=3$ and $|\mathcal{F}(\mathbb{B}(4), 2)|=5$.
Since $\left|\mathcal{F}_{m}\right|-1=\frac{1}{2} \sum_{d \geq 1} \bar{\mu}(d) \cdot\left\lfloor\frac{m}{d}\right\rfloor \cdot\left\lfloor\frac{m}{d}+1\right\rfloor$ (see, e.g., [4, §4.9]), Theorem 5 implies that for $m>1$ we have

$$
|\mathcal{F}(\mathbb{B}(2 m), m)|-1=\sum_{d \geq 1} \bar{\mu}(d) \cdot\left\lfloor\frac{m}{d}\right\rfloor \cdot\left\lfloor\frac{m}{d}+1\right\rfloor
$$

By means of Theorem 5 , the descriptions of sequences \mathcal{F}_{m} and $\mathcal{F}(\mathbb{B}(2 m), m)$ supplement each other. For example, consider a fraction $\frac{h}{k} \in \mathcal{F}_{m}-\left\{\frac{0}{1}, \frac{1}{1}\right\}$. If x_{0} is the integer such that $h x_{0} \equiv-1(\bmod k)$ and $m-k+1 \leq x_{0} \leq m$, then it is known (see, e.g., [2, §27.1]) that the fraction $\frac{h x_{0}+1}{k} / x_{0}$ succeeds the fraction $\frac{h}{k}$ in \mathcal{F}_{m}. Similarly, if x_{0} is the integer such that $h x_{0} \equiv 1(\bmod k)$ and $m-k+1 \leq x_{0} \leq m$, then the fraction $\frac{h x_{0}-1}{k} / x_{0}$ precedes $\frac{h}{k}$ in \mathcal{F}_{m}. Theorem 5 leads to an analogous statement:

Remark 6 Let m be an integer, $m>1$.
(i) Let $\frac{h}{k} \in \mathcal{F}(\mathbb{B}(2 m), m)$. Suppose that $\frac{0}{1}<\frac{h}{k} \leq \frac{1}{2}$. Let x_{0} be the integer such that $h x_{0} \equiv 1(\bmod (k-h))$ and $m-k+h+1 \leq x_{0} \leq m$. The fraction $\frac{h x_{0}-1}{k-h} / \frac{k x_{0}-1}{k-h}$ precedes $\frac{h}{k}$ in $\mathcal{F}(\mathbb{B}(2 m), m)$.
(ii) Let $\frac{h}{k} \in \mathcal{F}(\mathbb{B}(2 m), m)$. Suppose that $\frac{0}{1} \leq \frac{h}{k}<\frac{1}{2}$. Let x_{0} be the integer such that $h x_{0} \equiv-1(\bmod (k-h))$ and $m-k+h+1 \leq x_{0} \leq m$. The fraction $\frac{h x_{0}+1}{k-h} / \frac{k x_{0}+1}{k-h}$ succeeds $\frac{h}{k}$ in $\mathcal{F}(\mathbb{B}(2 m), m)$.

Proposition 2 can be reformulated in the case where $n:=2 m$, with the help of the bijections mentioned in Lemma 3 and Corollary 4, in several ways which we now summarize:

Proposition 7 Let m be an integer, $m>1$. The following combinatorial identities hold for fractions from the Farey subsequence $\mathcal{F}(\mathbb{B}(2 m), m)$:
(i)

$$
\sum_{\substack{\frac{h}{k} \in \mathcal{F}(\mathbb{B}(2 m), m): \\ \frac{0}{1}<\frac{h}{k}<\frac{1}{1}}} \sum_{\substack{ \\1 \leq s \leq\left\lfloor\min \left\{\frac{m}{h}, \frac{m}{k-h}\right\}\right\rfloor}}\binom{m}{s \cdot h}\binom{m}{s \cdot(k-h)}=2^{2 m}-2^{m+1}+1 .
$$

(ii)

$$
\begin{aligned}
\sum_{\substack{\frac{h}{k} \in \mathcal{F}(\mathbb{B}(2 m), m): \\
\frac{0}{1}<\frac{h}{k}<\frac{1}{2}}} \sum_{1 \leq s \leq\left\lfloor\frac{m}{k-h}\right\rfloor}\binom{m}{s \cdot h}\binom{m}{s \cdot(k-h)} & =\sum_{\substack{\frac{h}{k} \in \mathcal{F}(\mathbb{B}(2 m), m):}} \sum_{\substack{\frac{1}{2}<\frac{h}{k}<\frac{1}{1} \\
1 \leq s \leq\left\lfloor\frac{m}{h}\right\rfloor}}\binom{m}{s \cdot h}\binom{m}{s \cdot(k-h)} \\
& =2^{2 m-1}-2^{m}-\frac{1}{2}\binom{2 m}{m}+1 .
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \sum_{\substack{\frac{h}{k} \in \mathcal{F}(\mathbb{B}(2 m), m):}} \sum_{\substack{\frac{0}{1}<\frac{h}{k}<\frac{1}{3}}}\binom{m}{s \cdot(k-h)}\left(\binom{m}{s \cdot h}+\binom{m}{s \cdot(k-2 h)}\right) \\
& =\sum_{\substack{h \\
\frac{h}{k} \in \mathcal{F}(\mathbb{B}(2 m), m):}} \sum_{\substack{\frac{1}{3}<\frac{h}{k}<\frac{1}{2}}}\binom{m}{s \cdot(k-h)}\left(\binom{m}{s \cdot h}+\binom{m}{s \cdot(k-2 h)}\right) \\
& =\sum_{\substack{\frac{h}{k} \in \mathcal{F}(\mathbb{B}(2 m), m):}} \sum_{\substack{\frac{1}{2}<\frac{h}{k}<\frac{2}{3}}}\binom{m}{s \cdot h}\left(\binom{m}{s \cdot(k-h)}+\binom{m}{s \cdot(2 h-k)}\right) \\
& =\sum_{\substack{\frac{h}{k} \in \mathcal{F}(\mathbb{B}(2 m), m):}} \sum_{\substack{\frac{2}{3}<\frac{h}{k}<\frac{1}{1}}}\binom{m}{s \cdot h}\left(\binom{m}{s \cdot(k-h)}+\binom{m}{s \cdot(2 h-k)}\right) \\
& =2^{2 m-1}-2^{m}-\frac{1}{2}\binom{2 m}{m}-\sum_{1 \leq t \leq\left\lfloor\frac{m}{2}\right\rfloor}\binom{m}{2 t}\binom{m}{t}+1 .
\end{aligned}
$$

The bijections between the Farey sequence \mathcal{F}_{m} and the halfsequences of $\mathcal{F}(\mathbb{B}(2 m), m)$, presented in Theorem 5, allow us to describe the properties of fractions from \mathcal{F}_{m}, analogous to those of fractions from $\mathcal{F}(\mathbb{B}(2 m), m)$, presented in Proposition 7(ii,iii):

Corollary 8 Let m be an integer, $m>1$. The following combinatorial identities hold for fractions from the standard Farey sequence \mathcal{F}_{m} :
(i)

$$
\sum_{\substack{\frac{h}{k} \in \mathcal{F}_{m}: \\ \frac{0}{1}<\frac{h}{k}<\frac{1}{1}}} \sum_{\substack{\leq s \leq\left\lfloor\frac{m}{k}\right\rfloor}}\binom{m}{s \cdot h}\binom{m}{s \cdot k}=2^{2 m-1}-2^{m}-\frac{1}{2}\binom{2 m}{m}+1 .
$$

(ii)

$$
\begin{aligned}
& \sum_{\substack{\frac{h}{k} \in \mathcal{F}_{m}: \\
\frac{0}{1} \ll \frac{h}{k}<\frac{1}{2}}} \sum_{1 \leq s \leq\left\lfloor\frac{m}{k}\right\rfloor}\binom{m}{s \cdot k}\left(\binom{m}{s \cdot h}+\binom{m}{s \cdot(k-h)}\right) \\
= & \sum_{\substack{\frac{h}{h} \in \mathcal{F}_{m}: \\
\frac{1}{2}<\frac{h}{k}<\frac{1}{1}}} \sum_{1 \leq s \leq\left\lfloor\frac{m}{k}\right\rfloor}\binom{m}{s \cdot k}\left(\binom{m}{s \cdot h}+\binom{m}{s \cdot(k-h)}\right) \\
= & 2^{2 m-1}-2^{m}-\frac{1}{2}\binom{2 m}{m}-\sum_{1 \leq t \leq\left\lfloor\frac{m}{2}\right\rfloor}\binom{m}{2 t}\binom{m}{t}+1 .
\end{aligned}
$$

References

[1] D. Acketa and J. Žunić, On the number of linear partitions of the (m, n)-grid, Inform. Process. Lett. $\mathbf{3 8}$ (1991), no. 3, 163-168.
[2] A.A. Buchstab, Teoriya Chisel (in Russian) [Number Theory], Uchpedgiz, Moscow, 1960.
[3] S.B. Gashkov and V.N. Chubarikov, Arifmetika. Algoritmy. Slozhnost' Vychisleniy, Third edition (in Russian) [Arithmetic. Algorithms. Complexity of Computation], Drofa, Moscow, 2005.
[4] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics. A Foundation for Computer Science, Second edition, Addison-Wesley, Reading Massachusetts, 1994.
[5] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Fifth edition, Clarendon Press, Oxford, 1979.
[6] A.O. Matveev, Pattern recognition on oriented matroids: Layers of tope committees, arXiv:math.C0/0612369.
[7] A.O. Matveev, Relative blocking in posets, J. Comb. Optim. 13 (2007), no. 4, 379-403.
[8] I. Niven, H.S. Zuckerman and H.L. Montgomery, An Introduction to the Theory of Numbers, Fifth edition, John Wiley \& Sons, Inc., New York, 1991.
[9] J.J. Tattersall, Elementary Number Theory in Nine Chapters, Second edition, Cambridge University Press, Cambridge, 2005.

