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Abstract

In this paper, we introduce a natural arithmetic on the set of all flow graphs, that
is, the set of all finite directed connected multigraphs having a pair of distinguished
vertices. The proposed model exhibits the property that the natural numbers appear as
a submodel, with the directed path of length n playing the role of the standard integer
n. We investigate the basic features of this model, including associativity, distributivity,
and various identities relating the order relation to addition and multiplication.

1. Introduction

The language of arithmetic L consists of two constants 0 and 1, one binary relation !, and
two binary operations + and ×. In this paper, we generalize classical arithmetic defined
over the natural numbers N = {0, 1, 2, . . .}, to the set F consisting of all flow graphs: finite
directed connected multigraphs 1 in which a pair of distinguished vertices is designated
as the source and target vertex. We give natural interpretation for L on the set F . To
avoid confusion with the standard model of arithmetic, the corresponding operations in

1By multigraph we mean graphs in which parallel and loop edges are permitted.
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F are denoted with a circumscribed circle. The new model F = 〈F, 0, 1, !, +,×〉 is a
natural extension of the standard model N = 〈N, 0, 1, ! +,×〉.

Specifically, we exhibit an embedding i : N i
↪→ F satisfying:

i(0) = 0,

i(1) = 1,

∀x, y ∈ N, x ! y ⇔ i(x)!i(y),

∀x, y ∈ N, i(x + y) = i(x)+i(y),

∀x, y ∈ N, i(x × y) = i(x)i(y).

There have been other attempts to define algebraic and metric structures on the set
of all graphs. In [6, 2, 1], the authors used graph embeddings to define a metric on the set
of all simple connected graphs of a given order. This work differs from those investiga-
tions in that it considers an infinite collection of graphs in order to extend the standard
model of arithmetic, and in doing so does not seek to establish a metric structure. The
classical operations on graphs [9] (including extensive literature on graph products [5])
have yielded many results and a deep mathematical theory. There has also been consid-
erable prior work on addition and multiplication of ordinals and partially ordered sets
[3, 4, 7, 8]. To date, these prior investigations have not yielded an interpretation of the
language of arithmetic on graphs. This paper presents results and open questions in this
direction.

2. Flow Graphs

Definition 2.1 (Flow graph). We define a flow graph A to be a triple (GA, sA, tA),
where GA = (VA, EA) is a finite2 directed connected multigraph and EA is a multisubset
of VA × VA. Note that this definition permits parallel and loop edges3. Given vertices u
and v, we denote "(u, v) to be the number of edges from u to v. Individual parallel edges
from u to v will be referred to as (u, v)1, (u, v)2, . . . , (u, v)i, . . . , (u, v)!(u,v). However, if the
argument does not depend on a specific edge from u to v, the subscript will be dropped–the
expression (u, v) will be used to mean any one of (possibly many) parallel edges from u to
v. The vertices sA, tA ∈ VA are called the source and the target vertex of A, respectively.
The set of all flow graphs is denoted F .

Definition 2.2 (Flow graph morphism). Let A = (GA, sA, tA) and B = (GB, sB, tB)
be two flow graphs with GA = (VA, EA) and GB = (VB, EB). A map φ : A → B is

2In this paper, we focus on finite flow graphs, although many of our results continue to hold in the
formulation which considers infinite flow graphs as well.

3We say that two edges e1 = (u1, v1) and e2 = (u2, v2) are parallel if u1 = u2 and v1 = v2. An edge
e = (u, v) is called a loop edge if u = v.
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called a flow graph morphism if (1) As a map of vertex sets, φ : VA → VB respects
edge structure: e = (u, v) ∈ EA ⇒ φ(e) = (φu, φv) ∈ EB (2) Source and target are
preserved, i.e. φ(sA) = sB, φ(tA) = tB. A flow graph morphism is said to be a flow graph
embedding of A into B if additionally φ is injective on both VA and EA. Flow graphs A
and B are considered isomorphic if there is a flow graph embedding φ : A → B for which
φ(EA) = EB.

Clearly, flow graph isomorphism defines an equivalence relation on flow graphs. In this
paper, we shall only consider properties of flow graphs which are invariant with respect
to this equivalence relation. Consequently, when discussing an equivalence class of flow
graphs, we will conduct our analysis by restricting ourselves to an arbitrary representative
from the class. Whenever we refer to “A flow graph F”, we shall intend “Any flow graph
from the equivalence class of F”, but we will use the former phrase for succinctness.
Likewise, we write A = B for flowgraphs to indicate only that A and B are isomorphic
as flow graphs.

Definition 2.3 (Trivial flow graph). A flow graph A = (GA, sA, tA) is called the trivial
flow graph if |V [GA]| = 1 and |E[GA]| = 0. All other flow graphs are considered non-
trivial.

Definition 2.4. Given any flow graph A, let A′ be the flow graph obtained by swapping
the source and the target of A.

Definition 2.5 (Reflective flow graphs). A flow graph A = (GA, sA, tA) is called an
reflective flow graph if A = A′. The set of all reflective flow graphs is denoted H.

Definition 2.6 (Infinitesimal flow graphs). A flow graph A = (GA, sA, tA) is called an
infinitesimal flow graph if sA = tA. The set of all infinitesimal flow graphs is denoted I.
Note that an infinitesimal flow graph is necessarily reflective. The converse is false as
the reflective example in Figure 1 shows.

s t

Figure 1: A non-infinitesimal flow graph in H.

Definition 2.7. Given any flow graph A, let A∗ be the flow graph obtained by reversing
all the arrows of A.
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Definition 2.8 (Reversible flow graphs). A flow graph A = (GA, sA, tA) is called a
reversible flow graph if A = A∗. The set of all reversible flow graphs is denoted J . Note
that if for all vertices u, v in VA we have "(u, v) = "(v, u), then A is necessarily reversible.
The converse is false as the reversible example in Figure 2 shows.

s t

Figure 2: A flow graph in J having a non-symmetric adjacency matrix.

Definition 2.9 (Self-conjugate flow graphs). A flow graph A = (GA, sA, tA) is called an
self-conjugate4 flow graph if A = A′∗ = A∗′.

The set of all self-conjugate flow graphs is denoted K. Note that if a flow graph is
both reflective and reversible, it is necessarily self-conjugate. The converse is false as the
self-conjugate example in Figure 3 shows.

Indeed, no two of the sets H,J , and K are contained in each other. The flow graph
in Figure 1 belongs to H\(J ∪ K). The flow graph in Figure 2 belongs to J \(H ∪ K).
The flow graph in Figure 3 belongs to K\(H ∪ J ).

Definition 2.10. The rose with n petals is defined to be the infinitesimal flow graph Rn

having one vertex and n loop edges. Roses R1, R2, R3 are shown in the bottom left panel
of Figure 4.

Definition 2.11. The star (antistar) with n edges is defined to be the infinitesimal
flow graph Sn (S∗

n) having n+1 vertices v1, v2, . . . , vn and u = s = t, with n edges from u
to vi (vi to u) for each i = 1, . . . , n. Stars S1, S2 and S3 are shown in the bottom center
panel of Figure 4, while anti-stars S∗

1 , S∗
2 and S∗

3 are shown on the bottom right panel.

4The motivation for the term self-conjugate will be clarified later, in item 4 of Section 3.4.
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s t

Figure 3: A flow graph in K that is neither reflective nor reversible.

Definition 2.12 (Graphical natural number). We represent the natural number n as a
directed chain of length n, having n+1 vertices. More formally, let Pn be a directed chain
of length n (having n + 1 vertices) where each vertex has in-degree ! 1 and out-degree
! 1. Denote by sn, the unique vertex in Pn having in-degree 0, and let tn be the unique
vertex in Pn having out-degree 0. The flow graph Fn = (Pn, sn, tn) is referred the graphic
natural number n. Define the map i : N → F as

i : n *→ Fn.

We denote F0 as 0 and F1 as 1. Graphical natural numbers F1, F2 and F3 are shown in
the top left panel of Figure 4, while the corresponding reverse flow graphs are shown in
the top right panel.

3. Arithmetic on Flow Graphs

3.1. Addition

In Definition 2.1, we represented the natural number n by the flow graph Fn. It follows
that we interpret the addition of two numbers n1 and n2 inside F as “concatenating”
Fn1 with Fn2 . Consider, for example, the addition of 3 and 2 depicted in Figure 5.

To extend this definition of + to all of F , we define general addition of flow graphs
as follows: Given two flow graphs A and B, define A+B to be the flow graph obtained
by identifying tA with sB and defining sA+B = sA and tA+B = tB. An example of such
an addition is shown in Figure 6.
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Figure 4: Some examples of special flow graphs: the graphical natural numbers F1, F2, F3,
the anti-paths F ∗

1 , F ∗
2 , F ∗

3 , the roses R1, R2, R3, the stars S1, S2, S3, and the anti-stars
S∗

1 , S
∗
2 , S
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Figure 5: Interpreting addition of natural numbers inside F .
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Figure 6: General addition of flow graphs.

We begin by defining the following “Vertex gluing” operation on directed multigraphs:

Definition 3.1 (Vertex gluing of directed graphs). Given directed graphs G1 and G2,
and vertices u1 ∈ V [G1], u2 ∈ V [G2], we define

G1 +
u1≈u2

G2
def
= (G1 + G2)/(u1 ≈ u2)

to be the graph obtained by taking disjoint copies of G1 and G2 and identifying vertex u1

in G1 with vertex u2 in G2. Note the obvious and natural graph embeddings

σ+
u1≈u2

: G1 ↪→ G1 +
u1≈u2

G2 (1)

τ+
u1≈u2

: G2 ↪→ G1 +
u1≈u2

G2..

Now we can define addition of flow graphs:
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Definition 3.2. Given two flow graphs A = (GA, sA, tA) and B = (GB, sB, tB), we define

A+B
def
= (GA +

tA≈sB

GB, sA, tB).

Since A and B are connected, it follows that A+B is connected.

The next lemma follows immediately from Definitions 2.12 and 3.2.

Lemma 3.3. Let m, n be natural numbers. Then i(n + m) = i(n)+i(m).

We present some properties of +.

Lemma 3.4. The operation + is associative.

Proof. Given flow graphs A, B, C,

(A+B)+C = (GA +
tA≈sB

GB, sA, tB)+C

= ((GA +
tA≈sB

GB) +
tB≈sC

GC , sA, tC)

= (GA +
tA≈sB

(GB +
tB≈sC

GC), sA, tC)

= A+(GB +
tB≈sC

GC , sB, tC)

= A+(B+C).

One can check that 1+R1 -= R1+1. Thus we obtain

Lemma 3.5. The operation + is not commutative.

Definition 3.6. A flow graph A is called +-reducible if there exist non-trivial flow graphs
B, C, such that A = B+C. Otherwise, A is called +-irreducible.

Definition 3.7 (Scalar multiplication of flow graphs). Given a flow graph A, and a
positive natural number k in N, we define left scalar multiplication inductively as follows:

1A = A

kA = (k − 1)A+A.

Right scalar multiplication is defined analogously. As we have seen, + is associative, and
so the two notions coincide. We shall subsequently consider only left scalar multiplication
by integer scalars.

Remark 3.8. Note that if A is a flow graph with pA vertices and qA edges, and B is a
flow graph with pB vertices and qB edges, then A+B is a flow graph having pA + pB − 1
vertices and qA + qB edges.
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3.2. Multiplication

In the previous section, we presented an interpretation of addition in F that is a natural
extension of addition on the natural numbers. In this section, we present an interpretation
of multiplication in F which generalizes the multiplication of natural numbers. In doing
this, we must respect the fact that for each pair of natural numbers n1, n2, the following
identity holds in N :

n2 + n2 + · · · + n2︸ ︷︷ ︸
n1 times

= n1n2 = n1 + n1 + · · ·+ n1︸ ︷︷ ︸
n2 times

.

So, in particular, the definition of multiplication in F must satisfy

n1Fn2 = Fn1Fn2 = Fn1n2. (2)

Given that we represent the natural number n by the flow graph Fn, the product of
two graphical numbers Fn1 and Fn2 (denoted Fn1Fn2) can be made to satisfy relation (2)
if we take multiplication to be the act of replacing each edge of Fn2 with a copy of Fn1 .
For example, the multiplication of graphical natural numbers F3 and F2 is illustrated in
Figure 7.

F
3

F
3

F
3

F

s ts t

2

s t

F    F   =   F
3

x

2 6

Figure 7: Standard multiplication of natural numbers in F (represented as flow graphs).

To extend this definition of multiplication to all of F , we define general multiplication
of flow graphs as follows: Given two flow graphs A and B, define AB to be the flow graph
obtained by replacing every edge e (from E[GB]) with a copy of A as follows: For each
edge e = (u, v) in B, we remove e and replace it with a graph Ae isomorphic to A, by
identifying u with sAe , and v with tAe . An example of such a multiplication operation is
shown in Figure 8. We now formally define multiplication of flow graphs:
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Figure 8: General multiplication of flow graphs.

Definition 3.9. Let A = (GA, sA, tA) and B = (GB, sB, tB) be any two flow graphs. We
define an equivalence relation ∼R on VA × EB, as follows: Given vertices u1, u2 in VA,
and edges e1 = (v1, w1) and e2 = (v2, w2) in EB, let (u1, (v1, w1)) ∼R (u2, (v2, w2)) iff
the following holds: whenever u1 is the source (target) and u2 is the source (target) then
(respectively) the tail (head) of e1 coincides with the tail (head) of e2 in B. Then ∼R is
an equivalence relation.

We define the flow graph AB = (GAB, sAB, tAB) as follows. Let GAB = (VAB, EAB),
where VAB = (VA×EB)/ ∼R and ((u1, e1), (u2, e2)) ∈ EAB if (u1, u2) ∈ EA and e1 = e2 in
EB. Define sAB = (sA×e)/ ∼R where e = (sB, w) for any w ∈ VB and tAB = (tA×e)/ ∼R

where e = (v, tB) for any v ∈ VB.

Since A and B are connected, it follows that AB is connected.

We remark that there is an obvious symmetric definition for multiplication in which
the roles of two flow graphs being multiplied is exchanged. To remain in agreement
with conventions of ordinal and poset multiplication established by Cantor [3] and others
subsequently [4, 7, 8], we chose the definition above.
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We now present some properties of multiplication.

Lemma 3.10. Let A be a flow graph with pA vertices and qA edges, and B be a flow
graph having pB vertices and qB edges. Then AB has qAqB edges. If A is either trivial or
infinitesimal then AB has 1+qB(pA−1) vertices. If A is non-trivial and non-infinitesimal
then AB has pB + qB(pA − 2) vertices.

Proof. The flow graph AB is obtained by replacing each edge e = (u, v) in GB with a
copy of A as follows: remove e from GB and replace it with a flow graph Ae isomorphic to
A, identifying u with sAe and v with tAe . Thus each edge of GB produces qA edges in AB
and so the by doing the same operation with every edge of GB, we see that the number
of edges in AB will be qAqB. If A is non-trivial and non-infinitesimal, then each edge
e = (u, v) of GB produces in addition to its end vertices u and v, an additional (pA − 2)
vertices. Thus the number of vertices in AB is pB + qB(pA − 2). If A is trivial, then
each edge of GB under this operation of multiplication by A collapses into one vertex and
sequentially applying this operation to all edges results in the graph AB which consists
of a single vertex with no edges, that is, results in a trivial graph. If A is infinitesimal and
non-trivial, then each edge e = (u, v) is replaced by a copy of A with sAe = tAe identified
with u collapsed with v . Thus the number of vertices produced by an edge e = (u, v)
besides the collapsed vertex u = v is (pA − 1). Hence the total number of vertices in AB
is 1 + qB(pA − 1).

Lemma 3.11. Flow graph multiplication is associative.

Proof. Given flow graphs A = (GA, sA, tA), B = (GB, sB, tB), C = (GC , sC, tC), we want
to show:

(AB)C = A(BC).

We define a bijection Λ between the vertices (AB)C and the vertices of A(BC), and then
show that Λ respects the edge relation. Let

Λ : ((v1, (v2, w2)), e3) *→ (v1, ((v2, e3), (w2, e3))),

where v1 is any vertex in A, v2 and w2 are two vertices in B, and e3 is any edge in C.
An edge in (AB)C is of the form

( ((v1, (v2, w2)), e3), ((v′
1, (v2, w2)), e3) ),

where (v1, v′
1) ∈ E[GA]. The image of this edge under Λ is

( v1, ((v2, e3), (w2, e3)) )

which is an edge in A(BC). Hence (AB)C is a subgraph of A(BC). Proceeding in the
same way using Λ−1, one can show that A(BC) is a subgraph of (AB)C. The Lemma is
proved.
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One can check that R1F2 -= F2R1. Thus we obtain

Lemma 3.12. Flow graph multiplication is not commutative.

The next lemma follows immediately from Definitions 2.12 and 3.9.

Lemma 3.13. Let m, n be natural numbers. Then i(n × m) = i(n)i(m).

Definition 3.14 (Scalar exponentiation of flow graphs). Given a flow graph A, and a
positive natural number k in N, we define right-exponentiation inductively as follows:

A1 = A

Ak = Ak−1A.

Left-exponentiation is defined analogously. As we have seen, × is associative, and so the
two notions coincide. We shall subsequently consider only right-exponentiation by integer
scalars.

3.3. Zero Divisors and Units

The next lemma shows that F has no members which behave like zero divisors.

Lemma 3.15. Given flow graphs G and H:

GH = 0 ⇔ H = 0 or G = 0. (3)

Proof. If G = 0 then GH = HG = 0. For the reverse implication, we appeal to
Lemma 3.10, noting that GH = 0 implies qGqH = 0, so either qG = 0 or qH = 0.
It follows that either H = 0 or G = 0.

The next Lemma shows that the only units are 1 and 1′.

Lemma 3.16. Given flow graphs G and H:

GH = 1 ⇔ G = 1 = H or G = 1′ = H. (4)

Proof. By Lemma 3.10, we know that qGqH = 1, hence qG = 1 and qH = 1. It follows that
G, H ∈ {F1, F ′

1, S1, S∗
1 , R1}. Since 1 is not infinitesimal, it follows that G, H ∈ {F1, F ′

1}
Then since

F1F
′
1 = F ′

1F1 = F ′
1 -= 1

F1F1 = F ′
1F

′
1 = 1

the result follows.
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3.4. Structural Unitary Operators

The unary operations of ′ (Definition 2.4) and ∗ (Definition 2.7) interact nicely with the
binary operations of addition and multiplication. The following identities are easy to
verify:

1. Nilpotency of ∗ and ′ operations: A∗∗ = A = (A′)′

2. Distributivity of ∗ and ′ over addition and multiplication:

(A+B)∗ = A∗+B∗

(A+B)′ = B′+A′

(AB)∗ = A∗B

(AB)′ = AB′

3. Multiplicative definitions of ′ and ∗:

A∗ = (1∗)A

A
′

= A(1
′
)

4. Commutativity of ′ and ∗ operations: (A∗)
′
= (A′)∗ = 1∗A1∗.

Note that this identity is the justification for the term self-conjugate in Definition
2.9, since if A = A′∗, then A = 1∗A1∗, and thus a self-conjugate graph A is
isomorphic to itself conjugated by the only non-identity unit 1∗.

3.5. Identity

Lemma 3.17. The flow graph 0
def
= F0 is the unique one-sided identity on each side with

respect to +. That is, for all flow graphs A, G ∈ F ,

A+G = A ⇔ G = 0 ⇔ G+A = A.

Proof. If G = 0 then A+G = G+A = A. For the reverse implication, we appeal to
Remark 3.8, noting that A+G = A implies pA + pG − 1 = pA and qA + qG = qA. Hence
pG = 1 and qG = 0, so G = 0. An analogous argument shows that G+A = A implies
G = 0.

We note F ∗
n = Fn

′ for all n. Considering addition,

Fn+Fm = (F ∗
n+F ∗

m)∗ = (Fm
′+Fn

′)′ = Fm+n.
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Considering multiplication,

FnFm = F ∗
nF ∗

m = Fn
′Fm

′ = Fmn

FnF ∗
m = F ∗

nFm = F ∗
mn

FnF ′
m = F ′

nFm = F ′
mn

These observations are mirrored in the natural numbers, where for any n, m, we have
that

n + m = −(−n + −m)

nm = (−n)(−m)

n(−m) = (−n)m = −(nm).

Thus, we suggest viewing the ′ and ∗ operations as two different kinds of “negation” on
flow graphs, considering Fn

′ = F ∗
n to be different interpretations of the number5 −n.

Following this metaphor, the reversible flow graphs J and reflective flow graphs H have
the property of being isomorphic to their own negations. We shall see that the behavior
of multiplication will satisfy certain identities as long as the parameters lie outside of
these two pathological sets, in much the same way that certain multiplicative identities
hold for the natural numbers as long as certain parameters are assumed to be nonzero.

We now consider the right multiplicative identity. Note that for any flow graph H ,
H = H1 and H ′ = H1′. So if H is a reflective flow graph then H = H1′, hence 1 and 1′

are both right identities on H. The next lemma shows that on F\H, there is a unique
right identity, 1.

Lemma 3.18. Let G, H be non-trivial flow graphs with G -∈ I and H -∈ H. Then

HG = H ⇔ G = 1. (5)

Proof. If G = 1 then HG = GH = H . For the reverse implication, we appeal to
Lemma 3.10, noting that HG = H implies pG + qG(pH − 2) = pH and qHqG = qH . Hence
qG = 1, pG = 2 and so G ∈ {1, 1′ S1, S∗

1}. But G cannot be S1 or S∗
1 since G is not

infinitesimal. Likewise, G cannot be 1′ since H1′ = H ′ and H ′ -= H since H -∈ H. It
follows that G = 1.

We now turn to the existence of left identity. Note that if H ∈ J , then 1H = H =
H∗ = 1∗H so both 1 and 1∗ are left identities on J . If H ∈ {Sn | n ∈ N} then S1H = H ,
so both 1 and S1 are left identities on {Sn | n ∈ N}. If H ∈ {S∗

n | n ∈ N} then S∗
1H = H ,

so both 1 and S∗
1 are left identities on {S∗

n | n ∈ N}. The next lemma shows that on
F\ (J ∪ {Sn | n ∈ N} ∪ {S∗

n | n ∈ N}) there is a unique left identity, 1.

5The metaphor holds only up to a point, however, since for n > m > 0, we have Fn+F ∗
m -= Fn−m.

Cancellation is not witnessed between positive and “negative” flow graphs.
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Lemma 3.19. Let G, H be non-trivial flow graphs with H -∈ J and S1H -= H and
H -= S∗

1H. Then

GH = H ⇔ G = 1. (6)

Proof. If G = 1 then GH = H . For the reverse implication, we appeal to Lemma 3.10.

a. Suppose G ∈ I. Then GH = H implies 1+qH(pG−1) = pH and qHqG = qH . Hence
qG = 1, so G ∈ {1, 1∗, R1, S1, S∗

1}. Since G ∈ I, it cannot be 1 or 1∗. Likewise, G
cannot be R1 since GH = H implies R1H = RqH and so H = RqH , contradicting
that H -∈ J . Suppose G = S1 (or S∗

1) then GH = H implies that H = SqH (or
H = S∗

qH
) which contradicts the hypothesis S1H -= H (or H -= S∗

1H). Hence G
cannot be in I.

b. So now we consider G -∈ I. Then GH = H implies pH + qH(pG − 2) = pH and
qHqG = qH . Hence qG = 1 which implies G ∈ {1, 1∗, R1, S1, S∗

1}. Since G ∈ I, it
must be 1 or 1∗. But G cannot be 1∗ since 1∗H = H∗ and H∗ -= H since H -∈ J .
It follows that G = 1.

3.6. Infinitesimals

The following observations motivate our choice of the term infinitesimal for flow graphs
whose source and target vertices coincide.

Proposition 3.20. Let B and C be non-trivial flow graphs. Then B+C is infinitesimal,
if and only if both B and C are infinitesimal.

Proof. If B (resp. C) is not infinitesimal then sB -= tB (resp. sC -= tC), hence sB+C -=
tB+C . So B+C is not infinitesimal.

If B and C are infinitesimal then sB = tB and sC = tC hence sB+C = tB+C . So B+C
is infinitesimal.

The next Proposition shows that with respect to multiplication, the set of infinitesi-
mals behaves, in some sense, like a prime ideal inside F .

Proposition 3.21. Let G and H be non-trivial flow graphs, then GH is infinitesimal if
and only if at least one of the two factors is infinitesimal.
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Proof. If H or G is infinitesimal, then sGH = tGH in GH and sHG = tHG in HG. Hence
GH and HG are both infinitesimal.

On the other hand, suppose G and H are non-trivial flow graphs that are both non-
infinitesimal. Then sGH -= tGH in GH and sHG -= tHG in HG. Hence GH and HG are
both non-infinitesimal.

The reader may wish to compare the above Proposition with assertion (3) of Lemma
3.15 which showed that {0} also behaves, in some sense, like a prime ideal inside F . The
next two propositions show that H and J behave like one-sided ideals in F .

Proposition 3.22. Let G be any flow graph and H be a reflective flow graph. Then GH
is a reflective flow graph.

Proof. (GH)′ = GH ′ = GH , since H = H ′.

Proposition 3.23. Let G be a reversible flow graph and H be any flow graph. Then GH
is a reversible flow graph.

Proof. (GH)∗ = G∗H = GH , since G = G∗.

3.7. Infinitesimalizing Unary Operators

It is also possible to define natural infinitesimalizing unary operations on flow graphs.
We introduce the following:

Definition 3.24. Given a flow graph A, define

• A+ as the graph A with the target moved down to coincide with the source.

• A− as the graph A with the source moved up to coincide with the target.

• A◦ as the graph A with the source and target nodes identified.

The following identities are easy to verify:

5. Idempotency: Given two operations x, y ∈ {+,−, ◦}:

(Ax)y = Ax.

More generally: applying +,− or ◦ to an infinitesimal has no effect, and A = A◦ =
A+ = A− if and only if A is infinitesimal.
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The infinitesimalizing operators interact nicely with the unary operations of ′ (Defi-
nition 2.4) and ∗ (Definition 2.7). The following identities are easy to verify:

6. Commutativity of ∗ with any operation x ∈ {+,−, ◦}: (Ax)∗ = (A∗)x

7. Interaction of ′ with infinitesimalizing operations:

(A
′
)+ = A− = (A−)′

(A
′
)− = A+ = (A+)′

(A
′
)◦ = A◦ = (A◦)′

8. Multiplicative definitions of +, − and ◦:

A+ = A1+ = AS1

A− = A1− = AS∗
1

A◦ = A1◦ = AR1

9. Non-distributivity of +, − and ◦ over addition and multiplication. Taking A = B =
F2, one sees:

(A+B)+ -= A++B+

(A+B)− -= A−+B−

(A+B)◦ -= A◦+B◦

(AB)+ -= A+B+

(AB)− -= A−B−

(AB)◦ -= A◦B◦

10. Left-identities other than 1 on stars, anti-stars, and roses:

SkA = k1+A = Sk|E[GA]|

S∗
kA = k1−A = S∗

k|E[GA]|

RkA = k1◦A = Rk|E[GA]|.

Taking k = 1 and A to be a star, anti-star, or rose (respectively), the above identities
show that S1, S∗

1 and R1 act as left identities on the set of stars, anti-stars, and
roses (respectively).
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4. Order

Given our representation of the natural number n by the flow graph Fn in Definition 2.12,
comparing the order of two numbers n1 and n2 (as flow graphs) requires simply compar-
ing the lengths of the corresponding chain graphs Fn1 and Fn2. To generalize this to all of
F , however, we cannot refer to “length”. In what follows, we present two possible inter-
pretations of ! in F . To avoid confusion, we denote these distinct interpretations by the
symbols ", and 2—these are referred to as the strong and induced orders respectively.

4.1. Strong Order "

We now define an ordering on F . Given two flow graphs A and B, informally, we say
that A"B iff two copies of GA appear in GB; one as a neighborhood of sB and one as a
neighborhood of tB. The next definition makes this statement precise.

Definition 4.1 (Strong order). Given two flow graphs A = (GA, sA, tA) and B =
(GB, sB, tB), we say A"B iff there are graph embeddings6 where φs : GA → GB and
φt : GA → GB which satisfy φs(sA) = sB and φt(tA) = tB.

Consider the comparison of F3 and F5 depicted in Figure 9; clearly F3"F5.

s F t

F

ts

F F

5

3

3 5

Figure 9: Standard strong ordering of natural numbers (represented as flow graphs).

The proof of the following lemma is immediate.

Lemma 4.2. Let m, n be natural numbers. Then n ! m ⇔ i(n)"i(m).

Figure 10 illustrates a more general example in which strong order is used to compare
two elements of F which are not graphical natural numbers.

6These embeddings are merely directed graph embeddings whose image need not be an induced
subgraph of GB).
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B B

B

ts

A A

A

s t A           B

Figure 10: General strong ordering of flow graphs.

The next Proposition follows immediately from Lemmas 3.3, 3.17, 3.13, 3.18, and 4.2.

Proposition 4.3. Under the embedding i : n *→ Fn, the standard model N = 〈N, 0, 1, !
, +,×〉 is a submodel of F = 〈F, 0, 1, ", +,×〉, where 0 = F0, 1 = F1, and the relations
+, × and " reinterpret +,× and ! inside F .

4.2. Induced Order 2

We now give an alternate ordering on F . Given two flow graphs A and B, informally,
we say that A2B iff B can be transformed into A by a series of edge contractions7. The
next two definitions make this statement precise.

Definition 4.4 (Edge contraction). Given a flow graphs A = (GA, sA, tA) and an edge
e = (u, v) ∈ E[GA], the flow graph A/e is obtained from A by deleting e in GA and
identifying vertex u with v. If u or v was the source (resp. target) of A, then the
identified vertex u ≈ v will be taken as the source (resp. target) of A/e.

The next two observations consider the effect of contracting an edge e = (u, v) in a
flow graph A = (GA, sA, tA).

Observation 4.5. |E[GA/e]| = |E[GA]| − 1. If e is a non-loop edge then |V [GA/e]| =
|V [GA]|− 1; if e is a loop edge then |V [GA/e]| = |V [GA]|.

Definition 4.6. Let A = (GA, sA, tA) be a flow graph, where GA = (V, E). Fix X ⊂ E
and define an equivalence relation RX on the vertices of A by taking (v1, v2) ∈ RX iff v1

and v2 are in the same connected component of (V, X). We define G/RX to be the graph
obtained by considering the quotient of the edge relation E by the equivalence relation
RX . Note that the vertex set of G/RX is {[v] | v ∈ V }.

7The induced order was the outcome of discussions held when these results were presented at the
City University of New York Logic Workshop, September 2004.
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Definition 4.7 (Induced order). Given two flow graphs A = (GA, sA, tA) and B =
(GB, sB, tB), we say A2B iff there is set of edges X ⊂ E[GB] such that B/RX is
isomorphic to A.

The proof of the following lemma is immediate.

Lemma 4.8. Let m, n be natural numbers. Then n ! m ⇔ i(n)2i(m).

Observation 4.9. Given two vertices u and v in V [GA], the distance between u and v
in G\e does not exceed the distance between u and v in G.

There is no obvious relationship between induced order and the afforementioned
strong orders.

Figure 13 shows flow graphs A and B for which the strong order relationship A"B
holds. However, since dB(sB, tB) = 1 and dA(sA, tA) = 2, by Observation 4.9 no sequence
of edge contractions can transform B into A, and hence A-2B.

In the reverse direction, let A = F1+R1+F1 and B = F2+R1+F2. Then A2B since
each F2 summand in B can be edge contracted to become F1. Note that A contains a
unique vertex with a loop edge attached, and this vertex is at distance 1 from sA and tA.
In contrast, in B there is a unique vertex with a loop edge attached, and this vertex is
at distance 2 from sB and tB. It follows that A-"B.

The next Proposition follows from Lemmas 3.3, 3.17, 3.13, 3.18, and 4.8.

Proposition 4.10. Under the embedding i : n *→ Fn, the standard model N = 〈N, 0, 1, !
, +,×〉 is a submodel of F = 〈F, 0, 1,2, +,×〉, where 0 = F0, 1 = F1, and the relations
+, × and 2 reinterpret +,× and ! inside F .

The unary operations of ′ (Definition 2.4) and ∗ (Definition 2.7) interact nicely with
the two orders " and 2. The following assertions are easily verified.

A"B ⇔ A′"B′ A2B ⇔ A′2B′

A"B ⇔ A∗"B∗ A2B ⇔ A∗2B∗

A"B ⇒ A+"B+ A2B ⇒ A+2B+

A"B ⇒ A−"B− A2B ⇒ A−2B−

A"B ⇒ A◦" B◦ A2B ⇒ A◦2 B◦

The last three implications are not reversible, since:

• If A = F1, B = F+
1 , then A+"B+ and A+2B+ but A-"B and A-2B.

• If A = F1, B = F−
1 , then A−"B− and A−2B− but A-"B and A-2B.

• If A = F1, B = F ◦
1 , then A◦"B◦ and A◦2B◦ but A-"B and A-2B.
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4.3. Other embeddings of N into F

Propositions 4.3 and 4.10 show that the set of all graphical natural numbers {Fn | n ∈ N}
induces a submodel of F that is isomorphic to N . There are other embeddings of N
into F . For example, consider the set of roses Rn (Definition 2.10). As a substructure
of the flowgraphs, these are isomorphic to N , since Rn+m = Rn+Rm = Rm+Rn, and
Rmn = RmRn = RnRm for all n, m,∈ N. Note that R1 is not a multiplicative identity
on all of F, but it is on the subset of roses. Alternatively, we can embed N into the
infinitesimals using either the stars Sn or the anti-stars S∗

n (Definition 2.11). Let us
define:

iF ∗ : n *→ F ∗
n

iR : n *→ Rn

iS : n *→ Sn

iS∗ : n *→ S∗
n.

By carrying out a similar analysis for these functions, one can show that

iF ∗ , iR, iS, iS∗ : N ↪→ F

are embeddings of structures, and thus the submodels induced by their images in F (i.e.
set of all anti-paths (F ∗

n), roses, stars, and anti-stars) are each isomorphic to the natural
numbers. As we shall see, however, there are aesthetic advantages to the mapping which
represents the natural number n by the flow graph Fn (e.g. Proposition 5.12, pp. 26).

5. Properties of Flow Graphs

In this section we show that × left-distributes over + but does not right-distribute. We
define left and right divisibility of flow graphs, and show that right divisibility distributes
over +, but left divisibility does not. We introduce the notion of a prime flow graph, and
show that the concepts of left-prime and right-prime coincide. Finally, we explore the
properties and relationships of the different orders, and describe the interaction between
the orders introduced in Section 4 and the operations of + and ×.

5.1. Multiplicative Properties

Lemma 5.1 (Left-distributivity of × over +). For any flow graphs A, B, C,

C(A+B) = CA+CB
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Proof. Fix e ∈ E[GC(A+B)]. Then define β0(e) = ΛC,A+B(e). Note that β0(e) = (f, e′),
where f is an edge in E[GC ] and e′ is an edge in E[GA+B]. Define β1 : E[GA+B] →
E[GA] ∪ E[GB] so that

β1(e) =

{
σ+−1

tA≈sB
(e) if e ∈ Im(σ+−1

tA≈sB
)

τ+−1
tA≈sB

(e) if e ∈ Im(τ+−1
tA≈sB

).

Then β1◦β0 maps E[GC(A+B)] injectively into (E[GC ]×E[GA])∪(E[GC ]×E[GB]). Define
β2 by taking

β2(e) =

{
Λ−1

C,A(e) if e ∈ E[GC ] × E[GA]
Λ−1

C,B(e) if e ∈ E[GC ] × E[GB].

Then β2 maps (E[GC ] × E[GA]) ∪ (E[GC ] × E[GB]) into E[GCA] ∪ E[GCB] injectively.
Finally, define β3 by taking

β3(e) =

{
σ+

tCA≈ sCB
(e) if e ∈ E[GCA]

τ+
tCA≈ sCB

(e) if e ∈ E[GCB].

Then β3 maps E[GCA] ∪ E[GCB] injectively into E[G(CA)+(CB)]. The composite map
β3 ◦ β2 ◦ β1 ◦ β0 maps the edges of C(A+B) injectively into the edges of CA+CB, and is
the desired flow graph isomorphism demonstrating the claimed equality.

Let A be the flow graph consisting of a directed cycle of length 3 taking source and
target vertices to be any two distinct vertices on this cycle. Observe that (F1+F1)A =
F2A, while (F1A)+(F1A) = A+A = 2A = AF2. Referring to Figure 11, we see that
AF2 -= F2A.

s t

F
2

ts

s t

F
2

F
2

A

ts

A 

 A

Figure 11: (F1+F1)A -= AF1+AF1.

Lemma 5.2 (Non Right-distributivity of multiplication over addition). There exist flow
graphs A, B, and C,

(B+C)A -= BA+CA
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Remark 5.3 (Violation of left and right cancellation). Let B be non-reflective and A be
reversible. Since A is reversible, A = A∗, so then BA = BA∗ = B1∗A = B′A. Since B
is not reflective, B -= B′ violating right cancellation. For example, taking B = 1, we get
that 1A = A = A∗ = 1∗A, but 1 -= 1∗.

If A be reflective, and B be non-reversible. Since A is reflective, A = A′, so then
AB = A′B = A1′B = AB∗. Since B is not reversible, B -= B∗ violating left cancellation.
For example, taking B = 1, we get that A1 = A = A′ = A1′, but 1 -= 1′.

Definition 5.4. Given flow graphs A, B at least one of which is non-trivial, we define
A/B as the set of flow graphs C for which A = BC. Analogously, we define A\B as the
set of flow graphs C for which A = CB. If |A/B| = 0 (resp. |A\B| = 0) then we say
that A is not right-divisible (resp. not left-divisible) by B. Note that the sets A/B and
A\B may have size bigger than one. For example, if A = A∗, then A = 1∗A = 1A, so
A\A contains both 1 and 1∗. If A = A′, then A = A1′ = A1, so A/A contains both 1 and
1′. By convention, we say that 0/0 and 0\0 are undefined.

Clearly if m and n are standard integers then Fm is right-divisible by Fn iff Fm is
left-divisible by Fn iff ∃k ∈ N for which Fm = FnFk = FkFn iff m is divisible by n.

We extend multiplication of flow graphs to multiplication of sets of flow graphs in the
obvious way:

Definition 5.5. Given two nonempty sets of flow graphs A and B, we define

A×̃B = {AB | A ∈ A, B ∈ B},

A+̃B = {A+B | A ∈ A, B ∈ B}.

Note that for all flow graphs A, C, if A/C -= ∅ then there exists a flow graph B
such that A/C ⊇ B/C×̃A/B as sets; simply take B = C. In contrast, the next lemma
concerns cancellation in products:

Lemma 5.6. For all flow graphs A, B, C, if B/C -= ∅ and A/B -= ∅ then

B/C×̃A/B ⊆ A/C.

Proof. Suppose K2 ∈ B/C and K1 ∈ A/B. Then by Definition 5.4, B = CK2 and
A = BK1, which implies A = (CK2)K1 which by by Lemma 3.11 implies A = C(K2K1),
so K2K1 ∈ A/C. Thus, B/C×̃A/C ⊆ A/C.

Note that Lemma 5.6 is not an equality, that is B/C×̃A/B need not equal A/C even
if B/C -= ∅ and A/B -= ∅. To see this, fix n # 3 odd, and take i > 2, j = (n − 1)/2 # 1,
and k = n. Put A = Rijk, B = Rij and C = Ri. Then A/C is the set of all flow graphs
having jk edges, while B/C (resp. A/B) is the set of all flow graphs having j (resp. k)
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edges. Thus, to show that the inclusion in Lemma 5.6 is sometimes a proper inclusion,
it suffices to show that not every flow graph having jk edges can be expressed as the
product of two flow graphs which have j and k edges, respectively. Take, for example,
the flow graph G obtained by considering any tournament8 on n vertices, with distinct
source and target. Since the number of edges in G is n(n − 1)/2 = jk, we know that G
is in A/C. We claim that G cannot be expressed as a product HK where H has j edges
and K has k edges, i.e. that G is not in B/C×̃A/B. Suppose towards contradiction that
a factorization G = HK was possible. Since G was constructed to be non-infinitesimal,
by Proposition 3.21, both H and K must be non-infinitesimal. Then by Lemma 3.10, we
have that the number of vertices p and the number of edges q in H , K and G are related
by the expression pK + qK(pH − 2) = pG, which in the specific setting becomes

pK + n(pH − 2) = n. (7)

Examining equation (7) we see that if pH ! 2 then pK > n − 1 = qK − 1, violating that
K is connected, and if pH # 3 then pK < 0, violating that K is a flow graph. It follows
that no such factorization of G exists, and thus the inclusion in Lemma 5.6 is sometimes
proper.

There is an analogous result to Lemma 5.6 concerning left-divisibility, namely for all
flow graphs A, B, C, if B\C -= ∅ and A\B -= ∅ then

A\B×̃B\C ⊆ A\C (8)

It is unclear whether analogous examples can be constructed to demonstrate that the
inclusion in the left divisibility analogue (8) is proper. The authors conjecture that
expression (8) is actually an equality.

Lemma 5.7 (Restricted distributivity of right-divisibility over +). For all flow graphs
A, B, C,

A/B+̃C/B ⊆ (A+C)/B

Proof. Suppose K1 ∈ A/B and K2 ∈ C/B. Then by Definition 5.4, A = BK1 and
C = BK2. Thus A+C = (BK1)+(BK2) which by Lemma 5.1, is B(K1+K2). This
implies that K1+K2 belongs to (A+C)/B contains . Thus A/B+̃C/B is contained in
(A+C)/B.

To see that Lemma 5.7 is not necessarily an equality, that is A/B+̃C/B is not equal
to (A+C)/B, consider the following example. Let A = C = F1 and B = F2. Since
F1+F1 = F2F1 it means F1 ∈ (A + C)/B. Now F1 cannot be in A/B+̃C/B since only
possibility is that F1 = F0+F1 or F1 = F1+F0 and F0 is not in A/B or A/C.

8By tournament we mean a complete graph in which every two vertices u and v are connected by
either the edge (u, v) or the edge (v, u).
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Observation 5.8 (Non-distributivity of left-divisibility over +). Note that Lemma 5.2
can be used to construct examples that demonstrate non-distributivity of left-divisibility
over +. For example, let B be a directed cycle of length 3 with any two distinct vertices
as sB and tB. Take A = F2B. Then F2 ∈ A\B. Now take C = B. Then F1 ∈ C\B
and so F2+F1 = F3 ∈ A\B+̃C\B. Since A+C -= F3B this means that F2+F1 = F3 -∈
(A+C)\B. Thus, the example shows that for some A, B, and C, the set (A\B)+̃(C\B)
is not contained in the set (A+C)\B.

In Lemma 3.16, we determined that 1 and 1′ are the only units in the set of flow
graphs. This motivates the following definition of a prime flow graph:

Definition 5.9. A flow graph A is called prime if A is neither trivial nor a unit, and
A = BC implies that either B or C is a unit.

If we consider Definition 5.9 in the case when A is assumed to be non-infinitesimal,
we see that B and C must both be non-infinitesimal and hence, |E[GB]| = 1 (resp.
|E[GC ]| = 1) implies that B = 1 or 1′ (resp. C = 1 or 1′). Accordingly, let us say a
flow graph A is right-prime if for all flow graphs B, A/B -= ∅ implies one of the following
hold:

RP1) B = 1∗ and A∗ ∈ A/B.

RP2) B = A′ and 1′ ∈ A/B.

RP3) B = A and 1 ∈ A/B.

RP4) B = 1 and A ∈ A/B.

Likewise, let us say that a flow graph A is left-prime if for all flow graphs C, A\C -= ∅
implies one of the following hold:

LP1) C = A∗ and 1∗ ∈ A\C.

LP2) C = 1′ and A′ ∈ A\C.

LP3) C = A and 1 ∈ A\C.

LP4) C = 1 and A ∈ A\C.

Note that a natural number n is prime iff the non-infinitesimal flow graph Fn is prime
iff Fn is right-prime iff Fn is left-prime. More generally:

Lemma 5.10. Let A be a non-infinitesimal flow graph. Then A is right-prime iff A is
left-prime.
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Proof. Suppose A is right-prime. To show that A is left-prime we must show that for all
flow graphs C, A\C -= ∅ implies that at least one of LP1-LP4 holds. Suppose B ∈ A\C;
then A = BC, and hence C ∈ A/B. Since A is assumed to be right prime, we know
that at least one of RP1-RP4 holds for B. Suppose that RP1 holds. Then B = 1∗ and
A∗ = C ∈ A/B, which implies LP1 holds. Similarly one can show that if RPi holds, then
LPi holds (for i = 2, 3, 4). Thus A is left-prime.

A similar argument shows that left-prime implies right-prime.

The previous lemma shows that the notions of prime, left-prime and right-prime
coincide on non-infinitesimals. However, an infinitesimal flow graph can be prime while
being neither left-prime nor right-prime. To see this, let A be any infinitesimal flow
graph for which |V [GA]| > 1 and |E[GA]| is prime. Fix a vertex t† ∈ V [GA], for which
t† -= sA, tA, and take A† to be the flow graph (GA, sA, t†). Then A†S1 = A, so A is neither
left-prime, nor right prime. But A is prime, since by Lemma 3.10, any factorization of
A into a product BC must satisfy |E[GA]| = |E[GA]| · |E[GA]|. Indeed, any flow graph
with a prime number of edges is necessarily a prime flow graph.

Definition 5.11. Given a set of flow graphs S ⊂ F , we say that A is central in S if
A ∈ S and for all flow graphs B ∈ S, we have that AB = BA. The set of all flow graphs
that are central in S is denoted as Z(S).

Proposition 5.12. Z(F ) = {0, 1}.

Proof. Suppose A is central. Then AS1 = S1A. Since AS1 = A+ and S1A = S|E[GA]|, it
follows that A+ is a star, and thus A (viewed as a directed graph) is also a star. This
implies that A∗ (viewed as a directed graph) is an antistar. Since A is central, A1∗ = 1∗A;
but A1∗ = A1′ = A′ and 1∗A = A∗. Thus A′ = A∗. So A′ (viewed as a directed graph) is
also an antistar. This means A as directed graph is a star with in-degree(s) in A equal
to out-degree(t) in A and in-degree(t) in A equal to out-degree(s) in A. It follows that
A has at most one edge. But this is possible if and only if A is 0 or 1.

5.2. Order Properties

In this section we explore the relationship between strong order (denoted "), and induced
order (denoted 2). While these orders coincide on the graphical natural numbers, only
induced order is anti-symmetric on all of F , and only the strong order and induced order
are transitive. We consider several standard laws that govern the relationship between
!, + and × in N , and show that these laws continue to hold for induced order 2 but
several are violated under the strong and induced orders.
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5.2.1. Strong Order "

We begin by describing the properties of F under the strong order.

Lemma 5.13 (Strong Order Preservation). For flow graphs A, B, C, if A"B then CA"CB.

Proof. Let A = (GA, sA, tA), B = (GB, sB, tB). Since A"B there are graph embeddings
φs : GA → GB and φt : GA → GB which satisfy φs(sA) = sB and φt(tA) = tB. Define
γs : E[GC ] × E[GA] → E[GC ] × E[GB] by

(f, e) *→ (f, φs(e)).

Then the composite map

ΦC
s : E[GCA]

ΛC,A

−→ E[GC ] × E[GA]
γs

−→ E[GC ] × E[GB]
Λ−1

C,B

−→ E[GBC ]

defines an embedding of GCA → GCB which takes sCA to sCB. An analogous construction
can be carried out to produce a map ΦC

t which embeds GCA → GCB and sends tCA to
tCB.

Lemma 5.14 (Strong Order Violations). There exist flow graphs A, B and C for which
A"B but:

(i) A+C -" B+C

(ii) C+A -" C+B

(iii) AC -" BC.

Proof. See Figure 12.

We consider possible anti-symmetry of ". Suppose A"B and B"A. There is a graph
embedding φs : GA → GB which satisfies φs(sA) = sB. Hence |V [GA]| = |V [φs(GA)]| !
|V [GB]| and |E[GA]| = |E[φs(GA)]| ! |E[GB]|. Since B"A, there is a graph embedding
ψs : GB → GA which satisfies ψs(sB) = sA. So |V [GB]| = |V [ψs(GB)]| ! |V [GA]| and
|E[GB]| = |E[ψs(GB)]| ! |E[GA]|. It follows that φs is actually an isomorphism from GA

to GB satisfying φs(sA) = sB. A similar argument shows that there is an isomorphism
φt from GA to GB satisfying φt(tA) = tB. To conclude that A = B requires a single flow
graph isomorphism π from A to B, satisfying both π(sA) = sB and π(tA) = tB. Indeed
in some cases, no such isomorphism may exist.

Example 5.15. Let GA be a directed cycle of length 4, and take sA, tA to be any two
vertices in V [GA] that are distance 2 apart. Put GB isomorphic to GA, taking sB, tB
to be two vertices in V [GB] that are distance 1 apart. Then it is easy to verify that
(GA, sA, tA) = A"B = (GB, sB, tB) and B"A. Clearly, however, A -= B as flow graphs
(see Figure 13).
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Figure 12: Strong order violations: (i). A+C -"B+C, (ii). C+A-"C+B, and (iii).
AC -"BC.
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Figure 13: An example which demonstrates that the strong order is not antisymmetric.

The previous example proves the next lemma.

Lemma 5.16 (Non-antisymmetry of strong order "). There exist flow graphs A and B
for which

A"B and B"A but A -= B.

Lemma 5.17 (Transitivity of strong order "). For all flow graphs A, B, C

A"B and B"C implies A"C.

Proof. A"B: i.e. there are graph embeddings φs : GA → GB and φt : GA → GB

which satisfy φs(sA) = sB and φt(tA) = tB. B"C: i.e. there are graph embeddings
θs : GB → GC and θt : GB → GC which satisfy θs(sB) = sC and θt(tB) = tC . We want
to show A"C: i.e. there are graph embeddings αs : GA → GC and αt : GA → GC which
satisfy αs(sA) = sC and αt(tA) = tC . Put αs = θs ◦ φs and αt = θt ◦ φt.

5.2.2. Induced Order 2

We now investigate the properties of F under the induced order.
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First, note that since flow graphs are connected directed graphs, then any flow graph
A satisfies 02A.

Lemma 5.18 (Induced Order Preservation). For flow graphs A, B, C, if A2B then

(i) A+C 2 B+C

(ii) C+A 2 C+B

(iii) CA 2 CB

(iv) AC 2 BC.

Proof. (i, ii) Since A2B, edges of B can be contracted to yield A. When this sequence
of contractions is applied to B+C, it yields A+C. When this sequence of contractions
is applied to C+B, it yields C+A.

(iii, iv) The flow graph CB is obtained by replacing each edge e in B with a graph Ce

that is isomorphic to C. Since A2B, there is a sequence of edges e1, e2, . . . , ek for which
the sequence B0 = B, Bi = Bi−1/ei (for i = 1, 2, . . . , k), ends with Bk = A. We shall
contract CB in phases, where at phase i, we collapse Cei to a point. This is possible since
02C. At the end of this process, CB has been transformed into CA. The argument
which shows (iv) is entirely analogous.

Lemma 5.19 (Antisymmetry of induced order 2). For all flow graphs A and B

A2B and B2A ⇐⇒ A = B.

Proof. Since A2B, |E[GA]| ! |E[GB]| and since B2A, |E[GB]| ! |E[GA]|. It follows
that |E[GB]| = |E[GA]|. It follows that no edge contractions are required to transform
B into A, hence A and B are isomorphic as flow graphs.

Lemma 5.20 (Transitivity of induced order 2). For all flow graphs A, B, C

A2B and B2C implies A2C.

Proof. If some sequence of edge contractions transforms C into B, and some sequence
of edge contractions transforms B into A, then the concatenation of these two sequences
demonstrates that A2C.

5.2.3. Summary of Order Properties

Table 1 summarizes properties of the strong " and induced 2 orders (when substituted
for $). Note that the induced order satisfies all listed properties, though the significance
of this fact should perhaps be mitigated by the fact that both the = and empty relation
also satisfy all the properties on the list.
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Properties Strong Order Induced Order
$ = " $ = 2

A $ B =⇒ (AC) $ (BC) False True
A $ B =⇒ (CA) $ (CB) True True

A $ B =⇒ (A+C) $ (B+C) False True
A $ B =⇒ (C+A) $ (C+B) False True
A $ B and B $ A =⇒ A = B False True
A $ B and B $ C =⇒ A $ C True True

Table 1: Properties of F under strong and induced orders.

6. Conclusions and Future Work

Our future research will consider the structural properties of flow graphs and describe
Th(F), including for restricted subsets of F that can be defined in terms of structural
constraints, e.g. the set of all trees, directed acyclic graphs, etc.

Some questions we are presently considering are listed below.

i. Characterize +-commuting pairs, i.e. under what conditions on flow graphs A and
B does A+B = B+A?

ii. Graph +-Irreducible Decomposition Conjecture. Every flow graph is uniquely ex-
pressible (up to well-defined reordering) as the sum of +-irreducible flow graphs.

iii. Characterize pairs which commute with respect to multiplication, i.e. under what
conditions on flow graphs A and B does AB = BA?

iv. Graph Prime Factorization Conjecture. Every flow graph is uniquely expressible
(up to some well-defined reordering and application of unary structural operators)
as the product of prime flow graphs.
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