AFFINE INVARIANTS, RELATIVELY PRIME SETS, AND A PHI FUNCTION FOR SUBSETS OF $\{1,2, \ldots, N\}$

Melvyn B. Nathanson ${ }^{1}$
Lehman College (CUNY), Bronx, New York 10468
melvyn.nathanson@lehman. cuny.edu

Received: 8/15/06, Accepted: 12/29/06, Published: 1/3/07

Abstract

A nonempty subset A of $\{1,2, \ldots, n\}$ is relatively prime if $\operatorname{gcd}(A)=1$. Let $f(n)$ and $f_{k}(n)$ denote, respectively, the number of relatively prime subsets and the number of relatively prime subsets of cardinality k of $\{1,2, \ldots, n\}$. Let $\Phi(n)$ and $\Phi_{k}(n)$ denote, respectively, the number of nonempty subsets and the number of subsets of cardinality k of $\{1,2, \ldots, n\}$ such that $\operatorname{gcd}(A)$ is relatively prime to n. Exact formulas and asymptotic estimates are obtained for these functions.

Subject class: Primary 11A25, 11B05, 11B13, 11B75.
Keywords: Relatively prime sets, Euler phi function, combinatorial

1. Affine Invariants

Let A be a set of integers, and let x and y be rational numbers. We define the dilation $x * A=\{x a: a \in A\}$ and the translation $A+y=\{a+y: a \in A\}$. Sets of integers A and B are affinely equivalent if there exist rational numbers $x \neq 0$ and y such that $B=x * A+y$. For example, the sets $A=\{2,8,11,20\}$ and $B=\{-4,10,17,38\}$ are affinely equivalent, since $B=(7 / 3) * A-26 / 3$, and A and B are both affinely equivalent to the sets $C=\{0,2,3,6\}$ and $D=\{0,3,4,6\}$. Every set with one element is affinely equivalent to $\{0\}$. Every finite set A of integers with more than one element is affinely equivalent to unique sets C and D of nonnegative integers such that $\min (C)=\min (D)=0, \operatorname{gcd}(C)=\operatorname{gcd}(D)=1$, and $D=(-1) * C+\max (C)$.

A function $f(A)$ whose domain is the set $\mathcal{F}(\mathbf{Z})$ of nonempty finite sets of integers is called an affine invariant of $\mathcal{F}(\mathbf{Z})$ if $f(A)=f(B)$ for all affinely equivalent sets A and B.

[^0]For example, if $A+A=\left\{a+a^{\prime}: a, a^{\prime} \in A\right\}$ is the sumset of a finite set A of integers, and if $A-A=\left\{a-a^{\prime}: a, a^{\prime} \in A\right\}$ is the difference set of the finite set A, then $s(A)=\operatorname{card}(A+A)$ and $d(A)=\operatorname{card}(A-A)$ are affine invariants. More generally, let $u_{0}, u_{1}, \ldots, u_{n}$ be integers and $F\left(x_{1}, \ldots, x_{n}\right)=u_{1} x_{1}+\cdots+u_{n} x_{n}+u_{0}$. Define $F(A)=\left\{u_{1} a_{1}+\cdots+u_{n} a_{n}+u_{0}\right.$: $a_{1}, \ldots, a_{n} \in A$ for $\left.i=1, \ldots, n\right\}$. Then $f(A)=\operatorname{card}(F(A))$ is an affine invariant.

Let $f(A)$ be a function with domain $\mathcal{F}(\mathbf{Z})$. A frequent problem in combinatorial number theory is to determine the distribution of values of the function $f(A)$ for sets A in the interval of integers $\{0,1, \ldots, n\}$. For example, if $A \subseteq\{0,1,2, \ldots, n\}$, then $1 \leq \operatorname{card}(A+A) \leq 2 n+1$. For $\ell=1, \ldots, 2 n+1$, we can ask for the number of nonempty sets $A \subseteq\{0,1,2, \ldots, n\}$ such that $\operatorname{card}(A+A)=\ell$. Similarly, if $\emptyset \neq A \subseteq\{0,1,2, \ldots, n\}$ and $\operatorname{card}(A)=k$, then $2 k-1 \leq \operatorname{card}(A+A) \leq k(k+1) / 2$, and, for $\ell=2 k-1, \ldots, k(k+1) / 2$, we can ask for the number of such sets A with $\operatorname{card}(A+A)=\ell$. In both cases, there is a redundancy in considering sets that are affinely equivalent, and we might want to count only sets that are pairwise affinely inequivalent.

2. Relatively Prime Sets

A nonempty subset A of $\{1,2, \ldots, n\}$ will be called relatively prime if the elements of A are relatively prime, that is, if $\operatorname{gcd}(A)=1$. Let $f(n)$ denote the number of relatively prime subsets of $\{1,2, \ldots, n\}$. The first 10 values of $f(n)$ are $1,2,5,11,26,53,116,236,488$, and 983. (This is sequence A085945 in Sloane's On-Line Encyclopedia of Integer Sequences.) Let $f_{k}(n)$ denote the number of relatively prime subsets of $\{1,2, \ldots, n\}$ of cardinality k. We present exact formulas and asymptotic estimates for $f(n)$ and $f_{k}(n)$. These estimates imply that almost all finite sets of integers are relatively prime.

No set of even integers is relatively prime. Since there are $2^{[n / 2]}-1$ nonempty subsets of $\{2,4,6, \ldots, 2[n / 2]\}$ and $2^{n}-1$ nonempty subsets of $\{1,2, \ldots, n\}$, we have the upper bound

$$
\begin{equation*}
f(n) \leq 2^{n}-2^{[n / 2]} \tag{1}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
f_{k}(n) \leq\binom{ n}{k}-\binom{[n / 2]}{k} \tag{2}
\end{equation*}
$$

If $1 \in A$, then A is relatively prime. Since there are 2^{n-1} sets $A \subseteq\{1,2, \ldots, n\}$ with $1 \in A$, we have

$$
f(n) \geq 2^{n-1}
$$

Let $n \geq 3$. If $1 \notin A$ but $2 \in A$ and $3 \in A$, then A is relatively prime and so

$$
f(n) \geq 2^{n-1}+2^{n-3}
$$

Let $n \geq 5$. If $1 \notin A$ and $3 \notin A$, but $2 \in A$ and $5 \in A$, then A is relatively prime. If $1 \notin A$ and $2 \notin A$, but $3 \in A$ and $5 \in A$, then A is relatively prime. Therefore,

$$
f(n) \geq 2^{n-1}+2^{n-3}+2 \cdot 2^{n-4}=2^{n-1}+2^{n-2}
$$

Similarly,

$$
f_{k}(n) \geq\binom{ n-1}{k-1}+\binom{n-3}{k-2}+2\binom{n-4}{k-2}
$$

3. Exact Formulas and Asymptotic Estimates

Let $[x]$ denote the greatest integer less than or equal to x. If $x \geq 1$ and $n=[x]$, then

$$
\left[\frac{x}{d}\right]=\left[\frac{[x]}{d}\right]=\left[\frac{n}{d}\right]
$$

for all positive integers d.
Let $F(x)$ be a function defined for $x \geq 1$, and define the function

$$
G(x)=\sum_{1 \leq d \leq x} F\left(\frac{x}{d}\right)
$$

In the proof of Theorem 1 we use the following version of the Möbius inversion formula (Nathanson [1, Exercise 5 on p. 222]):

$$
F(x)=\sum_{1 \leq d \leq x} \mu(d) G\left(\frac{x}{d}\right)
$$

Theorem 1 For all positive integers n,

$$
\begin{equation*}
\sum_{d=1}^{n} f\left(\left[\frac{n}{d}\right]\right)=2^{n}-1 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
f(n)=\sum_{d=1}^{n} \mu(d)\left(2^{[n / d]}-1\right) \tag{4}
\end{equation*}
$$

For all positive integers n and k,

$$
\begin{equation*}
\sum_{d=1}^{n} f_{k}\left(\left[\frac{n}{d}\right]\right)=\binom{n}{k} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{k}(n)=\sum_{d=1}^{n} \mu(d)\binom{[n / d]}{k} \tag{6}
\end{equation*}
$$

Proof. Let A be a nonempty subset of $\{1,2, \ldots, n\}$. If $\operatorname{gcd}(A)=d$, then $A^{\prime}=(1 / d) * A=$ $\{a / d: a \in A\}$ is a relatively prime subset of $\{1,2, \ldots,[n / d]\}$. Conversely, if A^{\prime} is a relatively prime subset of $\{1,2, \ldots,[n / d]\}$, then $A=d * A^{\prime}=\left\{d a^{\prime}: a^{\prime} \in A^{\prime}\right\}$ is a nonempty subset of $\{1,2, \ldots, n\}$ with $\operatorname{gcd}(A)=d$. It follows that there are exactly $f([n / d])$ subsets A of $\{1,2, \ldots, n\}$ with $\operatorname{gcd}(A)=d$, and so

$$
\sum_{d=1}^{n} f\left(\left[\frac{n}{d}\right]\right)=2^{n}-1
$$

We apply Möbius inversion to the function $F(x)=f([x])$. For all $x \geq 1$ we define

$$
G(x)=\sum_{1 \leq d \leq x} F\left(\frac{x}{d}\right)=\sum_{1 \leq d \leq x} f\left(\left[\frac{x}{d}\right]\right)=\sum_{d=1}^{[x]} f\left(\left[\frac{[x]}{d}\right]\right)=2^{[x]}-1
$$

and so

$$
f([x])=F(x)=\sum_{1 \leq d \leq x} \mu(d) G\left(\frac{x}{d}\right)=\sum_{d=1}^{[x]} \mu(d)\left(2^{[x / d]}-1\right) .
$$

For $n \geq 1$ we have

$$
f(n)=\sum_{d=1}^{n} \mu(d)\left(2^{[n / d]}-1\right)
$$

The proofs of (5) and (6) are similar.

Theorem 2 For all positive integers n and k,

$$
2^{n}-2^{[n / 2]}-n 2^{[n / 3]} \leq f(n) \leq 2^{n}-2^{[n / 2]}
$$

and

$$
\binom{n}{k}-\binom{[n / 2]}{k}-n\binom{[n / 3]}{k} \leq f_{k}(n) \leq\binom{ n}{k}-\binom{[n / 2]}{k}
$$

Proof. For $n \geq 2$ we have

$$
2^{n}=f(n)+f([n / 2])+\sum_{d=3}^{n} f\left(\left[\frac{n}{d}\right]\right)+1 \leq f(n)+2^{[n / 2]}+n 2^{[n / 3]}
$$

Combining this with (1), we obtain

$$
2^{n}-2^{[n / 2]}-n 2^{[n / 3]} \leq f(n) \leq 2^{n}-2^{[n / 2]}
$$

This also holds for $n=1$.
The inequality for $f_{k}(n)$ follows similarly from (2) and (5).
Theorem 2 implies that $f(n) \sim 2^{n}$ as $n \rightarrow \infty$, and so almost all finite sets of integers are relatively prime.

4. A phi Function for Sets

The Euler phi function $\varphi(n)$ counts the number of positive integers $a \leq n$ such that a is relatively prime to n. We define the function $\Phi(n)$ to be the number of nonempty subsets A of $\{1,2, \ldots, n\}$ such that $\operatorname{gcd}(A)$ is relatively prime to n. For example, for distinct primes p and q we have

$$
\begin{gathered}
\Phi(p)=2^{p}-2 \\
\Phi\left(p^{2}\right)=2^{p^{2}}-2^{p}
\end{gathered}
$$

and

$$
\Phi(p q)=2^{p q}-2^{q}-2^{p}+2
$$

Define the function $\Phi_{k}(n)$ to be the number of subsets A of $\{1,2, \ldots, n\}$ such that $\operatorname{card}(A)=$ k and $\operatorname{gcd}(A)$ is relatively prime to n. Note that $\Phi_{1}(n)=\varphi(n)$ for all $n \geq 1$.

Theorem 3 For all positive integers n,

$$
\begin{equation*}
\sum_{d \mid n} \Phi(d)=2^{n}-1 \tag{7}
\end{equation*}
$$

Moreover, $\Phi(1)=1$ and, for $n \geq 2$,

$$
\begin{equation*}
\Phi(n)=\sum_{d \mid n} \mu(d) 2^{n / d} \tag{8}
\end{equation*}
$$

where $\mu(n)$ is the Möbius function. Similarly, for all positive integers n and k,

$$
\begin{equation*}
\sum_{d \mid n} \Phi_{k}(d)=\binom{n}{k} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{k}(n)=\sum_{d \mid n} \mu(d)\binom{n / d}{k} \tag{10}
\end{equation*}
$$

Proof. For every divisor d of n, we define the function $\Psi(n, d)$ to be the number of nonempty subsets A of $\{1,2, \ldots, n\}$ such that the greatest common divisor of $\operatorname{gcd}(A)$ and n is d. Thus,

$$
\Psi(n, d)=\operatorname{card}(\{A \subseteq\{1,2, \ldots, n\}: A \neq \emptyset \text { and } \operatorname{gcd}(A \cup\{n\})=d\})
$$

Then

$$
\Psi(n, d)=\Phi\left(\frac{n}{d}\right)
$$

and

$$
2^{n}-1=\sum_{d \mid n} \Psi(n, d)=\sum_{d \mid n} \Phi\left(\frac{n}{d}\right)=\sum_{d \mid n} \Phi(d) .
$$

We have $\Phi(1)=1$. For $n \geq 2$ we apply the usual Möbius inversion and obtain

$$
\begin{aligned}
\Phi(n) & =\sum_{d \mid n} \mu(d)\left(2^{n / d}-1\right) \\
& =\sum_{d \mid n} \mu(d) 2^{n / d}-\sum_{d \mid n} \mu(d) \\
& =\sum_{d \mid n} \mu(d) 2^{n / d}
\end{aligned}
$$

since $\sum_{d \mid n} \mu(n / d)=0$ for $n \geq 2$.
The proofs of (9) and (10) are similar.

Theorem 4 If n is odd, then

$$
\Phi(n)=2^{n}+O\left(n 2^{n / 3}\right)
$$

and

$$
\Phi_{k}(n)=\binom{n}{k}+O\left(n\binom{[n / 3]}{k}\right) .
$$

If n is even, then

$$
\Phi(n)=2^{n}-2^{n / 2}+O\left(n 2^{n / 3}\right)
$$

and

$$
\Phi_{k}(n)=\binom{n}{k}-\binom{n / 2}{k}+O\left(n\binom{[n / 3]}{k}\right) .
$$

Proof. We have

$$
\begin{aligned}
\Phi(n) & =\sum_{\substack{d=1 \\
\operatorname{gcd}(d, n)=1}}^{n} \operatorname{card}(\{A \subseteq\{1,2, \ldots, n\}: A \neq \emptyset \text { and } \operatorname{gcd}(A)=d\}) \\
& =\sum_{\substack{d=1 \\
\operatorname{gcd}(d, n)=1}}^{n} f([n / d]) .
\end{aligned}
$$

Applying Theorem 2, we see that if n is odd, then

$$
\begin{aligned}
\Phi(n) & =f(n)+f([n / 2])+\sum_{\substack{d=3 \\
\operatorname{gcd}(d, n)=1}}^{n} f([n / d]) \\
& =\left(2^{n}-2^{[n / 2]}+O\left(n 2^{n / 3}\right)\right)+\left(2^{[n / 2]}+O\left(2^{n / 4}\right)\right)+O\left(n 2^{n / 3}\right) \\
& =2^{n}+O\left(n 2^{n / 3}\right) .
\end{aligned}
$$

If n is even, then

$$
\begin{aligned}
\Phi(n) & =f(n)+\sum_{\substack{d=3 \\
\operatorname{gcd}(d, n)=1}}^{n} f([n / d]) \\
& =\left(2^{n}-2^{n / 2}+O\left(n 2^{n / 3}\right)\right)+O\left(n 2^{n / 3}\right) \\
& =2^{n}-2^{n / 2}+O\left(n 2^{n / 3}\right) .
\end{aligned}
$$

These estimates for $\Phi(n)$ also follow from identity (8). The estimates for $\Phi_{k}(n)$ follow from identity (10). This completes the proof.

Acknowledgements. I thank Greg Martin for the observation that (4) and (6) follow from (3) and (5) by Möbius inversion, and Kevin O'Bryant for helpful discussions.

References

[1] M. B. Nathanson, Elementary Methods in Number Theory, Graduate Texts in Mathematics, vol. 195, Springer-Verlag, New York, 2000.

[^0]: ${ }^{1}$ This work was supported in part by grants from the NSA Mathematical Sciences Program and the PSC-CUNY Research Award Program.

