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Abstract

A theorem of L. J. Paige on complete maps is proved using factorizations of abelian groups.

Let G be a finite abelian group written multiplicatively with identity element e. Let
a1, . . . , an be all the elements of G. A permutation b1, . . . , bn of the elements of G is called
a complete permutation of G if a1b1, . . . , anbn is also a permutation of the elements of G. In
other words a function f : G → G is called a complete map of G if f is one-to-one and if the
function g : G → G defined by g(a) = af(a), a ∈ G is also one-to-one. In 1947 L. J. Paige has
proved the following result.

Theorem 1. If a finite abelian group G does not have exactly one element of order two, then
G possess a complete map.

For extensions of Paige’s theorem see [1], [2] and for an application to geometry see [4], [5].
Let A1, . . . , An be subsets of G. If each element a of G is uniquely expressible in the form

a = a1 · · · an, a1 ∈ A1, . . . , an ∈ An,

then we say that the equation G = A1 · · ·An is a factorization of G. In this note we give a new
proof for Paige’s theorem using factorizations. If a finite abelian group G is a direct product
of cyclic groups of orders t1, . . . , tn respectively, then we say that G is of type (t1, . . . , tn). The
order of an element a of G is denoted by |a| and 〈a〉 stands for the span of a.

Proof. We divide the proof into smaller steps.

(1) A group of type (2, 2, 2) has a complete map.

In order to prove this claim Let G be a group of type (2, 2, 2) with basis elements x, y, z,
where |x| = |y| = |z| = 2. Table 1 shows that G has a complete map.

(2) A group of type (2n, 2), where n ≥ 1 has a complete map.
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a : e x y xy z xz yz xyz

f(a) : e z xz x xyz xy y yz

af(a) : e xz xyz y xy yz z x

Table 1

In order to prove the claim let G be a group of type (2n, 2), n ≥ 1. Let x, y be basis elements
of G such that |x| = 2n, |y| = 2. Set

H = 〈x〉, K = 〈y〉, M = 〈x2〉, N = 〈xn〉,

C = {e, x, x2, . . . , xn−1}.
We use Table 2 to show that G has a complete map.

a : x2k x2ky x2k+1 x2k+1y

f(a) : xn−k x2n−ky xn−ky x2n−k

af(a) : xn+k xk xn+k+1y xk+1y

Table 2

As k runs from 0 to n − 1, the elements in the first row run over the elements of the sets
M , My, Mx, Mxy respectively. Note that

G = HK

= M{e, x}{e, y}

= M{e, x, y, xy}
are factorizations of G. It follows that the sets M , My, Mx, Mxy form a partition of G. Thus
a runs over the elements of G. Similarly, the factorizations

G = HK

= xHK

= xCNK

= xC{e, xn}{e, y}
give that the sets Cx, Cxn+1y, Cxy, Cxn+1 form a partition of G. Therefore f(a) runs over
the elements of G. Finally, the equations

G = HK

= H{e, y}

= H ∪ Hy

= H ∪ Hxy

= H{e, xy}

= CN{e, xy}

= C{e, xn}{e, xy}
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show that the sets Cxn, C, Cxn+1y, Cxy form a partition of G. It follows that af(a) runs over
the elements of G. Therefore G has a complete map.

(3) Let G be a finite abelian group and let H be a subgroup of G. If both H and the factor
group G/H have a complete map, then so does G. In particular, if G is the direct product of
the groups H and K such that both H and K have complete maps, then so does G.

To prove the claim assume that h1, . . . , hr are all the elements of H and k1, . . . , kr is a
complete permutation of H, that is, h1k1, . . . , hrkr are all the elements of H. Then assume
that a1H, . . . , asH are all the elements of G/H and b1H, . . . , bsH is a complete permutation of
G/H. This means that a1b1H, . . . , asbsH is a rearrangement of the elements of G/H. It follows
that these cosets are disjoint and their union is equal to G, that is, G = {a1b1, . . . , asbs}H is a
factorization of G. In other words

a1b1h1k1, . . . , a1b1hrkr
...

. . .
...

asbsh1k1, . . . , asbshrkr

are all the elements of G. Therefore G has a complete map.

(4) A group of type (2α(1), 2α(2)), where α(1) ≥ α(2) ≥ 1 has a complete map.

To prove the claim let G be a group of type (2α(1), 2α(2)), with α(1) ≥ α(2) ≥ 1. If α(1) = 1,
then by step (2), G has a complete map. So we may assume that α(2) ≥ 2 and start an induction
on α(2). Now G has a subgroup H of type (2, 2) such that the factor group G/H is of type
(2α(1)−1, 2α(2)−1). By step (2), H has a complete map. By the inductive assumption G/H has
a complete map. Therefore by step (3), G has a complete map.

(5) A non-cyclic group of type (2, . . . , 2) has a complete map.

In order to prove this assertion let G be a group of type (2, . . . , 2), where the number of 2’s
is n and n ≥ 2. First let us deal with the case when n is even. The n = 2 case has already
been settled in step (2). So we may assume that n ≥ 4. As G is a direct product of subgroups
of types (2, 2), . . . , (2, 2), one can use step (3) repeatedly to show that G has a complete map.
Let us turn to the case when n is odd. The n = 3 case has already been settled in step (1). We
may assume that n ≥ 5. Now G is a direct product of groups of types (2, 2, 2), (2, 2), . . . , (2, 2)
and we can use step (3) to show that G has a complete map.

(6) A group of type (2α(1), . . . , 2α(n)), where n ≥ 3 and α(1) ≥ · · · ≥ α(n) ≥ 1 has a
complete map.

In order to verify the claim consider a group G of type (2α(1), . . . , 2α(n)), where n ≥ 3 and
α(1) ≥ · · · ≥ α(n) ≥ 1. Set t = α(1) + · · · + α(n). If α(1) = 1, that is, if t = n, then by
step (5) we are done. We may assume that α(1) ≥ 2, that is, t ≥ n + 1 and start an induction
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on t. Clearly G has a subgroup H of type (2, 2) such that the factor group G/H is of type
(2α(1)−1, 2α(2)−1, 2α(3), . . . , 2α(n)) or (2α(1)−1, 2α(3), . . . , 2α(n)) depending on whether α(2) ≥ 2
or α(2) = 1. By step (2), H has a complete map. By the inductive assumption G/H has a
complete map. Finally by step (3), G has a complete map.

(7) A finite abelian group of odd order has a complete map.

Indeed, the map f : G → G defined by f(a) = a, a ∈ G is suitable.

(8) We are ready to finish the proof. Let G be a finite abelian group such that G does
not have exactly one element of order two. The group G can be written uniquely as a direct
product of the groups H and K such that the order of H is odd and the order of K is a power
of 2. Since G does not have exactly one element of order two, K is not a cyclic group, that is,
K is not of type (2α). Therefore, by steps (4), (5), (6), K has a complete map. By step (7), H

has a complete map. Hence by step (3), G has a complete map.

This completes the proof.
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