FACTORIZATIONS AND PAIGE'S THEOREM ON COMPLETE MAPS

Sándor Szabó

Institute of Mathematics and Informatics, University of Pécs, Ifjúság u. 6, 7624 Pécs, HUNGARY sszabo7@hotmail.com

Received: 5/28/05, Accepted: 3/2/6, Published: 3/10/06

Abstract

A theorem of L. J. Paige on complete maps is proved using factorizations of abelian groups.

Let G be a finite abelian group written multiplicatively with identity element e. Let a_1, \ldots, a_n be all the elements of G. A permutation b_1, \ldots, b_n of the elements of G is called a complete permutation of G if a_1b_1, \ldots, a_nb_n is also a permutation of the elements of G. In other words a function $f: G \to G$ is called a complete map of G if f is one-to-one and if the function $g: G \to G$ defined by $g(a) = af(a), a \in G$ is also one-to-one. In 1947 L. J. Paige has proved the following result.

Theorem 1. If a finite abelian group G does not have exactly one element of order two, then G possess a complete map.

For extensions of Paige's theorem see [1], [2] and for an application to geometry see [4], [5]. Let A_1, \ldots, A_n be subsets of G. If each element a of G is uniquely expressible in the form

$$a = a_1 \cdots a_n, \quad a_1 \in A_1, \dots, a_n \in A_n,$$

then we say that the equation $G = A_1 \cdots A_n$ is a factorization of G. In this note we give a new proof for Paige's theorem using factorizations. If a finite abelian group G is a direct product of cyclic groups of orders t_1, \ldots, t_n respectively, then we say that G is of type (t_1, \ldots, t_n) . The order of an element a of G is denoted by |a| and $\langle a \rangle$ stands for the span of a.

Proof. We divide the proof into smaller steps.

(1) A group of type (2, 2, 2) has a complete map.

In order to prove this claim Let G be a group of type (2, 2, 2) with basis elements x, y, z, where |x| = |y| = |z| = 2. Table 1 shows that G has a complete map.

(2) A group of type (2n, 2), where $n \ge 1$ has a complete map.

a:	e	x	y	xy	z	xz	yz	xyz	
f(a):	e	z	xz	x	xyz	xy	y	yz	
af(a):	e	xz	xyz	y	xy	yz	z	x	
Table 1									

In order to prove the claim let G be a group of type (2n, 2), $n \ge 1$. Let x, y be basis elements of G such that |x| = 2n, |y| = 2. Set

$$H = \langle x \rangle, \quad K = \langle y \rangle, \quad M = \langle x^2 \rangle, \quad N = \langle x^n \rangle,$$
$$C = \{e, x, x^2, \dots, x^{n-1}\}.$$

We use Table 2 to show that G has a complete map.

a:	x^{2k}	$x^{2k}y$	x^{2k+1}	$x^{2k+1}y$				
f(a):	x^{n-k}	$x^{2n-k}y$	$x^{n-k}y$	x^{2n-k}				
af(a):	x^{n+k}	x^k	$x^{n+k+1}y$	$x^{k+1}y$				
Table 2								

As k runs from 0 to n - 1, the elements in the first row run over the elements of the sets M, My, Mx, Mxy respectively. Note that

$$G = HK$$

= $M\{e, x\}\{e, y\}$
= $M\{e, x, y, xy\}$

are factorizations of G. It follows that the sets M, My, Mx, Mxy form a partition of G. Thus a runs over the elements of G. Similarly, the factorizations

$$G = HK$$

= xHK
= $xCNK$
= $xC\{e, x^n\}\{e, y\}$

give that the sets Cx, $Cx^{n+1}y$, Cxy, Cx^{n+1} form a partition of G. Therefore f(a) runs over the elements of G. Finally, the equations

$$G = HK$$

= $H\{e, y\}$
= $H \cup Hy$
= $H \cup Hxy$
= $H\{e, xy\}$
= $CN\{e, xy\}$
= $C\{e, x^n\}\{e, xy\}$

show that the sets Cx^n , C, $Cx^{n+1}y$, Cxy form a partition of G. It follows that af(a) runs over the elements of G. Therefore G has a complete map.

(3) Let G be a finite abelian group and let H be a subgroup of G. If both H and the factor group G/H have a complete map, then so does G. In particular, if G is the direct product of the groups H and K such that both H and K have complete maps, then so does G.

To prove the claim assume that h_1, \ldots, h_r are all the elements of H and k_1, \ldots, k_r is a complete permutation of H, that is, h_1k_1, \ldots, h_rk_r are all the elements of H. Then assume that a_1H, \ldots, a_sH are all the elements of G/H and b_1H, \ldots, b_sH is a complete permutation of G/H. This means that a_1b_1H, \ldots, a_sb_sH is a rearrangement of the elements of G/H. It follows that these cosets are disjoint and their union is equal to G, that is, $G = \{a_1b_1, \ldots, a_sb_s\}H$ is a factorization of G. In other words

$$a_1b_1h_1k_1, \dots, a_1b_1h_rk_r$$

$$\vdots \quad \ddots \quad \vdots$$

$$a_sb_sh_1k_1, \dots, a_sb_sh_rk_r$$

are all the elements of G. Therefore G has a complete map.

(4) A group of type $(2^{\alpha(1)}, 2^{\alpha(2)})$, where $\alpha(1) \ge \alpha(2) \ge 1$ has a complete map.

To prove the claim let G be a group of type $(2^{\alpha(1)}, 2^{\alpha(2)})$, with $\alpha(1) \ge \alpha(2) \ge 1$. If $\alpha(1) = 1$, then by step (2), G has a complete map. So we may assume that $\alpha(2) \ge 2$ and start an induction on $\alpha(2)$. Now G has a subgroup H of type (2, 2) such that the factor group G/H is of type $(2^{\alpha(1)-1}, 2^{\alpha(2)-1})$. By step (2), H has a complete map. By the inductive assumption G/H has a complete map. Therefore by step (3), G has a complete map.

(5) A non-cyclic group of type $(2, \ldots, 2)$ has a complete map.

In order to prove this assertion let G be a group of type $(2, \ldots, 2)$, where the number of 2's is n and $n \ge 2$. First let us deal with the case when n is even. The n = 2 case has already been settled in step (2). So we may assume that $n \ge 4$. As G is a direct product of subgroups of types $(2, 2), \ldots, (2, 2)$, one can use step (3) repeatedly to show that G has a complete map. Let us turn to the case when n is odd. The n = 3 case has already been settled in step (1). We may assume that $n \ge 5$. Now G is a direct product of groups of types $(2, 2, 2), (2, 2), \ldots, (2, 2)$ and we can use step (3) to show that G has a complete map.

(6) A group of type $(2^{\alpha(1)}, \ldots, 2^{\alpha(n)})$, where $n \ge 3$ and $\alpha(1) \ge \cdots \ge \alpha(n) \ge 1$ has a complete map.

In order to verify the claim consider a group G of type $(2^{\alpha(1)}, \ldots, 2^{\alpha(n)})$, where $n \ge 3$ and $\alpha(1) \ge \cdots \ge \alpha(n) \ge 1$. Set $t = \alpha(1) + \cdots + \alpha(n)$. If $\alpha(1) = 1$, that is, if t = n, then by step (5) we are done. We may assume that $\alpha(1) \ge 2$, that is, $t \ge n+1$ and start an induction

on t. Clearly G has a subgroup H of type (2,2) such that the factor group G/H is of type $(2^{\alpha(1)-1}, 2^{\alpha(2)-1}, 2^{\alpha(3)}, \ldots, 2^{\alpha(n)})$ or $(2^{\alpha(1)-1}, 2^{\alpha(3)}, \ldots, 2^{\alpha(n)})$ depending on whether $\alpha(2) \geq 2$ or $\alpha(2) = 1$. By step (2), H has a complete map. By the inductive assumption G/H has a complete map. Finally by step (3), G has a complete map.

(7) A finite abelian group of odd order has a complete map.

Indeed, the map $f: G \to G$ defined by $f(a) = a, a \in G$ is suitable.

(8) We are ready to finish the proof. Let G be a finite abelian group such that G does not have exactly one element of order two. The group G can be written uniquely as a direct product of the groups H and K such that the order of H is odd and the order of K is a power of 2. Since G does not have exactly one element of order two, K is not a cyclic group, that is, K is not of type (2^{α}) . Therefore, by steps (4), (5), (6), K has a complete map. By step (7), H has a complete map. Hence by step (3), G has a complete map.

This completes the proof.

References

1. M. Hall, Jr., A combinatorial problem on abelian groups, *Proc. Amer. Math. Soc.* **3** (1952), 584–587.

2. M. Hall, Jr. and L. J. Paige, Complete mappings of finite groups, *Pacific J. Math.* 5 (1955), 541–549.

3. L. J. Paige, A note on finite abelian groups, Bulletin Amer. Math. Soc. 53 (1947), 590–593.

4. S. Szabó, A remark on regular polygons, Mat. Lapok 28 (1980), 199–202. (in Hungarian)

5. S. Szabó, On finite abelian groups and parallel edges, *Mathematics Magazine*, **66** (1993), 36–39.