FACTORIZATIONS AND PAIGE'S THEOREM ON COMPLETE MAPS

Sándor Szabó
Institute of Mathematics and Informatics, University of Pécs, Ifjúság u. 6, 7624 Pécs, HUNGARY
sszabo7@hotmail.com

Received: 5/28/05, Accepted: 3/2/6, Published: 3/10/06

Abstract

A theorem of L. J. Paige on complete maps is proved using factorizations of abelian groups.

Let G be a finite abelian group written multiplicatively with identity element e. Let a_{1}, \ldots, a_{n} be all the elements of G. A permutation b_{1}, \ldots, b_{n} of the elements of G is called a complete permutation of G if $a_{1} b_{1}, \ldots, a_{n} b_{n}$ is also a permutation of the elements of G. In other words a function $f: G \rightarrow G$ is called a complete map of G if f is one-to-one and if the function $g: G \rightarrow G$ defined by $g(a)=a f(a), a \in G$ is also one-to-one. In 1947 L. J. Paige has proved the following result.

Theorem 1. If a finite abelian group G does not have exactly one element of order two, then G possess a complete map.

For extensions of Paige's theorem see [1], [2] and for an application to geometry see [4], [5]. Let A_{1}, \ldots, A_{n} be subsets of G. If each element a of G is uniquely expressible in the form

$$
a=a_{1} \cdots a_{n}, \quad a_{1} \in A_{1}, \ldots, a_{n} \in A_{n},
$$

then we say that the equation $G=A_{1} \cdots A_{n}$ is a factorization of G. In this note we give a new proof for Paige's theorem using factorizations. If a finite abelian group G is a direct product of cyclic groups of orders t_{1}, \ldots, t_{n} respectively, then we say that G is of type $\left(t_{1}, \ldots, t_{n}\right)$. The order of an element a of G is denoted by $|a|$ and $\langle a\rangle$ stands for the span of a.

Proof. We divide the proof into smaller steps.
(1) A group of type $(2,2,2)$ has a complete map.

In order to prove this claim Let G be a group of type $(2,2,2)$ with basis elements x, y, z, where $|x|=|y|=|z|=2$. Table 1 shows that G has a complete map.
(2) A group of type $(2 n, 2)$, where $n \geq 1$ has a complete map.

$a:$	e	x	y	$x y$	z	$x z$	$y z$	$x y z$
$f(a):$	e	z	$x z$	x	$x y z$	$x y$	y	$y z$
$a f(a):$	e	$x z$	$x y z$	y	$x y$	$y z$	z	x

Table 1

In order to prove the claim let G be a group of type $(2 n, 2), n \geq 1$. Let x, y be basis elements of G such that $|x|=2 n,|y|=2$. Set

$$
\begin{aligned}
H & =\langle x\rangle, \quad K=\langle y\rangle, \quad M=\left\langle x^{2}\right\rangle, \quad N=\left\langle x^{n}\right\rangle \\
C & =\left\{e, x, x^{2}, \ldots, x^{n-1}\right\}
\end{aligned}
$$

We use Table 2 to show that G has a complete map.

$a:$	$x^{2 k}$	$x^{2 k} y$	$x^{2 k+1}$	$x^{2 k+1} y$
$f(a):$	x^{n-k}	$x^{2 n-k} y$	$x^{n-k} y$	$x^{2 n-k}$
$a f(a):$	x^{n+k}	x^{k}	$x^{n+k+1} y$	$x^{k+1} y$

Table 2

As k runs from 0 to $n-1$, the elements in the first row run over the elements of the sets $M, M y, M x, M x y$ respectively. Note that

$$
\begin{aligned}
G & =H K \\
& =M\{e, x\}\{e, y\} \\
& =M\{e, x, y, x y\}
\end{aligned}
$$

are factorizations of G. It follows that the sets $M, M y, M x, M x y$ form a partition of G. Thus a runs over the elements of G. Similarly, the factorizations

$$
\begin{aligned}
G & =H K \\
& =x H K \\
& =x C N K \\
& =x C\left\{e, x^{n}\right\}\{e, y\}
\end{aligned}
$$

give that the sets $C x, C x^{n+1} y, C x y, C x^{n+1}$ form a partition of G. Therefore $f(a)$ runs over the elements of G. Finally, the equations

$$
\begin{aligned}
G & =H K \\
& =H\{e, y\} \\
& =H \cup H y \\
& =H \cup H x y \\
& =H\{e, x y\} \\
& =C N\{e, x y\} \\
& =C\left\{e, x^{n}\right\}\{e, x y\}
\end{aligned}
$$

show that the sets $C x^{n}, C, C x^{n+1} y, C x y$ form a partition of G. It follows that $a f(a)$ runs over the elements of G. Therefore G has a complete map.
(3) Let G be a finite abelian group and let H be a subgroup of G. If both H and the factor group G / H have a complete map, then so does G. In particular, if G is the direct product of the groups H and K such that both H and K have complete maps, then so does G.

To prove the claim assume that h_{1}, \ldots, h_{r} are all the elements of H and k_{1}, \ldots, k_{r} is a complete permutation of H, that is, $h_{1} k_{1}, \ldots, h_{r} k_{r}$ are all the elements of H. Then assume that $a_{1} H, \ldots, a_{s} H$ are all the elements of G / H and $b_{1} H, \ldots, b_{s} H$ is a complete permutation of G / H. This means that $a_{1} b_{1} H, \ldots, a_{s} b_{s} H$ is a rearrangement of the elements of G / H. It follows that these cosets are disjoint and their union is equal to G, that is, $G=\left\{a_{1} b_{1}, \ldots, a_{s} b_{s}\right\} H$ is a factorization of G. In other words

$$
\begin{array}{ccc}
a_{1} b_{1} h_{1} k_{1}, & \ldots & , a_{1} b_{1} h_{r} k_{r} \\
\vdots & \ddots & \vdots \\
a_{s} b_{s} h_{1} k_{1}, & \ldots & , a_{s} b_{s} h_{r} k_{r}
\end{array}
$$

are all the elements of G. Therefore G has a complete map.
(4) A group of type $\left(2^{\alpha(1)}, 2^{\alpha(2)}\right)$, where $\alpha(1) \geq \alpha(2) \geq 1$ has a complete map.

To prove the claim let G be a group of type $\left(2^{\alpha(1)}, 2^{\alpha(2)}\right)$, with $\alpha(1) \geq \alpha(2) \geq 1$. If $\alpha(1)=1$, then by step (2), G has a complete map. So we may assume that $\alpha(2) \geq 2$ and start an induction on $\alpha(2)$. Now G has a subgroup H of type $(2,2)$ such that the factor group G / H is of type $\left(2^{\alpha(1)-1}, 2^{\alpha(2)-1}\right)$. By step (2), H has a complete map. By the inductive assumption G / H has a complete map. Therefore by step (3), G has a complete map.
(5) A non-cyclic group of type $(2, \ldots, 2)$ has a complete map.

In order to prove this assertion let G be a group of type $(2, \ldots, 2)$, where the number of 2 's is n and $n \geq 2$. First let us deal with the case when n is even. The $n=2$ case has already been settled in step (2). So we may assume that $n \geq 4$. As G is a direct product of subgroups of types $(2,2), \ldots,(2,2)$, one can use step (3) repeatedly to show that G has a complete map. Let us turn to the case when n is odd. The $n=3$ case has already been settled in step (1). We may assume that $n \geq 5$. Now G is a direct product of groups of types $(2,2,2),(2,2), \ldots,(2,2)$ and we can use step (3) to show that G has a complete map.
(6) A group of type $\left(2^{\alpha(1)}, \ldots, 2^{\alpha(n)}\right)$, where $n \geq 3$ and $\alpha(1) \geq \cdots \geq \alpha(n) \geq 1$ has a complete map.

In order to verify the claim consider a group G of type $\left(2^{\alpha(1)}, \ldots, 2^{\alpha(n)}\right)$, where $n \geq 3$ and $\alpha(1) \geq \cdots \geq \alpha(n) \geq 1$. Set $t=\alpha(1)+\cdots+\alpha(n)$. If $\alpha(1)=1$, that is, if $t=n$, then by step (5) we are done. We may assume that $\alpha(1) \geq 2$, that is, $t \geq n+1$ and start an induction
on t. Clearly G has a subgroup H of type $(2,2)$ such that the factor group G / H is of type $\left(2^{\alpha(1)-1}, 2^{\alpha(2)-1}, 2^{\alpha(3)}, \ldots, 2^{\alpha(n)}\right)$ or $\left(2^{\alpha(1)-1}, 2^{\alpha(3)}, \ldots, 2^{\alpha(n)}\right)$ depending on whether $\alpha(2) \geq 2$ or $\alpha(2)=1$. By step (2), H has a complete map. By the inductive assumption G / H has a complete map. Finally by step (3), G has a complete map.
(7) A finite abelian group of odd order has a complete map.

Indeed, the map $f: G \rightarrow G$ defined by $f(a)=a, a \in G$ is suitable.
(8) We are ready to finish the proof. Let G be a finite abelian group such that G does not have exactly one element of order two. The group G can be written uniquely as a direct product of the groups H and K such that the order of H is odd and the order of K is a power of 2 . Since G does not have exactly one element of order two, K is not a cyclic group, that is, K is not of type $\left(2^{\alpha}\right)$. Therefore, by steps (4), (5), (6), K has a complete map. By step (7), H has a complete map. Hence by step (3), G has a complete map.

This completes the proof.

References

1. M. Hall, Jr., A combinatorial problem on abelian groups, Proc. Amer. Math. Soc. 3 (1952), 584-587.
2. M. Hall, Jr. and L. J. Paige, Complete mappings of finite groups, Pacific J. Math. 5 (1955), 541-549.
3. L. J. Paige, A note on finite abelian groups, Bulletin Amer. Math. Soc. 53 (1947), 590-593.
4. S. Szabó, A remark on regular polygons, Mat. Lapok 28 (1980), 199-202. (in Hungarian)
5. S. Szabó, On finite abelian groups and parallel edges, Mathematics Magazine, 66 (1993), 36-39.
