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Abstract

Let ϕ denote Euler’s totient function. It is shown that if r ≥ 2 there exist only finitely many
positive integers n such that ϕ(n) divides n − 1 and ϕ(n)2 ≡ r (mod n). It is also shown that
if k ≥ 2 there exist only finitely many positive integers n such that ϕ(n) divides n − 1 and
ϕ(n)k ≡ 1 (mod n).

1. Introduction

Let ϕ denote Euler’s totient function. D.H. Lehmer [5] proposed the following:

Conjecture. If a ≥ 2 is an integer, then there is no positive integer m such that

aϕ(m) = m − 1.

In other words, if m ≥ 2, then ϕ(m) divides m − 1 if and only if m is a prime. I will refer
in the sequel to Lehmer’s conjecture as to (L). The interested reader may consult R.K. Guy’s
book [3] for a list of references.

The aim of this note is to derive more information on (hypothetical) counterexamples to
Lehmer’s conjecture. Two finiteness results are proved by elementary methods, information
that can be viewed as an argument for the veracity of (L).

From now on n will denote a counterexample to (L) and φ = ϕ(n) for the sake of simpler
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notation. Since n is a counterexample to (L), we can find an integer a ≥ 2 such that

(1) n − 1 = aφ.

Since (n, φ) = 1, we see that n must be composite, square-free and odd, thus n =
∏s

i=1 pi for
some s ≥ 2 and for some distinct odd primes pi, 1 ≤ i ≤ s. We have φ = ϕ(n) =

∏s
i=1(pi − 1)

and for simplicity we will use also the notation ψ = ψ(n) =
∏s

i=1(pi − 2). D.H. Lehmer proved
in [5] that s ≥ 7 and subsequently it was shown by Cohen and Hagis [1] that s ≥ 14.

The starting point of this note was the following simple observation:

φ2 %≡ 1 (mod n).

To prove this, note first that since n is composite and odd we have φ >
√

n and thus, by
(1), a <

√
n. If n|φ2 − 1, then, by (1), n|(n−1

a )2 − 1, implying n|a2 − 1 < n and forcing a = 1,
a contradiction since a ≥ 2.

Since φ2 > n, division of φ2 by n gives a positive quotient q and a remainder r such that

(2) φ2 = qn + r, 2 ≤ r ≤ n − 1.

This raises the following question: if r ≥ 2 , what can be said of the counterexamples n to
(L) that satisfy the condition φ2 ≡ r (mod n)? Though we don’t even know whether or not
such counterexamples do exist at all, something sensible can be said, namely:

Theorem 1.1. If r ≥ 2 is fixed, there exist only finitely many counterexamples n to (L) such
that φ2 ≡ r (mod n).

Another question suggested by the remark that φ2 %≡ 1 (mod n) is related to the order of
φ modulo n. This is the smallest positive integer k = |φ| satisfying φk ≡ 1 (mod n). By
Lagrange’s theorem, k divides φ since φ is the order of the group of units of the ring Zn of
residue classes modulo n. Since n is composite, the group of units is not cyclic, so 3 ≤ k ≤ φ

2 .
If k ≥ 3 is fixed, it is natural to ask about the number of counterexamples n to (L) that satisfy
φk ≡ 1 (mod n):

Theorem 1.2. If k ≥ 3 is fixed, there exist only finitely many counterexamples n to (L) such
that φk ≡ 1 (mod n).

Finally, information on the counterexamples to (L) leads to characterizations of primes as
follows:

Theorem 1.3. Let m ≥ 2 be an integer and assume that m ≡ 1 (mod ϕ(m)). Then the
following are equivalent:
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a) m is a prime.

b) ϕ(m)2 ≡ 1 (mod m).

c) ϕ(m)3 ≡ −1 (mod m).

d) ϕ(m)4 ≡ 1 (mod m).

2. Preliminaries

This section contains several remarks on a counterexample n to Lehmer’s conjecture (L).
Since n is composite, the following result from [2] is useful: φ(φ − 1) > (n − 1)ψ. By (1),
n − 1 = aφ and we obtain φ − 1 > aψ, hence

(3) φ ≥ aψ + 2.

From (1) and (2) one obtains that

(4) n(φ − aq) = φ + ar, φ(φ − aq) = q + r.

Clearly, φ−aq ≥ 1, whence q ≤ φ−1
a . By (1) and (2), q+r ≤ φ−1

a +n−1 = φ−1
a +aφ < (a+1)φ.

Since by (4) φ|q+r, we see that q+r ≤ aφ = n−1 and thus by (4) again φ(φ−aq) = q+r ≤ aφ,
giving q ≥ φ−a

a . And since r = φ2 − qn we obtain

(5)
φ − a

a
≤ q ≤ φ − 1

a
, 1 ≤ φ − aq ≤ a,

n − φ

a
≤ r ≤ n − φ

a
.

By (5), r − q ≥ n−φ−φ+1
a > 1

a , so

(6) r ≥ q + 1.

By (3) and (5), q ≥ φ−a
a ≥ aψ+2−a

a > ψ − 1, whence

(7) q ≥ ψ.

By (5) and (3) again, r ≤ n − φ
a ≤ n − aψ+2

a = n − ψ − 2
a < n − ψ, hence

(8) r ≤ n − (ψ + 1).

We also need a lower bound for φ in terms of a. Observe first that ψ ≥ a+1, for if not, then
n = aφ+1 ≥ ψφ+1, a contradiction for s ≥ 2. Now use (3) to get φ ≥ aψ +2 ≥ a(a+1)+2 =
a2 + a + 2 and record this last inequality as

(9) φ ≥ a2 + a + 2.
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3. Proofs

Proof of Theorem 1.1. To prove the Theorem, note that (6) and (7) imply r ≥ ψ + 1 and note
that only finitely many n’s may satisfy this inequality for a fixed r.

But this line of proof ultimately depends on an elementary result from [2] and it is worth
including here a short and elegant proof, due to one of the editors, a proof that rests on Th.
328 of Hardy and Wright’s book [4].

The proof goes as follows. Since n − 1 = aφ , then by Th. 328 of [4] we have that a =
O(log log n). If φ2 ≡ r (mod n), then a2r ≡ 1 (mod n). Now, if |r| < n

(log log n)2 , then a2r =
o(n) and for sufficiently large n we cannot have a2r ≡ 1 (mod n) unless a2r = 1. Thus, for a
fixed r such that |r| < n

(log log n)2 , there exist only finitely many counterexamples n satisfying
φ2 ≡ r (mod n). And it is clear that, for r fixed, there are only finitely many positive integers
n such that |r| ≥ n

(log log n)2 , which completes the proof.

Proof of Theorem 1.2. It is easy to show that the number of counterexamples to (L) having a
fixed number s of prime divisors is finite. Indeed, let s ≥ 2 be fixed and let n = aφ + 1 be a
counterexample to (L) having s prime factors. Since a =

∑
d|n
d<n

1
ϕ(d) < ( 3

2 )s, we see that there

are only finitely many such a’s possible. Fix now such an a. Since there are exactly 2s − 1
divisors d of n with d < n and since 1 =

∑
d|n
d<n

1
aϕ(d) , it is clear that n cannot be arbitrarily

large.

Suppose now that φk ≡ 1 (mod n). Since n − 1 = aφ, it follows that n|ak − 1 if k is even
and n|ak + 1 if k is odd. In any case, n ≤ ak + 1, giving aφ ≤ ak. Thus φ ≤ ak−1 < ( 3

2 )s(k−1).

So k − 1 > 1
s log 3

2
(φ) > 1

s log 3
2
(2ss!). This implies in turn that k − 1− log 3

2
2 > 1

s log 3
2
(s!) and

it is now clear that there exist only finitely many values of s satisfying the last inequality. The
result now follows from the first paragraph.

Proof of Theorem 1.3. The implications a) ⇒ b), c), d) are clear and the implication b) ⇒ a)
was proved in the Introduction. Note that if n is a counterexample to c) ⇒ a), or to d) ⇒ a),
then n is a counterexample to (L) and we can use the notation and the partial results in the
Preliminaries.

Let n be a counterexample to c) ⇒ a), so φ3 ≡ rφ ≡ aφ ≡ −1 (mod n). Then n|φ(r − a),
giving n|r−a and forcing r = a. But, by (6), (7), and the fact that ψ ≥ a+1 we get r ≥ ψ+1 > a,
a contradiction. Finally, let n be a counterexample to d) ⇒ a), that is φ4 ≡ r2 ≡ a2r ≡ 1
(mod n). Then n|r2 − a2r = r(r − a2), forcing, as above, r = a2. Then, by (5), we have
a2 = r ≥ n−φ

a = (a−1)φ+1
a , which gives a3 − 1 ≥ (a − 1)φ. Thus φ ≤ a2 + a + 1, contradicting

(9) and completing the proof.
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4. Remarks

The lower bound ψ + 1 given for r in the proof of Theorem 1.1 is not the best possible. The
fact that r ∈ [ψ + 1, n − (ψ + 1)] serves only the purpose of providing a ”symmetric” interval
for r. A better lower bound is φ+2

2 and this is obtained by combining (5), (3) and the fact that
a ≥ 2.

By Cohen and Hagis’ result, if N denotes the smallest odd square-free integer with 14 prime
factors satisfying (N, ϕ(N)) = 1 and if r ≤ ϕ(N)

2 , then there is no counterexample n to (L)
satisfying φ2 ≡ r (mod n). In particular, if r ≤ 1023, there is no counterexample n to (L) such
that ϕ(n)2 ≡ r (mod n).

Suppose that a = 2, so n = 2φ + 1. Then, by (5), we derive at once that q = φ−2
2 and

r = 3φ+2
2 . Unfortunately, these equalities don’t seem to provide an apparent contradiction able

to show that such an n doesn’t exist.

Based on the information at hand it is not difficult to show that if φk ≡ 1 (mod n), then
k ≥ 5. Indeed, suppose first that k = 3, that is φ3 ≡ rφ ≡ a2r ≡ 1 (mod n). Then n|rφ−ra2 =
r(φ − a2). But from (2) it is clear that (n, r) = 1, thus n|φ − a2. Since φ, a2 < n, this gives
φ − a2 = 0, contradicting (9). As a direct consequence of Theorem 1.3, k %= 4.

Lehmer’s conjecture can be rephrased in group theoretical terms. Those familiar with group
theory will quickly realize that (L) is equivalent to the following group-theoretical statement:
if G is a finite group and if |Aut(G)| divides |G| − 1, then the holomorph of G is a Frobenius
group. Unfortunately, this change of language doesn’t seem to provide any clue for a general
method of attack of (L).

Theorem 1.3 suggests an interesting question: are there positive composite integers m such
that m|ϕ(m)3 + 1? Or, more generally, is it possible , for such a composite integer m, to find
a positive integer k such that m|ϕ(m)2k+1 + 1? If m is a prime, then m|ϕ(m) + 1 (in this case
k = 0).

The smallest possible example one can think of is k = 1 and m = pq, where p, q are odd
primes. It is a simple exercise to check that pq|(ϕ(pq))3 + 1 is equivalent to p|q2 − q + 1 and
q|p2−p+1. That these two divisibilities cannot hold in the same time was established by Geoff
Bailey (a.k.a. Fred the Wonder Worm ) on December 9th 2004 in The Math Forum@Drexel
(http://mathforum.org/sci.math.research).

Bailey’s observation raises suggests another interesting open problem. Let n ≥ 3, let pi,
1 ≤ i ≤ n be distinct primes and let f(pi) = pi

2 − pi + 1. Is it possible that the product of all
pi’s divides the product of all f(pi)’s?
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