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Abstract

We investigate the appearance of Simpson’s paradox in the Farey sequence of reduced frac-
tions in the unit interval.

1. Introduction and statement of results

In statistics it frequently occurs that the data seems to contradict our intuition. For instance,
Cohen & Nagel [1] cited actual death rates from tuberculosis in Richmond (Virginia) and
New York from 1910 that verified the following propositions:

• the death rate for African Americans was lower in Richmond than in New York,

• the death rate for Caucasians was lower in Richmond than in New York,

• the death rate for the total combined population of African Americans and Caucasians
was higher in Richmond than in New York.

How can it be? We may illustrate this with another numerical example, namely

3

5
<

8

13
and

7

10
<

5

7
, but

3 + 7

5 + 10
=

2

3
>

13

20
=

8 + 5

13 + 7
.

This phenomenon is called Simpson’s paradox after E.H. Simpson [6] who published in 1951
an influential paper on this topic. Of course, Simpson’s paradox is not a paradox but just a
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simple fact about fractions. Nevertheless, it has a variety of surprising applications arising
from links between proportions, probabilities, and their representations as fractions. A short
historical overview on Simpson’s paradox can be found in Mittal [5].

Usually, statistical data is given as some subset of the set of rational numbers Q. In this
note we investigate the appearance of Simpson’s paradox within Q. For an enumeration of
Q we shall use the Farey sequence of reduced fractions in the unit interval.

For n ∈ N the Farey sequence Fn is the ordered list of all reduced fractions in the unit
interval having denominators less than or equal to n, i.e.,

Fn :=
{

a

b
∈ Q : 0 ≤ a ≤ b ≤ n, gcd(a, b) = 1

}
,

where, as usual, gcd(a, b) denotes the greatest common divisor of the integers a and b.
Consecutive Farey fractions a

b < c
d satisfy bc − ad = 1, resp.

c

d
− a

b
=

1

bd
.

Thus, Fn is not equidistantly distributed; this property makes Farey fractions useful tools
in the theory of Diophantine approximations (see the classical paper of Ford [2]). The Farey
sequence can be build from F1 by taking mediants of 0

1 and 1
1 . For a

b ,
c
d ∈ Fn their mediant

is defined by a+c
b+d . If a

b ≤ c
d , then it is easily seen that

a

b
≤ a + c

b + d
≤ c

d
;

equality holds if and only if a
b = c

d . For consecutive elements a
b ,

c
d ∈ Fn, their mediant is an

element of Fb+d. The limit of the Farey sequence, ∪n∈NFn, consists exactly of the reduced
fractions in the interval [0, 1].

It is a natural question to ask how often Simpson’s paradox occurs in the Farey sequence.
So we are interested in the system of diophantine inequalities

0 ≤ a

b
<

A

B
, 0 ≤ c

d
<

C

D
, and

a + c

b + d
>

A + C

B + D
(1)

for given integers A, B, C, D. It is easily seen that a certain asymmetry is necessary for
this phenomenon to happen. Assume that BC = AD, resp. A

B = C
D . Then, obviously,

the mediant A+C
B+D coincides with both, which shows that a

b and c
d both are less than A+C

B+D .
Further, the case of A = 0 is uninteresting. Therefore, in the sequel we may assume w.l.o.g.
that 0 < A

B < C
D ≤ 1.

First of all, we note that there are infinitely many examples for Simpson’s paradox ev-
erywhere in the Farey sequence. As a matter of fact, it is elementary to check that for any
positive integer n with gcd(n, B) = 1 and gcd(n, D) = 1, and satisfying the inequalities:
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0 <
a

b
=

A

B
− 1

n
<

A

B
and 0 <

c

d
=

C

D
− 1

n2
<

C

D
,

then
a + c

b + d
>

A + B

C + D
for n >

1

2



1 +

√

1 + 4
(B + D)2

BC − AD



 .

The last example gives a slight indication as to whether or not Simpson’s paradox is a
rare event. We shall prove that, given two fractions 0 < A

B < C
D in the Farey sequence Fn,

pairs (a
b ,

c
d) ∈ F2

n satisfying (1) occur with positive probability (in the sense of a Laplace
experiment), as n → ∞.

Theorem. For two fractions 0 < A
B < C

D ≤ 1 in the Farey sequence Fn, we have

lim
n→∞

!
{(

a
b ,

c
d

)
∈ F2

n : a
b < A

B , c
d < C

D and a+c
b+d > A+C

B+D

}

!
{(

a
b ,

c
d

)
∈ F2

n : a
b < A

B , c
d < C

D

} = δ > 0

with

δ := δ
(

A

B
,
C

D

)
:=

1

9

BD

AC

{
1

2
∆2

(
D2Ψ(1) − 2BDΨ(0) + B2Ψ(−1)

)
+

+
A

B

(
B∆Υ(0) −

(
D∆+

1

2

A

B

)
Υ(1)

)}

,

where

Υ(#) :=
36

4 − #2
min

{
1,∇−2−!

}
− 9

2 − #
min

{
∇2−!,∇−2−!

}
, (2)

Ψ(#) :=
9

2 − #

(
min

{
∇2−!,∇−2−!

}
− min

{(
D

B

)2−!

,
(

D

B

)−2−!
} )

+ (3)

+
36

4 − #2

(
min

{

1,
(

D

B

)−2−!
}

− min
{
1,∇−2−!

} )
,

∆ :=
BC − AD

BD(B + D)
and ∇ :=

D(A + C)

BC − AD
. (4)

The expression δ looks rather complicated on first sight but it simply is a rational function
of A, B, C, D.

Note that there also exist examples with equality between the mediants. For instance,

1

5
<

2

5
,

14

25
<

3

5
, and

1 + 14

5 + 25
=

1

2
=

2 + 3

5 + 5
.

As the proof of the theorem will show the set of such examples has zero-density.
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2. Proof of the theorem

There is an interesting geometrical interpretation of the Farey sequence. The Farey fractions
a
b ∈ Fn correspond to the points with integer coordinates (a, b) situated in the triangle given
by {(x, y) ∈ R2 : 0 ≤ x, y, x + y ≥ n}, which can be seen from the origin, i.e., for which
a and b are coprime. As we shall see below, for the proof of the theorem we have to count
lattice points under this and further conditions.

We start with asymptotic formula for the number of Farey fractions a
b ∈ Fn under a given

magnitude. Let ξ ∈ (0, 1] be fixed, then

!
{

a

b
∈ Fn :

a

b
≤ ξ

}
= 1 +

∑

1≤b≤n

∑

1≤a≤bξ
gcd(a,b)=1

1 = Σ(n; ξ),

say. Following the argument which gives an asymptotic formula for the cardinality of Fn

(see [3]), we find

Σ(n; ξ) =
3ξ

π2
n2 + O(n log n), (5)

where the implicit constant in the error term is absolute. Thus

!
{(

a

b
,
c

d

)
∈ F2

n :
a

b
<

A

B
,
c

d
<

C

D

}
= Σ

(
n;

A

B

)
Σ

(
n;

C

D

)

=
9

π4

AC

BD
n4 + O(n3 log n). (6)

In order to estimate the proportion in question we have to do a similar computation under
the additional restriction (1) for the related mediants. Let

!
{(

a

b
,
c

d

)
∈ F2

n :
a

b
<

A

B
,
c

d
<

C

D
and

a + c

b + d
>

A + C

B + D

}
= Σ(n) + Σ0(n),

where Σ0(n) counts the number of those tuples (a
b ,

c
d) for which ac = 0. It follows from (5)

that Σ0(n) ) n2 and so their contribution is negligible. We have

Σ(n) =
∑

1≤b≤n

∑

1≤d≤n

∑

1≤a<b A
B ,gcd(a,b)=1

∑

1≤c<d C
D

,gcd(c,d)=1

a+c>(b+d) A+C
B+D

1. (7)

Denote by µ(n) the Möbius µ-function, i.e., µ(1) = 1, µ(n) = (−1)ν if n is the product of
ν distinct primes, and µ(n) = 0 otherwise (if n has some square divisor). In view of the
well-known formula

∑

d|m
µ(d) =

{
1 if m = 1,
0 otherwise,

we can rewrite (7) as

Σ(n) =
∑

1≤b≤n

∑

1≤d≤n

∑

1≤a<b A
B

∑

1≤c<d C
D

a+c>(b+d) A+C
B+D

∑

α|gcd(a,b)

µ(α)
∑

γ|gcd(c,d)

µ(γ)
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=
∑

1≤b≤n

∑

1≤d≤n

∑

α|b
µ(α)

∑

γ|d
µ(γ)

∑

1≤a<b A
B

α|a

∑

1≤c<d C
D

γ|c,a+c>(b+d) A+C
B+D

1.

First we shall consider the inner two sums, which count the lattice points (x, y) ∈ Z2 with
x ≡ 0 mod α, y ≡ 0 mod γ lying above the straight line x + y = (b + d) A+C

B+D inside the

rectangle 1 ≤ x < bA
B , 1 ≤ y < dC

D . Since these are exactly the lattice points of the
sublattice αZ × γZ in the convex region

R(b, d) :=
{
(x, y) ∈ R2 : 1 ≤ x < b

A

B
, 1 ≤ y < d

C

D
, x + y > (b + d)

A + C

B + D

}
,

the number of these lattice points equals asymptotically the volume of R(b, d) divided by
the volume of a fundamental parallelepiped. It is not difficult to see that the error term is
of the order of the boundary (see Lemma 2.1.1 in Huxley [4]). Thus,

∑

1≤a<b A
B

α|a

∑

1≤c<d C
D

γ|c,a+c>(b+d) A+C
B+D

1 =
vol(R(b, d))

αγ
+ O

(
length(R(b, d))

α + γ

)

. (8)

Note that the volume of R(b, d) does not depend on α and γ. In the next step we shall
compute this volume.

By simple geometric arguments it follows that the region R(b, d) is

• a single point or empty if and only if

b
A

B
+ d

C

D
≤ (b + d)

A + C

B + D
;

• a triangle of volume
1

2
∆2(dB − bD)2

(where ∆ is defined by (4)) if and only if

d
C

D
≤ (b + d)

A + C

B + D
< b

A

B
+ d

C

D
;

• a trapezoid of volume
A

B

(
bdB∆− b2

(
D∆+

1

2

A

B

))

if and only if

(b + d)
A + C

B + D
< d

C

D
.
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Other cases of intersections of a half-plane with a rectangle cannot occur; to see this note
that b < b + d and A

B < A+B
C+D , and thus

b
A

B
< (b + d)

A + C

B + D
.

Let us remark that all of the above listed cases occur for any given 0 < A
B < C

D as n → ∞. In
fact, this will imply, as we shall see below, the existence and the positivity of the proportion
δ = δ(A

B , C
D ).

The contribution of the main term from (8) to Σ(n) may be written as

Σ(n) = Σ∆(n) + Σ♦(n) + error(n), (9)

where Σ∆(n) and Σ♦(n) are the sums of the terms with R(b, d) triangle or trapezoid, i.e.,

Σ∆(n) :=
∑

1≤b≤n

∑

1≤d≤n

d C
D

≤(b+d) A+C
B+D

<b A
B

+d C
D

∑

α|b

µ(α)

α

∑

γ|d

µ(γ)

γ
· 1

2
∆2(bD − dB)2,

Σ♦(n) :=
∑

1≤b≤n

∑

1≤d≤n

(b+d) A+C
B+D

<d C
D

∑

α|b

µ(α)

α

∑

γ|d

µ(γ)

γ
· A

B

(
bdB∆− b2

(
D∆+

1

2

A

B

))
,

and error(n) is the error term with respect to (8). We may rewrite the condition of summation
for the triangle and for the trapezoid by

b
D

B
< d ≤ b

D(A + C)

BC − AD
= b∇ and b∇ = b

D(A + C)

BC − AD
< d,

respectively. Recall that Euler’s φ-function φ(b) is for b ∈ N defined as the number of positive
integers a ≤ b that are coprime to b. It satisfies the identity

φ(b) = b
∑

d|b

µ(d)

d
.

Taking this into account, we find

Σ∆(n) =
1

2
∆2

∑

1≤b≤n

φ(b)

b

∑

b D
B <d≤min{n,b∇}

φ(d)

d
(bD − dB)2, (10)

Σ♦(n) =
A

B

∑

1≤b≤n

φ(b)

b

∑

b∇<d≤n

φ(d)

d

(
bdB∆− b2

(
D∆+

1

2

A

B

))
. (11)

In order to evaluate these double sums, we have to compute the asymptotics for certain sums
involving Euler’s φ-function.

It is well-known that ∑

1≤b≤n

φ(b) =
3

π2
n2 + O(n log n).
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By partial summation, it follows that
∑

N≤k≤M

φ(k)k! =
6

(2 + #)π2

(
M2+! − N2+!

)
+ O

(
M !+1 log M

)

for # ≥ −1. Then, for # ∈ {0,±1}, we have
∑

1≤b≤n

φ(b)b!
∑

xb<d≤n

φ(d)d−!

=
6

(2 − #)π2

(

n2−!
∑

1≤b≤min{n,n/x}
φ(b)b! − x2−!

∑

1≤b≤min{n,n/x}
φ(b)b2

)

+

+O
(
n1−! log n

∑

1≤b≤n

φ(b)b!
)

=
n4

π4
Υ(x; #) + O

(
n3(log n)2

)
,

where

Υ(x; #) :=
36

4 − #2
min{1, x−2−!}− 9

2 − #
min{x2−!, x−2−!}.

Similarly,
∑

1≤b≤n

φ(b)b!
∑

1≤d≤n
xb<d≤yb

φ(d)d−!

=
∑

1≤b≤min{n,n/y}
φ(b)b!

∑

xb<d≤yb

φ(d)d−! +

+
∑

min{n,n/y}<b≤min{n,n/x}
φ(b)b!

∑

xb<d≤n

φ(d)d−!

=
6(y2−! − x2−!)

(2 − #)π2

∑

1≤b≤min{n,n/y}
φ(b)b2 +

+
6

(2 − #)π2

(

n2−!
∑

min{n,n/y}<b≤min{n,n/x}
φ(b)b! +

−x2−!
∑

min{n,n/y}<b≤min{n,n/x}
φ(b)b2

)

+ O
(
n1−! log n

∑

1≤b≤n

φ(b)b!
)

=
n4

π4
Ψ(x, y; #) + O

(
n3(log n)2

)
,

where

Ψ(x, y; #) :=
9

2 − #

(
min{y2−!, y−2−!}− min{x2−!, x−2−!}

)
+

+
36

4 − #2

(
min{1, x−2−!}− min{1, y−2−!}

)
,

valid also for # ∈ {0,±1}. Using this in (10) and (11), it yields

Σ∆(n) =
n4

π4

1

2
∆2

(
D2Ψ(1) − 2BDΨ(0) + B2Ψ(−1)

)
+ O

(
n3(log n)2

)
,

Σ♦(n) =
n4

π4

A

B

(
B∆Υ(0) −

(
D∆+

1

2

A

B

)
Υ(1)

)
+ O

(
n3(log n)2

)
,
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where Υ(#) = Υ(∇; #) is given by (2) and Ψ(#) = Ψ
(

D
B ,∇; #

)
by (3). For the error term in

(8) we note that in all cases

length(R(b, d)) ) b
A

B
+ d

C

D

and this leads to the estimate error(n) ) n3 in (9). Hence, we finally obtain

Σ(n) =
n4

π4

{
1

2
∆2

(
D2Ψ(1) − 2BDΨ(0) + B2Ψ(−1)

)
+

+
A

B

(
B∆Υ(0) −

(
D∆+

1

2

A

B

)
Υ(1)

)}

+

+O
(
n3(log n)2

)
.

Dividing this by the quantity in (6), we get the required proportion, and conclude the proof
of the theorem.

3. Concluding remarks

The rather complicated expression for δ = δ(A
B , C

D ) was checked by computer experiments.
It is interesting to compare the values of δ for different data A, B, C, D. For instance,

δ
(

1

2
,
1

1

)
=

11

216
= 0.05092 . . . ,

δ
(

1

3
,
2

3

)
=

1

72
= 0.01388 . . . ,

δ
(

1

7
,
1

2

)
=

1597

6615
= 0.24142 . . . .

In each of these three cases, computing the corresponding proportions Σ(n)/(Σ(n; A
B )Σ(n; C

D ))
for n = 200, we have obtained values that differ from the corresponding proportion δ by less
than 7 · 10−4.

It is also interesting to ask for a global proportion, i.e., when 0 < A
B < C

D ≤ 1 are chosen
randomly. However, with respect to this question our approach seems to be rather technical.
We have computed the corresponding quantity

λ(n) :=
!
{(

a
b ,

A
B , c

d ,
C
D

)
∈ F4

n : a
b < A

B , c
d < C

D and a+c
b+d > A+C

B+D

}

!
{(

a
b ,

A
B , c

d ,
C
D

)
∈ F4

n : a
b < A

B , c
d < C

D

}

for several values of n and obtained the following values:

n 10 20 30
λ(n) 0.03755. . . 0.03750. . . 0.03847. . .
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We conjecture that the limit of λ(n) for n → ∞ exists and is positive, probably around
the value 0.04; however, we did not succeed in proving that and leave it as an open problem.
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