SOME PROPERTIES OF THE EULER QUOTIENT MATRIX

Ikhalfani Solan
Department of Mathematics and Computer Science, University of the West Indies, Jamaica ikhalfani.solan@uwimona.edu.jm

Received: 2/15/06, Revised: 10/18/06, Accepted: 11/1/06, Published: 11/22/06

Abstract

Let a and m be integers such that $(a, m)=1$. Let $q_{a}=\frac{a^{\phi(m)}-1}{m}$. We call q_{a} the Euler Quotient of m with base a. This is called the Fermat Quotient when m is a prime. We consider some properties of the matrix of Euler Quotients reduced modulo m and show that these quotients are uniformly distributed modulo m.

1. Introduction

Let m and a be integers such that $(m, a)=1$. Let $q_{a}=\frac{a^{\phi(m)}-1}{m}$. We call q_{a} the Euler Quotient of m with base a. This is called the Fermat Quotient when m is a prime.

The following theorem summarizes some of the logarithmic properties of q_{a}.
Theorem 1.1 Let $a, b \in \mathbb{Z}$ and $r \in \mathbb{N}$ with $(a, m)=(b, m)=1$. Then
(a) $\quad q_{1} \equiv 0 \bmod m$
(b) $\quad q_{a b} \equiv q_{a}+q_{b} \bmod m$
(c) $\quad q_{a^{r}} \equiv r q_{a} \bmod m$

Additional properties of q_{a} are given by the following generalization of a theorem of Wells [4]. It provides conditions when q_{a} vanishes modulo m.

Theorem 1.2 Let $(a, m)=1$. If l and t are integers with $(l, m)=1$ and α is a positive integer, then for $a=l+t m^{\alpha}$

$$
q_{a} \equiv q_{l} \quad \bmod m+\frac{\phi(m) t}{l} m^{\alpha-1}\left(\bmod m^{\alpha}\right)
$$

2. The Euler Quotient Matrix

Let a be the $i^{\text {th }}$ integer such that $1 \leq a \leq m$ and $(a, m)=1$. The Euler Quotient Matrix, M_{m}, is the $m \times \phi(m)$ matrix where the entries in column i are the least non-negative residues of $q_{k}(\bmod m)$ for $k \leq m^{2}$ and $k \equiv a(\bmod m)$. To be more precise we may call this the order 2 matrix and define the order r matrix for $k \leq m^{r}, r=1,2 \ldots$, to be the $m^{r-1} \times \phi(m)$ matrix $M_{m^{r}}$.

Example 2.1 The Euler Quotient Matrices for $m=7,12$ and 9 are given below.

Definition 2.2 Let π_{i} be the maximum size of the blocks of non-repeated entries in the $i^{\text {th }}$ column. We call π_{i} the period of column i.

Theorem 2.3 The period of column i is given by $\pi_{i}=\frac{m}{(\phi(m), m)}$ for all $i \leq \phi(m)$.
Proof. Suppose column i contains the least non-negative residue of $q_{a}(\bmod m)$ such that $a \equiv l+t m, l<m$ and $(l, m)=1$. Then by Theorem 1.2, taking $\alpha=1$, we have $q_{a} \equiv$ $q_{l}+\phi(m) t l^{-1}(\bmod m)$. The residues of q_{a} and q_{l} are equal precisely when m divides $\phi(m) t$. This occurs for the first time when $t=\frac{m}{(\phi(m), m)}$ and subsequently for every integer multiple of t. Thus period of column $i, \pi_{i}=\frac{m}{(\phi(m), m)}$.

Definition 2.4 We define the period of M_{m} to be the period of each column. That is, period of M_{m} is given by $\pi_{m}=\frac{m}{(\phi(m), m)}$.

Let $A_{r}^{m}=\left\{q_{a} \bmod m: 0 \leq a<m^{r}\right\}$. It is of interest to know the size of A_{r}^{m}. We list some properties of A_{r}^{m}.
(a) When $m=p$, a prime and $r=1$, Vandiver [5] showed that $\sqrt{p} \leq\left|A_{1}^{p}\right| \leq p-(1+$ $\sqrt{2 p-5}) / 2$.
(b) When $r=2$ and m is a prime or a strong psuedoprime $\left|A_{2}^{m}\right|=m$.
(c) I don't know of any bounds apart from the trivial bounds for $\left|A_{1}^{m}\right|$ when m is not prime.
(d) Let m be an integer with $m>2$. Then we have that

$$
\frac{m}{(m, \phi(m))} \leq\left|A_{2}^{m}\right| \leq \frac{m}{(m, \phi(m))} \frac{\phi(m)}{2}
$$

We note that these bounds are the best possible. For example, when m is a prime, $m=$ 4 , or $m=12$, the lower bound is achieved. When $m=3^{\alpha}, \alpha \geq 2$, the upper bound is achieved.

In fact we have

$$
\frac{m}{(m, \phi(m))} \leq\left|A_{r}^{m}\right| \leq \frac{m}{(m, \phi(m))} \frac{\phi(m)}{2}
$$

whenever $r \geq 2$.
Another area of interest is the vanishing of the quotients modulo m.
The following theorem appearing in [1] characterizes the elements of M_{m} and gives a formula for the number of vanishing quotients modulo m in M_{m}.

Theorem 2.5 Let $m=p^{\alpha_{1}} \ldots p^{\alpha_{k}}$ be the prime factorization of the integer $m \geq 2$ and q the homomorphism from $\left(\mathbb{Z} / m^{2} \mathbb{Z}\right)^{\times}$into $(\mathbb{Z} / m \mathbb{Z},+)$ induced by the Euler quotient of m. For $1 \leq r \leq k$ put $m_{r}=p^{\alpha_{r}}$ and

$$
d_{r}=\left\{\begin{array}{l}
\left(m_{r}, 2 \prod_{j=1}^{k}\left(p_{j}-1\right), \text { when } m_{r}=2^{\alpha_{r}} ; \alpha_{r} \geq 2,\right. \\
\left(m_{r}, \prod_{j=1}^{k}\left(p_{j}-1\right), \quad \text { otherwise } .\right.
\end{array}\right.
$$

Let $d=\prod_{r=1}^{k} d_{r}$. Then the image $q\left(\left(\mathbb{Z} / m^{2} \mathbb{Z}\right)^{\times}\right)$equals $\{t d+m \mathbb{Z}: 0 \leq t \leq(m / d)-1\}$; it is therefore isomorphic to $(\mathbb{Z} /(m / d) \mathbb{Z},+)$ for $m>2$.

The above theorem immediately leads to the fact that the number of quotients to vanish modulo m in M_{m} is $d \phi(m)$. A quick glance at the matrices for $m=7,12$ and 9 shows that a matrix may have columns containing no vanishing quotients. Using the period of the Euler quotient matrix and the total number of zero entries we obtain the following.

Theorem 2.6 Let d be as defined in Theorem 2.5 and $m \geq 2$ be an integer. Then the number of columns of M_{m} containing zeros is given by $\frac{d \phi(m)}{(\phi(m), m)}$.

Proof. The proof is just to recognize that the number of zeros in each column with a zero is given by $\frac{m}{\pi_{m}}=(\phi(m), m)$. Now, by Theorem 2.5 the total number of zeros in M_{m} is $d \phi(m)$. Thus, there are exactly $\frac{d \phi(m)}{(\phi(m), m)}$ columns with a least one zero.

The formula for the number of columns without zeros is more interesting. This is given by $\phi(m)\left(1-\frac{d}{(\phi(m), m)}\right)$. If one notes that when m is a prime or a strong pseudoprime $d=$ $(\phi(m), m)=1$, then the term $\frac{d}{(\phi(m), m)}$ can be considered as measure of the primeness of m.

3. Sum of Quotients in the Columns and Rows of M_{m}

In the next two theorems we, respectively, show that the sum of the entries in each column of M_{m} is congruent to 0 modulo m and that all rows sum to the same constant modulo m .

Theorem 3.1 Let $1 \leq a<m$ with $(a, m)=1$. If $k<m^{2}$ and $k \equiv a(\bmod m)$, then

$$
\sum_{k \equiv a(\bmod m)} q_{k} \equiv 0(\bmod m) .
$$

Proof. Let $k=a+i m, i<m$. Then

$$
\begin{aligned}
& \sum_{k \equiv a(\bmod m)} q_{k}=\frac{1}{m} \sum_{i=0}^{m-1}(a+i m)^{\phi(m)-1}=\sum_{i=0}^{m-1} q_{a}+\binom{\phi(m)}{1} \sum_{i=0}^{m-1} i a^{\phi(m)-1}+ \\
& m\left\{\binom{\phi(m)}{2} \sum_{i=0}^{m-1} i^{2} a^{\phi(m)-2}+\cdots+\binom{\phi(m)}{\phi(m)} \sum_{i=0}^{m-1} i^{2}(m i)^{\phi(m)-2}\right\} \\
&= m q_{a}+\phi(m) m(m-1) a^{\phi(m)-1} \equiv 0(\bmod m)
\end{aligned}
$$

Theorem $3.2 \sum_{\substack{a=k m+1 \\(a, m)=1}}^{(k+1) m-1} q_{a} \equiv \sum_{\substack{a=1 \\(a, m)=1}}^{m-1} q_{a}(\bmod m)$, for each $k \in\{1,2, \ldots, m-1\}$.
Proof. For any $k \in\{1,2, \ldots, m-1\}$ we have

$$
\begin{aligned}
\sum_{\substack{a=k m+1 \\
(a, m)=1}}^{(k+1) m-1} q_{a}= & \sum_{\substack{a=1 \\
(a, m)=1}}^{m-1} \frac{(k m+a)^{\phi(m)}-1}{m} \\
= & \frac{1}{m}\left\{\phi(m) m^{\phi(m)}+\binom{\phi(m)}{1} \sum_{\substack{a<m \\
(a, m)=1}} m^{\phi(m)-1} a+\binom{\phi(m)}{2} \sum_{\substack{a<m \\
(a, m)=1}} m^{\phi(m)-2} a^{2}+\cdots+\right. \\
& \left.\binom{\phi(m)}{\phi(m)-1} \sum_{\substack{a<m \\
(a, m)=1}} m a^{\phi(m)-1}+\sum_{\substack{a<m \\
(a, m)=1}}\left(a^{\phi(m)}-1\right)\right\} \\
= & \phi(m) m^{\phi(m)-1}+m^{\phi(m)-2}\binom{\phi(m)}{1} \sum_{\substack{a<m \\
(a, m)=1}} a+m^{\phi(m)-3}\binom{\phi(m)}{2} \sum_{\substack{a<m \\
(a, m)=1}} a^{2}+\cdots+ \\
\equiv & \sum_{\substack{a<m \\
(a, m)=1}} q_{a}(\bmod m) .
\end{aligned}
$$

[^0]
4. Equidistribution of the Euler Quotients

A result due to Heath-Brown [3] shows that the Fermat Quotients are uniformly distributed $\bmod p$ for $1 \leq a<p$. This result generalized nicely to the Euler Quotients. We obtain

Theorem 4.1 For any integers a, h with $(a, m)=(h, m)=1$, we have

$$
\sum_{\substack{M<a<M+N \\(a, m)=1}} \exp \left(\frac{h q_{a}}{m}\right) \ll N^{1 / 2} m^{3 / 8} \text { uniformly for } M, N \geq 1
$$

In particular

$$
\sum_{\substack{a<m \\(a, m)=1}} \exp \left(\frac{h q_{a}}{m}\right) \ll m^{7 / 8} \text { uniformly. }
$$

Proof. The proof is similar to that of Heath-Brown [3]. From Theorem 1.1 we have $q_{a b} \equiv$ $q_{a}+q_{b}(\bmod m)$ whenever $(a, m)=(b, m)=1$. Thus

$$
\chi(a)=\left\{\begin{array}{lc}
0, & (a, m) \neq 1 \\
\exp \left(\frac{h q_{a}}{p}\right), & (a, m)=1
\end{array}\right.
$$

is a non-principal character of order m. Hence we have

$$
\sum_{M<a<M+N} \exp \left(\frac{h q_{a}}{m}\right)=\sum_{M<a<M+N} \chi(a)
$$

Now Burgess [2] proved that for composite modulus m

$$
\sum_{M<a<M+N} \chi(a) \ll N^{1 / 2} m^{3 / 8}
$$

Taking $M=1$ and $N=m$, we obtain

$$
\sum_{\substack{a<m \\(a, m)=1}} \exp \left(\frac{h q_{a}}{m}\right) \ll m^{7 / 8}, \text { uniformly. }
$$

Acknowledgments

We would like to thank the referee for the valuable suggestions.

References

[1] Agoh, Dilcher and Skula, Fermat Quotients for Composite Moduli, Journal of Number Theory, 66, (1997), 29-50.
[2] D.A. Burgess, On the character sums and L-functions, II., Proc. London Math. Soc. (3), 13(1963), 524-536.
[3] D.R. Heath-Brown, An estimate for Heilbronn's exponential sum, Analytic Number Theory: Vol 2. Birkhauser Boston, PM, 139, (1996),451-463.
[4] W. Johnson, On the nonvanishing of Fermat quotients (mod p), J. Reine Angew. Math., 292 (1977), 196-200.
[5] H.S. Vandiver, An aspect of the linear congruence with applications to the theory of Fermat quotients, Bull. Amer. Math. Soc 22 (1915), 61-67.

[^0]: ${ }^{1} \dagger$ From this point on we suppressed, without loss, the use of k in the proof.

