SOME PROPERTIES OF THE EULER QUOTIENT MATRIX

Ikhalfani Solan

Department of Mathematics and Computer Science, University of the West Indies, Jamaica ikhalfani.solan@uwimona.edu.jm

Received: 2/15/06, Revised: 10/18/06, Accepted: 11/1/06, Published: 11/22/06

Abstract

Let a and m be integers such that (a, m) = 1. Let $q_a = \frac{a^{\phi(m)} - 1}{m}$. We call q_a the Euler Quotient of m with base a. This is called the Fermat Quotient when m is a prime. We consider some properties of the matrix of Euler Quotients reduced modulo m and show that these quotients are uniformly distributed modulo m.

1. Introduction

Let *m* and *a* be integers such that (m, a) = 1. Let $q_a = \frac{a^{\phi(m)} - 1}{m}$. We call q_a the Euler Quotient of *m* with base *a*. This is called the Fermat Quotient when *m* is a prime.

The following theorem summarizes some of the logarithmic properties of q_a .

Theorem 1.1 Let $a, b \in \mathbb{Z}$ and $r \in \mathbb{N}$ with (a, m) = (b, m) = 1. Then

- (a) $q_1 \equiv 0 \mod m$
- (b) $q_{ab} \equiv q_a + q_b \mod m$
- (c) $q_{a^r} \equiv rq_a \mod m$

Additional properties of q_a are given by the following generalization of a theorem of Wells [4]. It provides conditions when q_a vanishes modulo m.

Theorem 1.2 Let (a,m) = 1. If l and t are integers with (l,m) = 1 and α is a positive integer, then for $a = l + tm^{\alpha}$

$$q_a \equiv q_l \mod m + \frac{\phi(m)t}{l} m^{\alpha-1} \pmod{m^{\alpha}}.$$

2. The Euler Quotient Matrix

Let a be the i^{th} integer such that $1 \leq a \leq m$ and (a, m) = 1. The Euler Quotient Matrix, M_m , is the $m \times \phi(m)$ matrix where the entries in column *i* are the least non-negative residues of $q_k \pmod{m}$ for $k \leq m^2$ and $k \equiv a \pmod{m}$. To be more precise we may call this the order 2 matrix and define the order *r* matrix for $k \leq m^r$, r = 1, 2..., to be the $m^{r-1} \times \phi(m)$ matrix M_{m^r} .

							a=	1	5	7	11								
							1	0	4	8	8		0-	1	2	4	5	7	8
0-	1	2	3	4	5	6	2	4	0	0	4		a=	1	2		8	•	3
a=	1	_		4		1	3	8	8	4	0		1		1	5		4	
	0	2	6	4	6	1	4	0	4	8	8		2	6	1	2	2	1	6
2	6	5	1	2	3	2	5	4	0	0	4		3	3	4	8	5	7	0
3	5	1	3	0	0	3	6	8	8	4	0		4	0	7	5	8	4	3
4	4	4	5	5	4	4	7	0	4	8	8		5	6	1	2	2	1	6
5	3	0	0	3	1	5	8	4	0	0	4		6	3	4	8	5	7	0
6	2	3	2	1	5	6	-			Č.			$\overline{7}$	0	7	5	8	4	3
7	1	6	4	6	2	0	9	8	8	4	0		8	6	1	2	2	1	6
L							10	0	4	8	8		9	3	4	8	5	7	0
							11	4	0	0	4			_	_	-	,	,	
							12	8	8	4	0								

Example 2.1 The Euler Quotient Matrices for m = 7, 12 and 9 are given below.

Definition 2.2 Let π_i be the maximum size of the blocks of non-repeated entries in the i^{th} column. We call π_i the period of column *i*.

Theorem 2.3 The period of column *i* is given by $\pi_i = \frac{m}{(\phi(m),m)}$ for all $i \le \phi(m)$.

Proof. Suppose column *i* contains the least non-negative residue of $q_a \pmod{m}$ such that $a \equiv l + tm, l < m$ and (l, m) = 1. Then by Theorem 1.2, taking $\alpha = 1$, we have $q_a \equiv q_l + \phi(m)tl^{-1} \pmod{m}$. The residues of q_a and q_l are equal precisely when *m* divides $\phi(m)t$. This occurs for the first time when $t = \frac{m}{(\phi(m),m)}$ and subsequently for every integer multiple of *t*. Thus period of column $i, \pi_i = \frac{m}{(\phi(m),m)}$.

Definition 2.4 We define the period of M_m to be the period of each column. That is, period of M_m is given by $\pi_m = \frac{m}{(\phi(m),m)}$.

Let $A_r^m = \{q_a \mod m : 0 \le a < m^r\}$. It is of interest to know the size of A_r^m . We list some properties of A_r^m .

- (a) When m = p, a prime and r = 1, Vandiver [5] showed that $\sqrt{p} \le |A_1^p| \le p (1 + \sqrt{2p-5})/2$.
- (b) When r = 2 and m is a prime or a strong psuedoprime $|A_2^m| = m$.

- (c) I don't know of any bounds apart from the trivial bounds for $|A_1^m|$ when m is not prime.
- (d) Let m be an integer with m > 2. Then we have that

$$\frac{m}{(m,\phi(m))} \le |A_2^m| \le \frac{m}{(m,\phi(m))} \frac{\phi(m)}{2}.$$

We note that these bounds are the best possible. For example, when m is a prime, m = 4, or m = 12, the lower bound is achieved. When $m = 3^{\alpha}, \alpha \ge 2$, the upper bound is achieved.

In fact we have

$$\frac{m}{(m,\phi(m))} \le |A_r^m| \le \frac{m}{(m,\phi(m))} \frac{\phi(m)}{2}$$

whenever $r \geq 2$.

Another area of interest is the vanishing of the quotients modulo m.

The following theorem appearing in [1] characterizes the elements of M_m and gives a formula for the number of vanishing quotients modulo m in M_m .

Theorem 2.5 Let $m = p^{\alpha_1} \dots p^{\alpha_k}$ be the prime factorization of the integer $m \ge 2$ and q the homomorphism from $(\mathbb{Z}/m^2\mathbb{Z})^{\times}$ into $(\mathbb{Z}/m\mathbb{Z}, +)$ induced by the Euler quotient of m. For $1 \le r \le k$ put $m_r = p^{\alpha_r}$ and

$$d_r = \begin{cases} (m_r, 2\prod_{j=1}^k (p_j - 1), \text{ when } m_r = 2^{\alpha_r}; \alpha_r \ge 2, \\ (m_r, \prod_{j=1}^k (p_j - 1), \text{ otherwise.} \end{cases}$$

Let $d = \prod_{r=1}^{k} d_r$. Then the image $q((\mathbb{Z}/m^2\mathbb{Z})^{\times})$ equals $\{td + m\mathbb{Z} : 0 \le t \le (m/d) - 1\}$; it is therefore isomorphic to $(\mathbb{Z}/(m/d)\mathbb{Z}, +)$ for m > 2.

The above theorem immediately leads to the fact that the number of quotients to vanish modulo m in M_m is $d\phi(m)$. A quick glance at the matrices for m = 7, 12 and 9 shows that a matrix may have columns containing no vanishing quotients. Using the period of the Euler quotient matrix and the total number of zero entries we obtain the following.

Theorem 2.6 Let d be as defined in Theorem 2.5 and $m \ge 2$ be an integer. Then the number of columns of M_m containing zeros is given by $\frac{d\phi(m)}{(\phi(m),m)}$.

Proof. The proof is just to recognize that the number of zeros in each column with a zero is given by $\frac{m}{\pi_m} = (\phi(m), m)$. Now, by Theorem 2.5 the total number of zeros in M_m is $d\phi(m)$. Thus, there are exactly $\frac{d\phi(m)}{(\phi(m),m)}$ columns with a least one zero.

The formula for the number of columns without zeros is more interesting. This is given by $\phi(m)(1 - \frac{d}{(\phi(m),m)})$. If one notes that when *m* is a prime or a strong pseudoprime $d = (\phi(m), m) = 1$, then the term $\frac{d}{(\phi(m),m)}$ can be considered as measure of the primeness of *m*.

3. Sum of Quotients in the Columns and Rows of M_m

In the next two theorems we, respectively, show that the sum of the entries in each column of M_m is congruent to 0 modulo m and that all rows sum to the same constant modulo m.

Theorem 3.1 Let $1 \le a < m$ with (a, m) = 1. If $k < m^2$ and $k \equiv a \pmod{m}$, then

$$\sum_{k \equiv a \pmod{m}} q_k \equiv 0 \pmod{m}.$$

Proof. Let k = a + im, i < m. Then

$$\sum_{k \equiv a \pmod{m}} q_k = \frac{1}{m} \sum_{i=0}^{m-1} (a+im)^{\phi(m)-1} = \sum_{i=0}^{m-1} q_a + \binom{\phi(m)}{1} \sum_{i=0}^{m-1} i \, a^{\phi(m)-1} + m \left\{ \binom{\phi(m)}{2} \sum_{i=0}^{m-1} i^2 \, a^{\phi(m)-2} + \dots + \binom{\phi(m)}{\phi(m)} \sum_{i=0}^{m-1} i^2 (mi)^{\phi(m)-2} \right\}$$
$$= mq_a + \phi(m)m(m-1)a^{\phi(m)-1} \equiv 0 \pmod{m}$$

Theorem 3.2
$$\sum_{\substack{a=km+1\\(a,m)=1}}^{(k+1)m-1} q_a \equiv \sum_{\substack{a=1\\(a,m)=1}}^{m-1} q_a \pmod{m}, \text{ for each } k \in \{1, 2, \dots, m-1\}.$$

Proof. For any $k \in \{1, 2, \dots, m-1\}$ we have

$$\begin{split} \sum_{\substack{a=km+1\\(a,m)=1}}^{(k+1)m-1} q_a &= \sum_{\substack{a=1\\(a,m)=1}}^{m-1} \frac{(km+a)^{\phi(m)} - 1}{m} \\ &= \frac{1}{m} \left\{ \phi(m)m^{\phi(m)} + \binom{\phi(m)}{1} \sum_{\substack{a < m\\(a,m)=1}}^{a < m} m^{\phi(m)-1}a + \binom{\phi(m)}{2} \sum_{\substack{a < m\\(a,m)=1}}^{a < m} m^{\phi(m)-2}a^2 + \dots + \\ & \left(\binom{\phi(m)}{\phi(m)-1} \sum_{\substack{a < m\\(a,m)=1}}^{m} m a^{\phi(m)-1} + \sum_{\substack{a < m\\(a,m)=1}}^{a < m} (a^{\phi(m)} - 1) \right\} \\ &= \phi(m)m^{\phi(m)-1} + m^{\phi(m)-2} \binom{\phi(m)}{1} \sum_{\substack{a < m\\(a,m)=1}}^{a < m} a + m^{\phi(m)-3} \binom{\phi(m)}{2} \sum_{\substack{a < m\\(a,m)=1}}^{n} a^2 + \dots + \\ & \phi(m) \sum_{\substack{a < m\\(a,m)=1}}^{a < m} a^{\phi(m)-1} + \sum_{\substack{a < m\\(a,m)=1}}^{n} q_a \\ &\equiv \sum_{\substack{a < m\\(a,m)=1}}^{n} q_a \pmod{m}. \end{split}$$

¹[†] From this point on we suppressed, without loss, the use of k in the proof.

4. Equidistribution of the Euler Quotients

A result due to Heath-Brown [3] shows that the Fermat Quotients are uniformly distributed mod p for $1 \le a < p$. This result generalized nicely to the Euler Quotients. We obtain

Theorem 4.1 For any integers a, h with (a, m) = (h, m) = 1, we have

$$\sum_{\substack{M < a < M+N \\ (a,m)=1}} \exp(\frac{hq_a}{m}) \ll N^{1/2} m^{3/8} \text{ uniformly for } M, N \ge 1.$$

In particular

$$\sum_{\substack{a < m \\ (a,m)=1}} \exp(\frac{hq_a}{m}) \ll m^{7/8} \text{ uniformly.}$$

Proof. The proof is similar to that of Heath-Brown [3]. From Theorem 1.1 we have $q_{ab} \equiv q_a + q_b \pmod{m}$ whenever (a, m) = (b, m) = 1. Thus

$$\chi(a) = \begin{cases} 0, & (a,m) \neq 1\\ \exp(\frac{hq_a}{p}), & (a,m) = 1. \end{cases}$$

is a non-principal character of order m. Hence we have

$$\sum_{M < a < M+N} \exp(\frac{hq_a}{m}) = \sum_{M < a < M+N} \chi(a).$$

Now Burgess [2] proved that for composite modulus m

$$\sum_{M < a < M+N} \chi(a) \ll N^{1/2} m^{3/8}.$$

Taking M = 1 and N = m, we obtain

$$\sum_{\substack{a < m \\ (a,m)=1}} \exp(\frac{hq_a}{m}) \ll m^{7/8}, \text{ uniformly.}$$

Acknowledgments

We would like to thank the referee for the valuable suggestions.

- Agoh, Dilcher and Skula, Fermat Quotients for Composite Moduli, Journal of Number Theory, 66, (1997), 29-50.
- [2] D.A. Burgess, On the character sums and L-functions, II., Proc. London Math. Soc. (3), 13(1963), 524-536.
- [3] D.R. Heath-Brown, An estimate for Heilbronn's exponential sum, Analytic Number Theory: Vol 2. Birkhauser Boston, PM, 139, (1996),451-463.
- [4] W. Johnson, On the nonvanishing of Fermat quotients (mod p), J. Reine Angew. Math., 292 (1977), 196-200.
- [5] H.S. Vandiver, An aspect of the linear congruence with applications to the theory of Fermat quotients, Bull. Amer. Math. Soc 22 (1915), 61-67.