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Abstract

In this note, we present combinatorial proofs of some Moriarty-type binomial coefficient
identities using linear and circular domino arrangements.

1. Introduction

The following identities appear, respectively, as entries 3.121, 3.120, 3.179, and 3.180 of
Gould’s Combinatorial Identities [2]:

B (07

tﬁ (272;) (5) - (nzj)nij (1.2)
S () (- v (1)

S () o

where n > 1 and 0 < j < [n/2]. Gould [3] attributes close variants of (1.1) and (1.2) to
Moriarty, while (1.3) and (1.4) seem to have originated with Gould, who terms them “inverse
Moriarty formulas.”

and




INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A35 2

)

Identity (1.1) is closely allied with the Fibonacci polynomials f,(x) (see, e.g., [5] or [6]
= 1.

defined by the recurrence f,(x) = f,_1(z) + xf,_o(z) with initial values fo(z) = fi(x)
Expanding the Binet formula
<1+m)”+1 _ <1\/1+W)”+1
folz) = ’ ’ n =0, (1.5)
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by the binomial theorem and comparing coefficients with the explicit formula
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yields (1.1). Similarly, identity (1.2) arises in connection with the Lucas polynomials I, (x)
defined by the recurrence [, (z) = l,,—1(x) + xl,—2(x) with initial values lo(z) = 2, [;(z) = 1.
Additional algebraic proofs have been given for (1.1) and (1.2), including induction [4],
generating functions [3], and matrix expansion [3]. Inversion [3] of formulas (1.1) and (1.2)
yields (1.3) and (1.4), which can also be established directly by induction [1]. In this note,
we present combinatorial proofs of identities (1.1)—(1.4) using linear and circular domino
arrangements.

2. Combinatorial Proofs

We first provide combinatorial interpretations for identities (1.1) and (1.2). Given n > 1
and 0 < j < [n/2], let R, ; denote the set of coverings of the numbers 1,2, ..., n, arranged in
a row, by j indistinguishable dominos and n — 25 indistinguishable squares, where pieces do
not overlap, a domino is a rectangular piece covering two consecutive numbers, and a square
is a piece covering a single number. Each such covering corresponds uniquely to a word in
the alphabet {d, s} comprising j d’s and n — 25 s’s so that

Rl = (") 0<is<inz, (1)

Similarly, let C,, ; denote the set of coverings of the numbers 1,2, ..., n, arranged clockwise
around a circle, by j dominos and n — 25 squares, where the numbers 1 and n are now
considered consecutive:
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Classifying members of C, ; according to whether 1 is covered by a domino or a square, and
applying (2.1), yields

n n—3j )
| = <J < 2]. 2.2
Col = — j( ; ) 0<j < |n/2) (22)

See, e.g., [7, p. 73] or [5].

Let R}, ; and C;, ; denote colored versions of R, ; and C,;, respectively, wherein the
squares are each colored black or white (the dominos are not colored). From (2.1) and (2.2),
we see that the right-hand sides of (1.1) and of twice (1.2) give the cardinality of R/, . and

n,J
, .
7. respectively.

We now show how the left-hand side of (1.1) also counts R;, ;. First select a subset S =
{a; < ag < -+ < aggs1} of [n+ 1] with cardinality at least 2j + 1 (where [m] := {1,2,...,m}
for m > 1). If agx1 = n+ 1, then pick j members of S of odd index not exceeding 2k — 1. If
a9;_1 was chosen, then cover the numbers ag;_1, ag;_1 + 1 with a domino and any remaining
numbers in the interval [ag;_1,ay;] with black squares. If ay;_; was not chosen, then cover
as;—1 with a white square, as;_1 + 1 with a black square, and any remaining numbers in
[agi—1, az;] with black squares. Cover any remaining members of [n] with white squares.

If asr1 < m + 1, then pick j members of S of even index and cover numbers in the
intervals [ag;, a1 1], 1 < @ < k, in the same manner we covered the intervals [as; 1, ag;) in the
prior case. In addition, cover all members of [a1] with black squares. As before, cover any
remaining members of [n] with white squares. Note that in this case, members of R;, ; start
with a black square, while in the prior case, members start with a domino or white square.

We then see that the left-hand side of (1.1) gives the cardinality of R;, ; according to the
value of the sum of the number of dominos and the number of occurrences of a white square
directly preceding a black one. We illustrate the correspondence below, where n = 10 and
] =2
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1 2 3 4 5 6 7 8 9 10

— 5§ =1{2,3,4,5,7,10, 11} with {2, 7} chosen

1 2 3 4 5 6 7 8 9 10

— 8 =1{2,4,5,6,8,9,10} with {4,6} chosen

That twice the left-hand side of (1.2) also gives |C;, ;| follows similarly. Select a subset
S ={a; < az < -+ < ag} of [n] with cardinality at least 2j. Either pick j members
of S of odd index or pick j members of even index. In the first case, cover the j chosen
members with initial segments of dominos and the other members of S of odd index with
white squares directly followed by black ones. Then cover any remaining numbers in the
intervals [ag;_1, ag;| with black squares. In the second case, we cover the intervals [ag;, azii1],
1 < i< k, using S in the same manner (where [agg, agg11] represents all the numbers along
the circle between ag, and ay, inclusive, going clockwise). In both cases, cover any remaining
members of [n] with white squares. Note that in the latter case, the number 1 is covered by
either a black square or by a domino with initial segment n.

When j = 0, identities (1.1) and (1.2) reduce to the familiar

/2, [(n—1)/2] "
= = on-1 > 1. 2.3
2 (2k) ; (2k + 1) o (23)

k=0
Summing (1.1) and (1.2) over j and interchanging summation yields, respectively,
[n/2] [n/2]
n—=k n+1
2" = 2k 2.4
> ()2 () 2
k=0 k=0

and
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The argument above for (1.1) and (1.2) applies to (2.4) and (2.5) as well. Note that the
sums in (2.4) and (2.5) have familiar closed forms in terms of radicals.

We now turn to formulas (1.3) and (1.4), which we’ll prove by sieving out special subsets

of R}, ; and C, ;, respectively. Let R C R, ; consist of those arrangements in which no

white square directly precedes a black one and C C Cfm- consist of those arrangements in
which no white square directly precedes a black one when the circle is traversed clockwise.

Then |R| = (anill)’ upon reasoning as we did for the left-hand side of (1.1) (when k =
j and |S| = 25 + 1); similarly, |C| = 2(2"3,), as in (1.2). If k := ¢ + j, then the terms

("9 (];) 22 and - ("5 (];) 2"~F account for members of R;, ; and C, ;, respectively, with

n—k\ k n,jo
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at least ¢ occurrences of a white square directly preceding a black one, upon treating these
occurrences as additional dominos. Formulas (1.3) and (1.4) now follow by the inclusion-
exclusion principle.

When j = 0, identities (1.3) and (1.4) reduce, respectively, to

Lnij(—l)’“ (n . k) 22k — 41, (2.6)

k=0

and

n/2 A
—1)k ) 2.7
S (") , (2.7)

which are entries (1.72) and (1.65) in Gould [2]. Summing (1.3) and (1.4) over j yields,

respectively,
[n/2] [n/2]
n—=k n+1
—1)k onk — —1)* 2.8
S oM e () (2.)
k=0 k=0
and

Lnf“l)kn — (n R k) 2kl — Lnf(—l)’“ (;{) (2.9)

k=0 k=0

A slight modification of the argument above for (1.3) and (1.4) applies to (2.8) and (2.9).
Note that the sums in (2.8) and (2.9) have familiar closed forms in terms of imaginary
numbers.
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