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Abstract

A composition of a nonnegative integer n is a sequence of positive integers whose sum is n.
A composition is palindromic if it is unchanged when its terms are read in reverse order.
We provide a generating function for the number of occurrences of arbitrary segmented
partially ordered patterns among compositions of n with a prescribed number of parts.
These patterns generalize the notions of rises, drops, and levels studied in the literature.
We also obtain results enumerating parts with given sizes and locations among compositions
and palindromic compositions with a given number of parts. Our results are motivated
by “encoding by restricted permutations,” a relatively undeveloped method that provides
a language for describing many combinatorial objects. We conclude with some examples
demonstrating bijections between restricted permutations and other objects.

1. Introduction

A composition of a nonnegative integer n is a sequence α = α1α2 · · ·αm of positive integers
whose sum is n. We consider the empty sequence with no terms to be the unique composition
of 0. We will sometimes write compositions as sums rather than as words, as in α1 + α2 +
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· · · + αm, though it must be kept in mind that the order of the terms still matters. It is
sometimes helpful to think of a composition of n as a sequence of n stones laid in a row,
together with a grouping of the stones such that every stone belongs to a group, every group
contains a stone, no stone belongs to two groups, and two stones belong to the same group
only if every stone between them belongs to that group.

Each term αi in a composition α is called a part of that composition. A part equal to k
is called a k-part. A split in a composition is an integer that can be expressed as the sum
of the first i parts of the composition for some nonnegative integer i. Thus, the composition
3 + 1 + 1 + 2 has 5 splits: 0, 3, 4, 5, and 7. Using the imagery of stones, the parts of α are
the groups of stones, and the splits of α correspond to gaps in the row of stones (including
the gap before the first stone and after the last stone) that do not have two stones from the
same group on either side. In this context, the split corresponding to such a gap is the sum
of the number of stones in the groups to the left of that gap.

We use 〈α〉 to denote the composition comprising the parts of α written in reverse order.
A palindromic composition, or a palindrome, is a composition for which α = 〈α〉. A rise
(resp. drop) is a part followed by a larger (resp. smaller) part. A level is a part followed by
a part equal to itself.

Frequencies of occurrences of k-parts, rises, drops, and levels in (palindromic) composi-
tions, as well as in compositions with additional restrictions, have been studied (e.g., see [4]
and [5] and references therein). Heubach and Mansour [5] give a multivariate generating
function for joint distribution of parts, rises, levels, and drops in compositions and palin-
dromes. However, using the results from the literature related to the subject, it does not
seem to be possible to answer a question like: how many of the double (or triple) levels
are followed by rises among all compositions of n? (The question “How many levels are
followed by rises among all compositions of n?” is answered in [6, Thm. 2.2].) To consider a
more general question, we introduce the notion of a segmented pattern in a composition. A
segmented pattern is a word w = w1w2 · · ·wk in the alphabet of positive integers such that if
b is a letter in w and a < b, then a is a letter of w. In other words, the letters in w constitute
an order ideal. For example, 431242 is a segmented pattern, while 41242 is not. We say that
w occurs in a composition α = α1α2 · · ·αm if there is a subword αiαi+1 . . . αi+k−1 of α that
is order-isomorphic to w. Thus, rises, drops, and levels are occurrences of the patterns 12,
21, and 11, respectively. A level followed by a rise is an occurrence of the pattern 112. The
notion of segmented patterns in arbitrary words was studied in [2].

More generally, we study occurrences of so-called segmented partially ordered patterns
(SPOPs) in compositions. A SPOP w is a word consisting of letters from a partially ordered
alphabet A such that the letters in w constitute an order ideal in A. For instance, if we
have a poset on three elements labeled by 1, 1′, and 2′ in which the only relation is 1′ < 2′,
then the sequence 31254 has two occurrences of 11′2′, namely 312 and 125. Given a SPOP
w = w1w2 · · ·wm, we say that a segmented pattern v = v1v2 · · · vm is a linear extension of w
if wi < wj implies that vi < vj. Thus the linear extensions of 11′2′ are 123, 213, and 312.
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This paper is organized as follows. In Section 2, we give our main results. Theorem 2.1
gives a multivariate generating function for the number of occurrences of a given SPOP at a
given split among compositions of n with a given number of parts. By specializing variables,
we obtain a generating function for the number of occurrences of a given SPOP among all
compositions of n (Corollary 2.2). In Theorem 3.1, we enumerate the occurrences of k-parts
at a given split in compositions of n with a given number of parts. This generalizes a result
in [3]. Our approach to this problem is to use a method which perhaps can be best described
as “encoding by restricted permutations.” The idea here is to encode a set of objects under
consideration as a set of permutations satisfying certain restrictions. Under appropriate
encodings, this allows us to transfer the interesting statistics from our original set to the set
of permutations, where they are easy to handle. In Section 4, we use restricted permutations
to enumerate k-parts with certain statistics in palindromic compositions, refining results in
[4]. In Section 5 we provide short bijective encodings of binary bitonic sequences, binary
strings without singletons, permutations avoiding 1-3-2-4 and having exactly one descent,
and lines drawn through the points of intersections of n straight lines in a plane. Relations
of these objects to certain restricted permutations were given in [1], but no bijections were
provided. We believe that these examples provide some evidence for the broad applicability
of the method of encoding by restricted permutations.

We use the following notations throughout the paper. The set of nonnegative integers
is denoted by N, and the set of positive integers is denoted by P. Given m ≤ n ∈ N,
we write [m, n] = {m, m + 1, . . . , n} and [n] = [1, n]. The permutations in this paper are
written in one-line notation. Given a generating function G(t), we write [tn]G(t) to denote
the coefficient of tn in G(t). We use C(n) to denote the set of compositions of n, and we
write that |α| = n if α ∈ C(n). Finally, let C(n, ") be the number of compositions of n
with " parts. It is well known and easy to verify that for a fixed non-negative integer ", the
generating function for C(n, ") is given by

∞∑

n=0

C(n, ")xn =
x!

(1 − x)!
. (1)

2. Compositions

Given a SPOP w = w1w2 · · ·wm with m parts, let cw(n, ", s) be the number of occurrences
of w among compositions of n with " + m parts such that the sum of the parts preceding
the occurrence is s. Let Ωw(x, y, z) be the generating function for cw(n, ", s):

Ωw(x, y, z) =
∑

n,!,s∈N
cw(n, ", s)xny!zs.

Our goal is to derive an explicit rational function for Ωw(x, y, z).

Before proceeding, we define the following notation. Given a segmented pattern v and
n ∈ N, let Pv(n) denote the number of compositions of n that are order isomorphic to v.
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The generating function Pv(x) for Pv(n) is not difficult to derive. If j is the largest letter of
v, then Pv(n) is the number of integral solutions t1, . . . , tj to the system

µ1t1 + · · · + µjtj = n, 0 < t1 < · · · < tj, (2)

where µk is the number of k’s in v. We call µ = (µ1, . . . , µj) the content vector of v. By
expanding terms into geometric series, one can see that the number of integral solutions to
(2) is the coefficient of xn in

Pv(x) =
j∏

k=1

xmk

1 − xmk
, (3)

where mk = µj−k+1 + · · · + µj for 1 ≤ k ≤ j.

Theorem 2.1. Let w be a SPOP. Then

Ωw(x, y, z) =
(1 − x)(1 − xz)

(1 − x − xy)(1 − xz − xyz)

∑

v

Pv(x) (4)

where the sum is over all linear extensions v of w.

Proof. We begin by computing Ωv(x, y, z) when v is a segmented pattern. We think of an
occurrence of v as the triple of compositions (α, β, γ) such that α comprises the parts to the
left of the occurrence, β comprises the parts in the occurrence, and γ comprises the parts to
the right of the occurrence. Hence, for given n, ", s ∈ N, cv(n, ", s) is the number of triples
(α, β, γ) of compositions such that |α| + |β| + |γ| = n, |α| = s, β is order isomorphic to v,
and α and γ together have " parts. Thus we have that

cv(n, ", s) =
∑

0≤j≤!
0≤k≤n−s

C(s, j)Pv(k)C(n − s − k, " − j).

Using this equality, together with the generating function (1) for C(n, "), we can factor
Ωv(x, y, z) into a product of Pv(x) and two geometric series:

Ωv(x, y, z) =
∑

n,!,s∈N
cv(n, ", s)xny!zs

= Pv(x)

(
∑

n,!∈N
C(n, ")xny!

)(
∑

s,!∈N
C(s, ")(xz)sy!

)

= Pv(x)

(
∑

l∈N

x!

(1 − x)!
y!

) (
∑

l∈N

(xz)!

(1 − xz)!
y!

)

= Pv(x)
(1 − x)(1 − xz)

(1 − x − xy)(1 − xz − xyz)
.

Finally, note that if w is a SPOP, then cw(x, y, z) =
∑

v cv(x, y, z), where the sum is over all
linear extensions v of w. Thus, Ωw(x, y, z) =

∑
v Ωv(x, y, z), and the theorem follows.
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Setting y = z = 1 in equation (4) yields the following.

Corollary 2.2. Given a segmented pattern w, the number of occurrences of w among com-
positions of n is equal to

[xn]Ωw(x, 1, 1) = [xn]
(1 − x)2

(1 − 2x)2

∑

v

Pv(x),

where the sum is over all linear extensions v of w.

Example 2.3. We compute the number of occurrences of m levels immediately followed by
a rise. This is an occurrence of the segmented pattern w = 1 · · · 1︸ ︷︷ ︸

m+1

2. The content vector of

w is µ = (m + 1, 1), so we have

Pw(x) =
xm+3

(1 − x)(1 − xm+2)
.

Hence, the number of occurrences of w among all compositions of n is

[xn]Ωw(x, 1, 1) = [xn]
(1 − x)2xm+3

(1 − 2x)2(1 − x)(1 − xm+2)

For fixed m, it is routine to expand the rational function above into partial fractions to
obtain a closed-form expression for [xn]Ωw(x, 1, 1).

Another application of Corollary 2.2 links our work to recent work of Savage and Wilf [7].
Whereas we have focused on the number of occurrences of a pattern among all compositions,
another natural thing to study is the number of compositions containing a given pattern.4

In general this is a much more difficult question.

Let aw(n, k) denote the number of compositions of n in which the SPOP w appears k
times. Though they had a different definition of pattern, Savage and Wilf [7] studied the
number of compositions in which a pattern occurs 0 times, i.e., pattern avoiding compositions.
More generally, consider the polynomial

Aw,n(t) :=
∑

k≥0

aw(n, k)tk.

Some easy observations about the polynomial:

Aw,n(0) = aw(n, 0), the number of w-avoiding compositions;

Aw,n(1) = 2n−1;

A′
w,n(1) =

∑

k≥1

kaw(n, k) = bw(n),

4Savage and Wilf use the “classical” definition of a pattern in their work, as opposed to the “segmented”
one we use.
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where bw(n) is the total number of occurrences of w among all compositions of n. We leave
the study of Aw,n(t) as an open problem, but show that for now we can compute at least the
average number of occurrences of w in a given composition of n. Using Corollary 2.2 we find
the generating function for the expected number of occurrences of w in a randomly selected
composition of n is:

2Ωw(x/2, 1, 1) =
∑

n≥0

bw(n)

2n−1
xn =

(2 − x)2

2(1 − x)2

∑

v

Pv(x/2),

where the rightmost sum is over all linear extensions v of w.

3. Enumerating k-parts in Compositions

Now we give an enumerative result that describes the number of k-parts located at a given
split among compositions of n with a given number of parts. Theorem 3.1 below is our first
example of encoding with restricted permutations.5 For n, k, ", s ∈ N, define f(n, k, ", s) to
be the number of k-parts occurring among compositions of n with " + 1 parts such that the
sum of the parts preceding the k-part is s. It immediately follows that f(n, k, ", s) = 0 if
either n = 0 or k = 0. The case when n = k > 0 is also clear: f(n, n, ", s) = 1 if " = s = 0,
and f(n, n, ", s) = 0 otherwise. The following theorem gives the value of f(n, k, ", s) in all
remaining cases.

Theorem 3.1. If n ∈ P and k ∈ [n − 1], then

f(n, k, ", s) =






(
n−k−1

!−1

)
, if s ∈ {0, n − k},(

n−k−2
!−2

)
, if s ∈ [n − k − 1],

0, otherwise.

(5)

Proof. We give a bijection between the k-parts that we are enumerating and a particular
set of restricted permutations. Let S be the set of permutations of the quotient group
Z = Z/(n − k + 1)Z of the form sw1w2 · · ·wn−k, where

w1 > w2 > · · · > w! < w!+1 < · · · < wn−k.

and s + 1 ∈ {w1, . . . , w!} (where we’ve identified s with its canonical projection in Z). To
see that |S| is given by the right-hand side of equation (5), observe that an element of S
is uniquely specified by choosing which elements of Z will be in {w1, . . . , w!} other than s
(which cannot be in there) and s + 1 and min(Z\{s}) (which must be in there, but which
are equal when s ∈ {0, n − k}).

5In fact it is possible to use this result to prove Theorem 2.1, though this approach requires several pages
of tedious calculation, and is omitted in favor of the short and self-contained proof given above.
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We now show that the elements of S are in bijective correspondence with the k-parts
that we wish to enumerate. First, we can think of such a k-part as an element of

T = {(α, β) : α ∈ C(s), β ∈ C(n − k − s), α and β together have " parts }.

To be precise, a k-part in a composition of n corresponds to the ordered pair (α, β) of
compositions such that α comprises the parts to the left of the chosen k-part and β comprises
the parts to the right of the chosen k-part.

We now give a bijection T ↔ S. For an explicit example of the bijection we are about
to describe, see Example 3.2. Given (α, β) ∈ T , we produce a permutation in S as follows.
Concatenate the compositions α and β, producing a composition γ ∈ C(n− k) with " parts.
Let w! = 0 and let

w!−i =
i∑

j=1

γj, for 1 ≤ i ≤ " − 1.

For 1 ≤ i ≤ " let

wi =

{
wi, if wi < s,

wi + 1, if wi ≥ s.

Finally, let w!+1, . . . , wn−k be the elements of [0, n− k]\{s, w1, . . . , w!} written in increasing
order (where we’ve identified [0, n−k] with its canonical projection in Z). It is easy to show
that this map yields an element of S.

We show that the map is a bijection by giving its inverse. Given an element of S, one
may produce an element of T by letting

wi =

{
wi, if wi < s,

wi − 1, if wi > s,
for 1 ≤ i ≤ ",

letting γi = w!−i−w!−i+1 for 1 ≤ i ≤ "−1, γ! = n−k−w2, and letting γ = γ1 · · · γ!. Because
of the requirement that s + 1 ∈ {w1, . . . , w!}, it follows that, for some i ∈ ["],

∑i
j=1 γj = s.

Let α = γ1 · · · γi and let β = γi+1 · · · γ!. We then have that (α, β) ∈ T .

Example 3.2. We choose as our k-part the 6 in the composition 3 1 6 2. Then we have
n = 12, k = 6, l = 3, and s = 4. The claim is that this corresponds to a permutation of the
elements in Z/7Z.

Applying the maps from the theorem to our chosen k-part yields α = 3 1, and β = 2.
Thus we have γ = 3 1 2. Computing the values of wi yields w3 = 0, w2 = γ1 = 3, and
w1 = γ1 + γ2 = 4. Observing that w1 ≥ s = 4, while w2, w3 < s, we compute the wi’s as
follows

w1 = w1 + 1 = 5,

w2 = w2 = 3,

w3 = w3 = 0.
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Finally, we let w4 w5 w6 be the elements of

{0, . . . , 6}\{s, w1, w2, w3} = {0, . . . , 6}\{4, 5, 3, 0}
= {1, 2, 6}

written in increasing order. Therefore, the word corresponding to our original k-part is

s w1 w2 · · ·w6 = 4 5 3 0 1 2 6.

As a corollary to Theorem 3.1, we derive a result that appeared in [3].

Corollary 3.3. Given n ∈ N and k ∈ [n−1], the number of k-parts among all compositions
of n is 2n−k−2(n − k + 3).

Proof. The result follows from using equation (5) to compute

∑

!∈[n−k]
s∈[0,n−k]

f(n, k, ", s) = 2
n−k∑

!=1

(
n − k − 1

" − 1

)
+ (n − k − 1)

n−k∑

!=2

(
n − k − 2

" − 2

)

= 2n−k + 2n−k−2(n − k − 1)

= 2n−k−2(n − k + 3).

4. Palindromic Compositions

We provide two alternative (nonequivalent) encodings by restricted permutations of k-parts
in palindromes of N , when N and k have different parity. We give these encodings explicitly
in the case of even palindromes of N = 2(n − 1) and odd k-parts. These encodings provide
bijective proofs of the known result that the number of k-parts in palindromic compositions
of 2(n − 1) is (n − k + 1)2n−k−1 when k is odd (see [4]). Such k-parts will be encoded as
permutations w1w2 · · ·wn−k+1 of [n − k + 1] such that, for some " ∈ {2, . . . , n − k + 1},
w2 > w3 > · · · > w! < w!+1 < · · · < wn−k+1. The enumerative result from [4] then follows
immediately because such a restricted permutation is defined by first choosing which of the
n − k + 1 elements will be w1, and then choosing a subset of the remaining elements (other
than the least remaining element) to be w2, . . . , w!−1.

In either encoding, the case of odd palindromes N = 2n − 1 and even k-parts can be
obtained using very similar bijections, which we omit for brevity. The case in which k and
N have the same parity is only slightly complicated by the possibility that the k-part could
be the central term of the palindrome.
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Clearly, a palindrome of 2(n − 1) has either an odd number of parts with an even part
in the center or an even number of parts and no central part. To make all palindromes be
of odd length, we create a central part “0” for palindromes with an even number of parts.
To recover the actual palindromes produced by our bijections, simply drop any 0 terms that
arise.

4.1. First Encoding

For the purposes of this encoding, it will be convenient to re-index the set whose permu-
tations will encode k-parts in palindromes. We will encode each k-part as a permutation
w0w1 · · ·wn−k of [0, n − k] with

w1 > w2 > · · · > w! < w!+1 < · · · < wn−k.

First, observe that such a permutation corresponds to an ordered pair (w0, α) with w0 ∈
[0, n − k] and α = α1 · · ·α! ∈ C(n − k) as follows. If " = 1, let α1 = n − k. Otherwise, let

wi =

{
wi, if wi < w0,

wi − 1, if wi > w0,
for 1 ≤ i ≤ l,

and put

αi = w!−i − w!−i+1, for 1 ≤ i ≤ l − 1,

α! = n − k − w1.

We now explicitly describe the correspondence between pairs (w0, α) and odd k’s in palin-
dromic compositions of 2(n− 1). It may be helpful to use the imagery of stones discussed in
Section 1. In this context, w0 can be thought of as distinguishing a gap in the sequence of
stones, where the gaps are the spaces between any two adjacent stones (whether they belong
to the same group or not), as well the space before the first stone and after the last stone.
Hence, a sequence of n− k stones has n− k + 1 gaps, which we index with the set [0, n− k].
Note that splits are special cases of gaps.

Case I: w0 ∈ {0, n − k}. These pairs (w0, α) correspond to the k’s that are either the
left-most or right-most terms in the compositions containing them. In particular, (0, α)
corresponds to the left-most k in the composition

k +
!−1∑

i=1

αi + 2(α! − 1) +

〈
!−1∑

i=1

αi

〉
+ k,

while (n − k, α) corresponds to the right-most k.

Case II: w0 ∈ [n − k − 1], and w0 is a split in α. These pairs (w0, α) correspond to k’s
that are on the left-hand side of the palindromic compositions containing them, but which
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are not the left-most terms. In these cases, (w0, α) corresponds to the indicated k on the
left-hand side of the palindromic composition

j∑

i=1

αi + k +
!−1∑

i=j+1

αi + 2(α! − 1) +

〈
j∑

i=1

αi + k +
!−1∑

i=j+1

αi

〉
,

where j is such that
∑j

i=1 αi = w0. (The reader might note that the palindrome defined
above is not well-defined if j = ". However, that does not happen for the pairs (w0, α)
considered in this case. This is because j is recovered from (w0, α) by finding the number
of terms of α that must be added together to equal w0. If j = ", then we would have
w0 =

∑!
i=1 αi = n − k, which would put us in Case I.)

Case III: w0 ∈ [n− k − 1], and w0 is not a split in α. These pairs (w0, α) correspond to the
k’s which are on the right-hand side of the palindromic compositions containing them, but
which are not the right-most terms. These cases break into two subordinate cases:

Case IIIA: w0 is a gap in the last term of α. These pairs (w0, α) correspond to k’s that
are immediately to the right of the center term of the palindromic compositions containing
them. In particular, such a (w0, α) corresponds to the indicated k on the right-hand side of
the palindromic composition

!−1∑

i=1

αi + α′
! + k + 2(α′′

! − 1) + k + α′
! +

〈
!−1∑

i=1

αi

〉
,

where we use the identities α′
! + α′′

! = α! and
∑!−1

i=1 αi + α′
! = w0.

Case IIIB: w0 is a gap in some term of α other than the last one. These pairs (w0, α)
correspond to k’s that are on the right-hand side of the palindromic compositions containing
them, but which are neither the right-most nor the left-most terms on the right-hand side.
In particular, such a (w0, α) corresponds to the indicated k on the right-hand side of the
palindromic composition

j−1∑

i=1

αi + α′
j + k + α′′

j +
!−1∑

i=j+1

αi + 2(α! − 1) +

〈
j−1∑

i=1

αi + α′
j + k + α′′

j +
!−1∑

i=j+1

αi

〉
,

where we use the identities α′
j + α′′

j = αj and
∑j−1

i=1 αi + α′
j = w0.

This completes the bijection between k-parts of palindromes of 2(n−1) and permutations
w0w1 · · ·wn−k of [0, n − k] with w1 > w2 > · · · > w! < w!+1 < · · · < wn−k. By adding 1 to
each term wi, we have the desired bijection between k-parts of palindromes of 2(n − 1) and
permutations w1w2 · · ·wn−k+1 of [n − k + 1] such that w2 > w3 > · · · > w! < w!+1 < · · · <
wn−k+1. Table 1 illustrates the present encoding of the 3s in all the palindromic compositions
of 10 (i.e., the case n = 6 and k = 3).
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Permutation (w1, α) Case Palindromic composition
(1,2,3,4) (1,3) I 3+4+3
(1,3,2,4) (1,12) I 3+1+2+1+3
(1,4,2,3) (1,21) I 3+2+0+2+3
(1,4,3,2) (1,111) I 3+1+1+0+1+1+3
(4,1,2,3) (1,3) I 3+4+3
(4,2,1,3) (1,12) I 3+1+2+1+3
(4,3,1,2) (1,21) I 3+2+0+2+3
(4,3,2,1) (1,111) I 3+1+1+0+1+1+3
(2,3,1,4) (2,12) II 1+3+2+3+1
(2,4,3,1) (2,111) II 1+3+1+0+1+3+1
(3,4,1,2) (3,21) II 2+3+0+3+2
(3,4,2,1) (3,111) II 1+1+3+0+3+1+1
(2,1,3,4) (2,3) IIIA 1+3+2+3+1
(2,4,1,3) (2,21) IIIB 1+3+1+0+1+3+1
(3,1,2,4) (3,3) IIIA 2+3+0+3+2
(3,2,1,4) (3,12) IIIA 1+1+3+0+3+1+1

Table 1: The first encoding in the case n = 6 and k = 3.

4.2. Second Encoding

We present an algorithm to produce a “good” permutation given an underlined k-part in a
palindrome P . (Recall that the permutations of interest are the permutations w1w2 · · ·wn−k+1

of [n − k + 1] such that, for some " ∈ {2, . . . , n − k + 1}, w2 > w3 > · · · > w! < w!+1 <
· · · < wn−k+1.) We only consider the case when the chosen part is to the left of the center
in P ; for a part from the right-hand side, we proceed with the part symmetric to it, and we
switch 1 and 2 in the obtained permutation. In the bijection below, a part is to the left of
the center if and only if in the corresponding permutation, 1 precedes 2. In general, we find
the permutation corresponding to k by inserting the numbers n − k + 1, n − k, n − k − 1,
and so on, into initially empty slots w1, w2 . . . , wn−k+1.

Suppose P = CkDxD̄kC̄ where x = 2t for t ≥ 0, and W̄ is the reverse of W . In what
follows, if at any step we get w1 = 2, set w1 = 1 and place 2 in the (only) remaining slot.

(1) If D is empty and x = 0, we set w1 = (n−k+1) and proceed with (2) below. Otherwise,
we set wn−k−t+2wn−k−t+3 · · ·wn−k+1 = (n−k− t+2)(n−k− t+3) · · · (n−k +1). Now
if D is empty, set w1 = (n − k − t + 1) and proceed with step (2). If D is not empty,
w2 = (n − k − t + 1). We read the parts in D from right to left and fill in the slots
w3, w4, . . . by placing n − k − t, then n − k − t − 1, and so on (we refer to the empty
slots in w3, w4, . . . as the placement area): if a current part is a, then we place a − 1
of the largest unplaced numbers at the right end of the placement area in increasing
order, and we place the largest number out of the remaining numbers at the left end
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of the placement area. We then proceed with the next part in D reading from right
to left. The only exception is the part immediately to the right of k. In this case, we
place a − 1 of the largest unplaced numbers at the right end of the placement area in
increasing order, and then we set w1 be the largest of the remaining unplaced numbers.
Continue with step (2).

(2) If C is empty or if C = 1, place the unplaced numbers in increasing order into the
empty slots. Otherwise, suppose C = a1a2 · · · ak. Then we consider the binary vector
0a1−110a2−11 · · · 0ak−1 (each block of 0’s except the last one is followed by a 1). We read
this binary vector from right to left and whenever we meet a 0, we place the largest
unplaced number into the leftmost available slot; otherwise, we place this number into
the rightmost available slot. If this procedure can no longer be continued, and 1 or 2
have not yet been placed, place them so that 1 precedes 2.

Note that the procedure above produces an (n − k + 1)-permutation. Indeed, X =
CkDt is a composition of (n − 1), and each part a of X, with the exception of k and t,
contributes placement of a elements in the permutation, whereas k contributes one element
and t contributes t − 1 elements. The requirement that 1 precedes 2 in the permutation
places one last element. Clearly the algorithm constructs a “good” permutation.

We provide some examples. Suppose we are interested in 1 in the following palindrome
of 16: 212141212. The steps of our recursive bijection are as follows:

∗7 ∗ ∗ ∗ ∗ ∗ 89 → ∗76 ∗ ∗ ∗ ∗89 → 476 ∗ ∗ ∗ 589 → 4763 ∗ ∗589 → 476312589.

As further examples, one can check that the underlined 5’s in 5115, 1551, and 525 correspond
to 231, 321, and 123 respectively. More examples can be found in Table 2 illustrating our
second encoding of the 3s in all the palindromic compositions of N = 10 (the case n = 6
and k = 3). Comparing Tables 1 and 2 shows that our first and second encodings are
nonequivalent.

The inverse of this algorithm is easy to find: we use the positions of 1, 2, . . . , w1 − 1 to
invert (2) and the positions of w1 + 1, w1 + 2, . . . , n − k + 1 to invert (1). In particular, if
w1 = 1 (resp. w1 = 2) then the corresponding k-part is the leftmost (resp. rightmost) one
in a composition.

5. Additional Encodings with Restricted Permutations

We now provide some additional examples of encodings of combinatorial objects by restricted
permutations to demonstrate various approaches to bijective enumeration. But first, some
definitions.
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Permutation (C, D, t) Palindromic composition
(1,2,3,4) (∅, ∅, 2) 3+4+3
(1,3,2,4) (∅, 1, 1) 3+1+2+1+3
(1,4,2,3) (∅, 2, 0) 3+2+0+2+3
(1,4,3,2) (∅, 11, 0) 3+1+1+0+1+1+3
(2,1,3,4) (∅, ∅, 2) 3+4+3
(2,3,1,4) (∅, 1, 1) 3+1+2+1+3
(2,4,1,3) (∅, 2, 0) 3+2+0+2+3
(2,4,3,1) (∅, 11, 0) 3+1+1+0+1+1+3
(3,1,2,4) (1, ∅, 1) 1+3+2+3+1
(3,4,1,2) (1, 1, 0) 1+3+1+0+1+3+1
(4,3,1,2) (2, ∅, 0) 2+3+0+3+2
(4,2,1,3) (11, ∅, 0) 1+1+3+0+3+1+1
(3,2,1,4) (1, ∅, 1) 1+3+2+3+1
(3,4,2,1) (1, 1, 0) 1+3+1+0+1+3+1
(4,3,2,1) (2, ∅, 0) 2+3+0+3+2
(4,1,2,3) (11, ∅, 0) 1+1+3+0+3+1+1

Table 2: The second encoding in the case n = 6 and k = 3.

A sequence a1, a2, . . . , an is bitonic if for some h, 1 ≤ h ≤ n, we have that a1 ≤ a2 ≤
· · · ≤ ah ≥ ah+1 ≥ · · · ≥ an−1 ≥ an or a1 ≥ a2 ≥ · · · ≥ ah ≤ ah+1 ≤ · · · ≤ an−1 ≤ an. A
binary string x is said to be without singletons if the words 010 and 101 are not factors of x.

Let S1 (resp. S2) be the set of (n + 2)-permutations w1w2 · · ·wn+2 such that w1w2 =
(n + 1)(n + 2) or w1w2 = (n + 2)(n + 1), and w3w4 · · ·wn+2 avoids simultaneously the
patterns 1-2-3 and 2-3-1 (resp. 1-2-3, 1-3-2, and 2-1-3). According to [1], |S1| = n2 − n + 2
and |S2| = 2Fn, where Fn is the n-th Fibonacci number with F0 = F1 = 1.

Let S3 be the set of (n + 3)-permutations w1w2 · · ·wn+3 such that, w1 < w2 < w3 and
w4w5 · · ·wn+3 is in decreasing order. Clearly, |S3| =

(
n+3

3

)
.

Let S4 be the set of n-permutations w1w2 · · ·wn such that w1 is the largest letter among
the four leftmost letters, w3 < w4 and w5w6 · · ·wn is in decreasing order. One can see that
|S4| = 3

(
n
4

)
.

Bijection 1. The elements of S1 are in one-to-one correspondence with binary bitonic se-
quences of length n − 1.

Proof. In order to avoid the restrictions, w3w4 · · ·wn+2 must be either of the form i(i −
1) · · · 1n(n − 1) · · · (i + 1) for i ≥ 0 or of the form

n(n − 1) · · · (n − i + 1)(j + 1)j · · · 1(n − i)(n − i − 1) · · · (j + 2)

for some i > 0 and j ≥ 0.
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We describe our bijection in the case w1w2 = (n + 1)(n + 2). We then use the same
bijection for w1w2 = (n+2)(n+1) and replace 0’s by 1’s and 1’s by 0’s in the corresponding
sequences.

To the permutation (n + 1)(n + 2)i(i − 1) · · · 1n(n − 1) · · · (i + 1) there corresponds the
bitonic sequence 01i0n−i−2 where i > 0; to the permutation

(n + 1)(n + 2)n(n − 1) · · · (n − i + 1)(j + 1)j · · · 1(n − i)(n − i − 1) · · · (j + 2)

there corresponds the sequence 00i1n−i−j−20j where i ≥ 0 and j ≥ 0. Clearly, our map
involves all the binary bitonic sequences starting with 0 exactly once and the reverse to this
map is easy to see. Together with the case w1w2 = (n + 2)(n + 1) we have a bijection.

Bijection 2. The elements of S2 are in one-to-one correspondence with binary strings of
length n + 2 without singletons.

Proof. Clearly, any string under consideration ends with either 00 or with 11. We match the
strings ending with 00 with the permutations beginning with w1w2 = (n + 1)(n + 2). It will
suffice to consider this case. The remaining case is handled by replacing 0’s by 1’s and 1’s
by 0’s, proceeding with the first case, and then replacing (n + 1)(n + 2) with (n + 2)(n + 1)
in the resulting permutation.

We begin with a procedure for constructing permutations w3w4 · · ·wn+2 that avoid the
specified patterns. Insert the numbers 1, 2, . . . , n, in that order, into n slots corresponding
to the letters wi, 3 ≤ i ≤ n + 2 according to the procedure below. Note that we must either
set wn+2 = 1 or set wn+1wn+2 = 12, since otherwise we get an occurrence of a prohibited
pattern. We proceed by induction. If the rightmost i slots have been filled and wn−i is empty,
then we only have two choices: either set wn−i = i + 1 or set wn−i−1wn−i = (i + 1)(i + 2).
From this assignment pattern it is easy to see that a permutation w3w4 · · ·wn+2 that avoids
the restricted patterns may be thought of as a tiling of a 1 × n board by monominos and
dominos.

Now, given such a tiling, we construct a binary string b1b2 · · · bn00 corresponding to that
tiling. Read the tiling from right to left. If the rightmost tile is a monomino, set bn = 0.
Otherwise, set bn−1bn = 11. In general, if the last digit placed in the binary string was
bi = x ∈ {0, 1}, and the next unread tile is a monomino, read this tile and set bi−1 = x.
Otherwise, if the next unread tile is a domino, read this domino and set bi−2bi−1 = x̄x̄, where
x̄ is the binary complement of x. In this way, we avoid the possibility of creating singletons.

This process is reversible: we read a binary word without singletons from right to left
while tiling a 1×n board with monominos and dominos. Whenever we meet x̄x̄ after passing
x in the binary string, we place a domino on the board. Otherwise, we place a monomino.
The resulting tiling defines the corresponding permutation according to the construction
described above. Performing all of these correspondences yields the desired bijection. For
example, if w1w2 · · ·w9 = 896753412, then we produce b1b2 · · · b700 = 110001100.
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Figure 1: The structure of permutations avoiding 1-3-2-4 and having exactly one descent.

Bijection 3. The elements of S3 are in one-to-one correspondence with (n+2)-permutations
avoiding 1-3-2-4 and having exactly one descent (a descent is an i such that wi > wi+1).

Proof. Any (n + 2)-permutation avoiding 1-3-2-4 and having exactly one descent has the
structure ABCD, where A = (i1+1)(i1+2) · · · i2, B = (i3+1)(i3+2) · · · (n+2), C = 12 · · · i1,
D = (i2 + 1)(i2 + 2) · · · i3 (see Figure 1), and one of the following four mutually exclusive
possibilities occurs:

1. none of A, B, C, and D is empty: there are
(

n+1
3

)
such permutations, given by the

number of ways to choose the least elements in A, B, and D (we know that 1 belongs
to C);

2. C is empty: there are
(

n+1
2

)
such permutations, since 1 belongs to A and we choose

the least elements in B and D;

3. B is empty: there are
(

n+1
2

)
such permutations, since 1 belongs to C and we choose

the least elements in A and D;

4. A and C are empty: there are (n + 1) such permutations, since 1 is in D and we need
to choose the length of D (B is not empty).

No other cases can exist since requiring that only A is empty, or requiring that only
D is empty, gives Case 4 above. Note that summing over all the cases gives us exactly(

n+3
3

)
permutations. Once the permutations avoiding 1-3-2-4 with exactly one descent have

been partitioned into the four cases above, it is easy to find bijections in each case with
permutations in S3 as follows.

1. abc(n+3)(n+2)w6w7 · · ·wn+3, where a < b < c < n+2 and w6w7 · · ·wn+3 is decreasing.
Choosing a, b, and c corresponds to choosing i1, i2, and i3;

2. ab(n + 3)(n + 2)w5w6 · · ·wn+3, where a < b < n + 2 and w5w6 · · ·wn+3 is decreasing.
Choosing a and b corresponds to choosing i2 and i3;

3. ab(n + 2)(n + 3)w5w6 · · ·wn+3, where a < b < n + 2 and w5w6 · · ·wn+3 is decreasing.
Choosing a and b corresponds to choosing i1 and i2;



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A34 16

4. a(n + 2)(n + 3)w4w5 · · ·wn+3, where a < n + 2 and w4w5 · · ·wn+3 is decreasing. The
length of D corresponds to a.

Since these cases provide a partition of permutations in S3, the bijection is complete.

Bijection 4. Given n lines in the plane such that no two are parallel, no three lines share
a point, and no three points of intersection are collinear, let P be the set of points at which
pairs of these lines intersect. Then the elements of S4 are in one-to-one correspondence with
the set of all lines drawn through pairs of points in P .

Proof. Labeling the lines by 1, 2, . . . , n, each intersection point can be represented by a
pair of numbers (x, y) corresponding to the intersecting lines. Any line containing a pair of
intersecting points can be described by a pair ((x, y), (z, v)) where x, y, z, and v are different.
Assuming that x < y, z < v, and y < v we construct the corresponding permutation
vzxyw5w6 · · ·wn where w5w6 · · ·wn is decreasing. Clearly this map is a bijection.
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