MORE ON THE FIBONACCI SEQUENCE AND HESSENBERG MATRICES

Morteza Esmaeili
Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, Iran
emorteza@cc.iut.ac.ir

Received: 7/7/06, Revised: 9/25/06, Accepted: 10/19/06, Published: 11/1/06

Abstract

Five new classes of Fibonacci-Hessenberg matrices are introduced. Further, we introduce the notion of two-dimensional Fibonacci arrays and show that three classes of previously known Fibonacci-Hessenberg matrices and their generalizations satisfy this property. Simple systems of linear equations are given whose solutions are Fibonacci fractions.

1. Introduction

The Fibonacci sequence is defined by $f_{0}=0, f_{1}=1$ and $f_{n}=f_{n-1}+f_{n-2}, n \geq 2$. An $n \times n$ matrix \mathcal{A} is called a (lower) Hessenberg matrix if all entries above the superdiagonal are zero. As an example set $\mathcal{A}_{1}=(1)$ and define \mathcal{A}_{n} by:

$$
\mathcal{A}_{n}:=\left(\begin{array}{cccccc}
2 & 1 & 0 & \cdots & \cdots & 0 \\
1 & 2 & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & 2 & 1 \\
1 & \cdots & \cdots & \cdots & 1 & 1
\end{array}\right)_{n \times n .}
$$

These matrices are Hessenberg and the determinant of \mathcal{A}_{n} is the nth Fibonacci number f_{n}. Several Hessenberg matrices whose determinants are Fibonacci numbers have been introduced in [1], [2], [4], and [5]. Strang [5] has introduced real tridiagonal matrices such that their determinants are Fibonacci numbers, while in [2] we see complex Hessenberg matrices with this property. It has been shown in [4] that the maximum determinant achieved by $n \times n$ Hessenberg (0,1)-matrices is the nth Fibonacci number f_{n} and a class of matrices (denoted in this paper by $\mathcal{E}_{n, 0}$) achieving this bound has been introduced.

In this paper, we consider sequences of Hessenberg matrices whose determinants are in the form $t f_{n-1}+f_{n-2}$ or $f_{n-1}+t f_{n-2}$ for some real or complex number t. Such matrices will be referred to as Fibonacci-Hessenberg matrices.

In Section 2 we introduce five new classes of Fibonacci-Hessenberg matrices. As a new concept, the two-dimensional Fibonacci array is introduced in Section 3. Three classes of Fibonacci-Hessenberg matrices satisfying this property are given.

2. More Fibonacci-Hessenberg Matrices

As mentioned above, several connections between the Fibonacci sequence and Hessenberg matrices have been given in [1], [2], [4], and [5]. In this section we develop some of these connections and provide more examples.

The Fibonacci recurrence relation $a_{n}=a_{n-1}+a_{n-2}$ beginning with $a_{1}=1$ and $a_{2}=t$ produces the sequence $1, t, t+1,2 t+1,3 t+2,5 t+3, \cdots$. Thus $a_{n}=t f_{n-1}+f_{n-2}$ for $n \geq 1$ and $a_{n}=f_{n}$ if and only if $t=1$. On the other hand, the sequence $a_{n}=a_{n-1}+a_{n-2}$ starting at $a_{1}=t$ and $a_{2}=1$ satisfies $a_{n}=t f_{n-2}+f_{n-1}$.

Definition 1 Given a real or complex number t and an integer n, we refer to numbers $t f_{n-1}+f_{n-2}$ and $f_{n-1}+t f_{n-2}$ as type 1 and type 2 , respectively, (t, n)-Fibonacci, briefly t-Fibonacci, numbers. A sequence of Hessenberg matrices $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}, \cdots$, where \mathcal{A}_{n} is an $n \times n$ matrix, is defined to be a Fibonacci-Hessenberg matrix if there exists an integer $m>0$ and a number t such that, for each $n \geq m$, the determinant of \mathcal{A}_{n} is a t-Fibonacci number and such that the determinants are of the same type.

Example 1 Given a number t, let $\mathcal{R}_{n, t}$ denote the $n \times n$ matrix given below.

$$
\mathcal{R}_{n, t}:=\left(\begin{array}{cccccc}
2 & 1 & 0 & \cdots & \cdots & 0 \\
1 & 2 & 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & 2 & 1 \\
1 & \cdots & \cdots & \cdots & 1 & t+1
\end{array}\right)_{n \times n .}
$$

The determinant of $\mathcal{R}_{n, t}$ is denoted by $r_{n, t}$. It can be shown that $r_{n, t}=t f_{n+1}+f_{n}, n \geq 1$, (see relation (10) in the proof of Theorem 2) and hence $\mathcal{R}_{n, t}$ is a Fibonacci-Hessenberg matrix. Thus, for instance, $r_{n,-1}=-f_{n+1}+f_{n}=-f_{n-1}$; that is $r_{n,-1}$ generates the additive inverse of the Fibonacci sequence. The Lucas numbers are defined by $l_{1}=1$, $l_{2}=3$ and $l_{n}=l_{n-1}+l_{n-2}$ for $n>2$. One can easily verify by induction that $l_{n}=$ $f_{n-1}+f_{n+1}$. Hence $r_{n, 3}=3 f_{n+1}+f_{n}=f_{n+1}+f_{n+3}=l_{n+2}$. For $t=0$ we have $r_{n, 0}=f_{n}$,

Table 1: Determinant $r_{n, t}$ for $1 \leq n \leq 5$ and $t=-1,0,1,2,3$.

$t \backslash n$	1	2	3	4	5
3	4	7	11	18	29
2	3	5	8	13	21
1	2	3	5	8	13
0	1	1	2	3	5
-1	0	-1	-1	-2	-3

while $r_{n, 1}=f_{n+1}+f_{n}=f_{n+2}$ and $r_{n, 2}=2 f_{n+1}+f_{n}=f_{n+3}$. These are illustrated by Table 1.

Given a positive integer n, let $\mathcal{C}_{n, t}$ be the $n \times n$ matrix in which the entries below the diagonal are 1 , the lowest entry of the nth column is $t+1$ and the other diagonal entries are 2 , the entries on the superdiagonal are -1 and the entries above the superdiagonal are zero. Changing the first element of the first column in $\mathcal{C}_{n, t}$ to 2 , we get another Hessenberg matrix denoted by $\mathcal{B}_{n, t}$. Matrices $\mathcal{C}_{5, t}$ and $\mathcal{B}_{5, t}$ are given below.

$$
\mathcal{C}_{5, t}:=\left(\begin{array}{rrrrr}
2 & -1 & 0 & 0 & 0 \\
1 & 2 & -1 & 0 & 0 \\
1 & 1 & 2 & -1 & 0 \\
1 & 1 & 1 & 2 & -1 \\
1 & 1 & 1 & 1 & t+1
\end{array}\right) \quad \mathcal{B}_{5, t}:=\left(\begin{array}{rrrrr}
1 & -1 & 0 & 0 & 0 \\
1 & 2 & -1 & 0 & 0 \\
1 & 1 & 2 & -1 & 0 \\
1 & 1 & 1 & 2 & -1 \\
1 & 1 & 1 & 1 & t+1
\end{array}\right)
$$

Proposition 1 The determinant of $\mathcal{C}_{n, t}$, denoted $c_{n, t}$, is $c_{n, t}=f_{2 n}+t f_{2 n-1}, n \geq 1$, and $\mathcal{B}_{n, t}$ has determinant $b_{n, t}=f_{2 n-1}+t f_{2 n-2}, \quad n \geq 1$.

Proof. We prove the statements by induction on n. It is obvious that these statements hold for $n=1,2$. Suppose $n \geq 3$. By the cofactor expansion along the first row we get $c_{n, t}=2 c_{n-1, t}+b_{n-1, t}$ and $b_{n, t}=c_{n-1, t}+b_{n-1, t}$. It follows from these two relations that

$$
\begin{equation*}
b_{n, t}=c_{n, t}-c_{n-1, t} . \tag{1}
\end{equation*}
$$

Relations (1) and $c_{n, t}=2 c_{n-1, t}+b_{n-1, t}$ imply that $c_{n, t}=3 c_{n-1, t}-c_{n-2, t}$. Using the induction hypothesis we get

$$
\begin{aligned}
c_{n, t} & =3 c_{n-1, t}-c_{n-2, t} \\
& =3\left(f_{2 n-2}+t f_{2 n-3}\right)-\left(f_{2 n-4}+t f_{2 n-5}\right) \\
& =\left(3 f_{2 n-2}-f_{2 n-4}\right)+t\left(3 f_{2 n-3}-f_{2 n-5}\right) \\
& =f_{2 n}+t f_{2 n-1} .
\end{aligned}
$$

Finally, it follows from $b_{n, t}=c_{n, t}-c_{n-1, t}$ and $c_{n, t}=f_{2 n}+t f_{2 n-1}$ that $b_{n, t}=f_{2 n-1}+t f_{2 n-2}$.

The three classes of Fibonacci-Hessenberg matrices given above are generalizations of matrices D_{n}, C_{n}, and B_{n} introduced in [1]. In fact the matrices D_{n}, C_{n}, and B_{n} given in [1] are $\mathcal{R}_{n, 1}, \mathcal{C}_{n, 1}$, and $\mathcal{B}_{n, 1}$, respectively.

Now we introduce five new classes of Fibonacci-Hessenberg matrices. Given a number t, let $\mathcal{K}_{n, t}$ be the $n \times n$ Hessenberg matrix in which the superdiagonal entries are -1 , the entry located on the nth row and nth column is $t+1$ and the other diagonal entries are 2 , and the entries on each column and below the diagonal are alternately -1 and 1 starting with -1 . The matrix $\mathcal{K}_{5, t}$ is given by (2).

Replacing the top-left entry (the entry located in the first row and first column) in $\mathcal{K}_{n, t}$ with 1 , we obtain another Hessenberg matrix denoted by $\mathcal{L}_{n, t}$. Replacing the superdiagonal entries in both $\mathcal{K}_{n, t}$ and $\mathcal{L}_{n, t}$ with 1 , two more classes of Hessenberg matrices, denoted $\underline{\mathcal{K}}_{n, t}$ and $\underline{\mathcal{L}}_{n, t}$, respectively, are obtained.

$$
\begin{align*}
& \mathcal{K}_{5, t}=\left(\begin{array}{rrrrr}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
1 & -1 & 2 & -1 & 0 \\
-1 & 1 & -1 & 2 & -1 \\
1 & -1 & 1 & -1 & t+1
\end{array}\right) \mathcal{L}_{5, t}=\left(\begin{array}{rrrrr}
1 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
1 & -1 & 2 & -1 & 0 \\
-1 & 1 & -1 & 2 & -1 \\
1 & -1 & 1 & -1 & t+1
\end{array}\right) \\
& \underline{\mathcal{K}}_{5, t}=\left(\begin{array}{rrrrr}
2 & 1 & 0 & 0 & 0 \\
-1 & 2 & 1 & 0 & 0 \\
1 & -1 & 2 & 1 & 0 \\
-1 & 1 & -1 & 2 & 1 \\
1 & -1 & 1 & -1 & t+1
\end{array}\right) \underline{\mathcal{L}}_{5, t}=\left(\begin{array}{rrrrr}
1 & 1 & 0 & 0 & 0 \\
-1 & 2 & 1 & 0 & 0 \\
1 & -1 & 2 & 1 & 0 \\
-1 & 1 & -1 & 2 & 1 \\
1 & -1 & 1 & -1 & t+1
\end{array}\right) \tag{2}
\end{align*}
$$

Theorem 1 Let $k_{n, t}, l_{n, t}, \underline{k}_{n, t}$ and $\underline{l}_{n, t}$ denote the determinants of $\mathcal{K}_{n, t}, \mathcal{L}_{n, t}, \underline{\mathcal{K}}_{n, t}$ and $\mathcal{L}_{n, t}$, respectively. Then

$$
\left\{\begin{array}{l}
k_{n, t}=f_{n}+t f_{n+1}, \quad n \geq 1 \\
\left\{\begin{array}{l}
l_{1, t}=t+1 \\
l_{n, t}=k_{n-2, t}=f_{n-2}+t f_{n-1}, \quad n \geq 2
\end{array}\right. \\
\quad \underline{k}_{n, t}=f_{2 n}+t f_{2 n-1}, \quad n \geq 1
\end{array}, \begin{array}{l}
\left\{\begin{array}{l}
\underline{l}_{1, t}=1+t, \\
\underline{l}_{n, t}=\underline{k}_{n-1, t}+\underline{l}_{n-1, t}=f_{2 n-1}+t f_{2 n-2}, \quad n \geq 2
\end{array}\right.
\end{array}\right.
$$

Therefore, the four introduced classes of Hessenberg matrices are indeed FibonacciHessenberg matrices.

Proof. The proof is by induction on n. Due to the similarity between matrices $\mathcal{K}_{n, t}\left(\mathcal{L}_{n, t}\right)$ and $\underline{\mathcal{K}}_{n, t}$ (resp. $\underline{\mathcal{L}}_{n, t}$), we just prove the first two statements. It is easily verified that the statements hold for $1 \leq n \leq 3$. Assume that $n \geq 4$. Using cofactor expansion along the first row we obtain:

$$
\begin{cases}l_{n, t}=k_{n-1, t}-l_{n-1, t}, & n \geq 4 \tag{3}\\ k_{n, t}=2 k_{n-1, t}-l_{n-1, t}, & n \geq 4\end{cases}
$$

Therefore,

$$
\begin{align*}
l_{n, t} & =k_{n-1, t}-l_{n-1, t} \\
& =\left(2 k_{n-2, t}-l_{n-2, t}\right)-\left(k_{n-2, t}-l_{n-2, t}\right) \tag{4}\\
& =k_{n-2, t} .
\end{align*}
$$

Relations (3) and (4) imply

$$
\begin{equation*}
k_{n, t}=2 k_{n-1, t}-l_{n-1, t}=2 k_{n-1, t}-k_{n-3, t}, \quad n \geq 4 \tag{5}
\end{equation*}
$$

This, together with the induction hypothesis, result in:

$$
\begin{aligned}
k_{n, t} & =2 k_{n-1, t}-k_{n-3, t}=2\left(f_{n-1}+t f_{n}\right)-\left(f_{n-3}+t f_{n-2}\right) \\
& =\left(f_{n-1}+f_{n-1}-f_{n-3}\right)+\left(t f_{n}+t f_{n}-t f_{n-2}\right) \\
& =\left(f_{n-1}+f_{n-2}+f_{n-3}-f_{n-3}\right)+\left(t f_{n}+t f_{n-1}+t f_{n-2}-t f_{n-2}\right) \\
& =f_{n}+t f_{n+1} .
\end{aligned}
$$

Define $\mathcal{E}_{1, t}=(t+1)$ and $\mathcal{E}_{2, t}=\left(\begin{array}{cc}1 & 1 \\ 0 & t+1\end{array}\right)$. Given the $n \times n$ matrix $\mathcal{E}_{n, t}$, a new matrix $\mathcal{E}_{n+1, t}$ is formed by adding one row of weight one and starting with 1 to the top of $\mathcal{E}_{n, t}$ and then adding a new column with alternating 1 's and 0 's, starting with a 1 , to the left of the obtained matrix. The matrix $\mathcal{E}_{5, t}$ is given below. The matrix $\mathcal{E}_{n, 0}$ was introduced in [4] and it was shown in [4] that the determinant of $\mathcal{E}_{n, 0}, n \geq 1$, is f_{n}. Let \mathbf{i} denote the usual complex unit with $\mathbf{i}^{2}=-1$. Replacing the entry of $\mathcal{E}_{n, t}$ located in the i th row and $(i+1)$ th column, $1 \leq i<n$, with $(-1)^{i+n} \mathbf{i}$, we obtain another Hessenberg matrix denoted by $\mathcal{H}_{n, t}$. The matrix $\mathcal{H}_{5, t}$ is shown below.

$$
\mathcal{E}_{5, t}=\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & t+1
\end{array}\right) \quad \mathcal{H}_{5, t}=\left(\begin{array}{ccccc}
1 & \mathbf{i} & 0 & 0 & 0 \\
0 & 1 & -\mathbf{i} & 0 & 0 \\
1 & 0 & 1 & \mathbf{i} & 0 \\
0 & 1 & 0 & 1 & -\mathbf{i} \\
1 & 0 & 1 & 0 & t+1
\end{array}\right)
$$

Proposition 2 The determinants of $\mathcal{E}_{n, t}$ and $\mathcal{H}_{n, t}$, denoted by $e_{n, t}$ and $h_{n, t}$, respectively, are $e_{1, t}=h_{1, t}=t+1$ and $e_{n, t}=h_{n, t}=t f_{n-1}+f_{n}$ for $n \geq 2$. Thus $\mathcal{E}_{n, t}$ and $\mathcal{H}_{n, t}$ are Fibonacci-Hessenberg matrices.

Proof. Consider $\mathcal{H}_{n, t}$. Obviously we have $h_{1, t}=h_{2, t}=t+1$ and $h_{3, t}=2 t+3$. Suppose $n \geq 4$ and that the statement holds for each integer $0<m<n$. Let $\mathcal{H}_{n, t}^{\prime}$ be the matrix obtained from $\mathcal{H}_{n, t}$ by means of deleting the first row and second column. It is easy to see that using cofactor expansion along the first row on both $\mathcal{H}_{n, t}$ and $\mathcal{H}_{n, t}^{\prime}$ results in $h_{n, t}=h_{n-1, t}+h_{n-2, t}$. Therefore, it follows from the induction hypothesis that $h_{n, t}=h_{n-1, t}+h_{n-2, t}=\left(t f_{n-2}+f_{n-1}\right)+\left(t f_{n-3}+f_{n-2}\right)=t f_{n-1}+f_{n}$. The same argument applies to $\mathcal{E}_{n, t}$.

3. Two-dimensional Fibonacci Arrays

From among the introduced Fibonacci matrices, the matrices $\mathcal{R}_{n, t}, \mathcal{C}_{n, t}$ and $\mathcal{E}_{n, t}$ have a further interesting property. Given an $n \times n$ matrix \mathcal{M}, let $\mathcal{M}^{(i)}$ be the matrix obtained from \mathcal{M} by replacing its i th column with the all one column vector 1 . The mentioned matrices have the property that the determinants of their associated matrices $\mathcal{R}_{n, t}^{(i)}, \mathcal{C}_{n, t}^{(i)}$
and $\mathcal{E}_{n, t}^{(i)}, 1 \leq i \leq n$, are t-Fibonacci numbers. This leads to a connection between Fibonacci fractions and the all one vector 1.

Theorem 2 Let $r_{n, t}^{(i)}, c_{n, t}^{(i)}$ and $e_{n, t}^{(i)}$ be determinants of $\mathcal{R}_{n, t}^{(i)}, \mathcal{C}_{n, t}^{(i)}$ and $\mathcal{E}_{n, t}^{(i)}$, respectively. Then we have

$$
\left\{\begin{array}{l}
r_{n, t}^{(i)}=t f_{n-i}+f_{n-i-1}, \quad n \geq i \geq 1 \tag{6}\\
r_{n, t}=t+\sum_{i=1}^{n} r_{n, t}^{(i)} ; \\
c_{n, t}^{(i)}=f_{2(n-i)+1}+t f_{2(n-i)}, \quad n \geq i \geq 1 \\
c_{n, t}=t+\sum_{i=1}^{n} c_{n, t}^{(i)} ; \\
e_{1, t}^{(1)}=1 ; e_{n, t}^{(1)}=t f_{n-3}+f_{n-2}, \quad n \geq 2 \\
e_{n, t}^{(i)}=t f_{n-i}+f_{n-i+1}, \quad n \geq i \geq 2 \\
2 e_{n, t}=(t+1)+\sum_{i=1}^{n} e_{n, t}^{(i)}, \quad n \geq 2
\end{array}\right.
$$

Proof. We use induction on n to prove the statements related to the Fibonacci-Hessenberg matrices $\mathcal{R}_{n, t}$; similar arguments apply to the other two classes of matrices. Setting $f_{0}=0$ and $f_{-1}=1$, it is easy to verify that the statements hold for $1 \leq n \leq 3$. Evaluating the determinants of matrices $\mathcal{R}_{n, t}$ and $\mathcal{R}_{n, t}^{(1)}$ by cofactor expansion along the first row, we have

$$
\begin{cases}r_{n, t}^{(1)}=r_{n-1, t}-r_{n-1, t}^{(1)}, & n \geq 3 ; \tag{7}\\ r_{n-1, t}=2 r_{n-2, t}-r_{n-2, t}^{(1)}, & n \geq 3\end{cases}
$$

Therefore,

$$
\begin{align*}
r_{n, t}^{(1)} & =r_{n-1, t}-r_{n-1, t}^{(1)} \\
& =\left(2 r_{n-2, t}-r_{n-2, t}^{(1)}\right)-\left(r_{n-2, t}-r_{n-2, t}^{(1)}\right) \tag{8}\\
& =r_{n-2, t} .
\end{align*}
$$

It follows from (7) and (8) that

$$
\begin{equation*}
r_{n, t}=2 r_{n-1, t}-r_{n-1, t}^{(1)}=2 r_{n-1, t}-r_{n-3, t}, \quad n \geq 3 \tag{9}
\end{equation*}
$$

This together with the induction hypothesis result in

$$
\begin{align*}
r_{n, t} & =2 r_{n-1, t}-r_{n-3, t} \\
& =2\left(t f_{n}+f_{n-1}\right)-\left(t f_{n-2}+f_{n-3}\right) \\
& =t\left(2 f_{n}-f_{n-2}\right)+\left(2 f_{n-1}-f_{n-3}\right) \tag{10}\\
& =t f_{n+1}+f_{n},
\end{align*}
$$

and hence

$$
\begin{equation*}
r_{n, t}^{(1)}=r_{n-2, t}=t f_{n-1}+f_{n-2} . \tag{11}
\end{equation*}
$$

By cofactor expansion along the first row, one can easily verify that $r_{n, t}^{(i)}=r_{n-1, t}^{(i-1)}$ if $2 \leq i \leq n-1$, and thus

$$
\begin{equation*}
r_{n, t}^{(i)}=r_{n-i-1, t}=t f_{n-i}+f_{n-i-1}, \quad 2 \leq i \leq n-1 \tag{12}
\end{equation*}
$$

The augmented matrices obtained from a given matrix \mathcal{M} by adding the all one column vector 1 to the left and the right of \mathcal{M} are denoted by $1 \mathcal{M}$ and $\mathcal{M} 1$, respectively. Evaluating the determinants by using cofactors along the first row, we obtain $r_{n, t}^{(n)}=$ $2 r_{n-1, t}^{(n-1)}+(-1)^{n+1} \operatorname{det}(\mathbf{1} \mathcal{M})$ where $\mathcal{M} \mathbf{1}$ is the matrix $\mathcal{R}_{n-1, t}^{(n-1)}$. Therefore,

$$
\begin{equation*}
r_{n, t}^{(n)}=2 r_{n-1, t}^{(n-1)}+(-1)^{2 n-1} r_{n-1, t}^{(n-1)}=r_{n-1, t}^{(n-1)}=1=t f_{0}+f_{-1} . \tag{13}
\end{equation*}
$$

It is easily checked by induction on n that $\sum_{j=-1}^{n} f_{j}=f_{n+2}$. This together with the equations $r_{n, t}=t f_{n+1}+f_{n}$ and $r_{n, t}^{(i)}=t f_{n-i}+f_{n-i-1}$ imply that $r_{n, t}=t+\sum_{i=1}^{n} r_{n, t}^{(i)}$.

Corollary 1 (Fibonacci Fractions and Hessenberg Matrices) The system of equations $\mathcal{R}_{n, t} \mathbf{x}=\mathbf{1}$ has the unique solution

$$
\begin{equation*}
x_{i}=\frac{f_{n-i-1}+t f_{n-i}}{f_{n}+t f_{n+1}}, \quad 1 \leq i \leq n . \tag{14}
\end{equation*}
$$

Similarly, the system of equations $\mathcal{C}_{n, t} \mathbf{x}=\mathbf{1}$ has the solution

$$
\begin{equation*}
x_{i}=\frac{f_{2(n-i)+1}+t f_{2(n-i)}}{f_{2 n}+t f_{2 n-1}}, \quad 1 \leq i \leq n . \tag{15}
\end{equation*}
$$

We also have $x_{1}=\frac{t f_{n-3}+f_{n-2}}{t f_{n-1}+f_{n}}$ and $x_{i}=\frac{t f_{n-i}+f_{n-i+1}}{t f_{n-1}+f_{n}}, 2 \leq i \leq n$, as the unique solution of $\mathcal{E}_{n, t} \mathbf{x}=1$.

Proof. It follows from (6) and Cramer's rule that the system $\mathcal{R}_{n, t} \mathbf{x}=1$ has unique solution $x_{i}=\frac{r_{n, t}^{(i)}}{r_{n, t}}=\frac{f_{n-i-1}+t f_{n-i}}{f_{n}+t f_{n+1}}, \quad 1 \leq i \leq n$. The same argument applies to the systems $\mathcal{C}_{n, t} \mathbf{x}=\mathbf{1}$ and $\mathcal{E}_{n, t} \mathbf{x}=\mathbf{1}$.

In particular, according to (14), for $t=0,1,2$ the system $\mathcal{R}_{n, t} \mathbf{x}=\mathbf{1}$ has solutions:

$$
\begin{cases}x_{i}=\frac{f_{n-i-1}}{f_{n}}, & t=0 ; \\ x_{i}=\frac{f_{n-i}+f_{n-i-1}}{f_{n+1}+f_{n}}=\frac{f_{n-i+1}}{f_{n}+2}, & t=1 ; \\ x_{i}=\frac{2 f_{n-i}+f_{n-i-1}}{2 f_{n+1}+f_{n}}=\frac{f_{n-i+2}}{f_{n+3}}, & t=2 .\end{cases}
$$

It also follows from (15) that for $t=0,1,2$ the system $\mathcal{C}_{n, t} \mathbf{x}=\mathbf{1}$ has solutions

$$
\begin{cases}x_{i}=\frac{f_{2(n-i)+1}}{f_{2 n}}, & t=0 ; \\ x_{i}=\frac{f_{2(n-i+1)}}{f_{2 n}}, & t=1 ; \\ x_{i}=\frac{f_{2 n-i+1)}+f_{2(n-i)}}{f_{2 n+1}+f_{2 n-1}}, & t=2 .\end{cases}
$$

Consider the $n \times n$ Fibonacci-Hessenberg matrix $\mathcal{R}_{n, t}$. For $1 \leq i \leq n$ we have $r_{n, t}^{(i)}=$ $t f_{n-i}+f_{n-i+1}$. This t-Fibonacci number depends on both n and i, and hence we have a two-dimensional array $r(n, i ; t)$ of t-Fibonacci numbers.

Table 2: The Values of $r_{n, t}^{(i)}$ for $1 \leq n, i \leq 6$.

$n \backslash i$	1	2	3	4	5	6
1	$t f_{0}+f_{-1}$					
2	$t f_{1}+f_{0}$	$t f_{-1}+t_{-1}$				
3	$t f_{2}+f_{1}$	$t f_{1}+f_{0}$	$t f_{0}+f_{-1}$			
4	$t f_{3}+f_{2}$	$t f_{2}+f_{1}$	$t f_{1}+f_{0}$	$t f_{0}+f_{-1}$		
5	$t f_{4}+f_{3}$	$t f_{3}+f_{2}$	$t f_{2}+f_{1}$	$t f_{1}+f_{0}$	$t f_{0}+f_{-1}$	
6	$t f_{5}+f_{4}$	$t f_{4}+f_{3}$	$t f_{3}+f_{2}$	$t f_{2}+f_{1}$	$t f_{1}+f_{0}$	$t f_{0}+f_{-1}$

Table 3: The Values of $r_{n, 1}^{(i)}$ for $1 \leq n, i \leq 6$.

$n \backslash i$	1	2	3	4	5	6
1	1					
2	1	1				
3	2	1	1			
4	3	2	1	1		
5	5	3	2	1	1	
6	8	5	3	2	1	1

Table 2 represents $r(n, i ; t)$ for $1 \leq n, i \leq 6$. Asymptotically, all rows and columns of the array $r(n, i ; t)$ are the same. Table 3 represents $r(n, i ; 1)$ for $1 \leq n, i \leq 6$. For a fixed n the nth row of the array consists of the first n Fibonacci numbers and, for each i, the i th column, starting at the i th entry, is also the Fibonacci sequence.

In the context of systems theory [3], we may consider the determinant function as an operator and interpret $r(n, i ; t)=\operatorname{Det}\left(\mathcal{R}_{n, t}^{(i)}\right)$ as a two-dimensional system. The results show that this system is invariant in the sense that its output is always a t-Fibonacci number. We can also say that the system is invariant with respect to fixing any of the two variables n and i; that is, its output with a fixed n is identical to the output when i is fixed and n varies.

References

[1] N.D. Cahill, J.R. D'Errico, D.A. Narayan and J.Y. Narayan, "Fibonacci Determinants," The College Math. Journal of The Math. Association of America, vol. 33, no. 3, pp. 221-225, May 2002.
[2] N.D. Cahill, J.R. D'Errico, J. Spence, "Complex factorizations of the Fibonacci and Lucas numbers," Fibonacci Quarterly, vol. 41, no. 1, pp. 13-19, Feb. 2003.
[3] K.B. Datta and B. M. Mohan, Orthogonal Functions in Systems and Control, IIT, Kharagpur, India, 1995.
[4] Ching Li, "The Maximum Determinant of an nxn Lower Hessenberg (0,1) matrix," Linear Algebra and Its Applications, 183, pp. 147-153, 1993.
[5] G. Strang, Introduction to Linear Algebra, 2nd Edition, Wellesley MA, Wellesley-Cambridge, 1998.

