MORE ON THE FIBONACCI SEQUENCE AND HESSENBERG MATRICES

Morteza Esmaeili

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, Iran emorteza@cc.iut.ac.ir

Received: 7/7/06, Revised: 9/25/06, Accepted: 10/19/06, Published: 11/1/06

Abstract

Five new classes of Fibonacci-Hessenberg matrices are introduced. Further, we introduce the notion of two-dimensional Fibonacci arrays and show that three classes of previously known Fibonacci-Hessenberg matrices and their generalizations satisfy this property. Simple systems of linear equations are given whose solutions are Fibonacci fractions.

1. Introduction

The Fibonacci sequence is defined by $f_0 = 0$, $f_1 = 1$ and $f_n = f_{n-1} + f_{n-2}$, $n \ge 2$. An $n \times n$ matrix \mathcal{A} is called a (lower) Hessenberg matrix if all entries above the superdiagonal are zero. As an example set $\mathcal{A}_1 = (1)$ and define \mathcal{A}_n by:

$$\mathcal{A}_{n} := \begin{pmatrix} 2 & 1 & 0 & \cdots & \cdots & 0 \\ 1 & 2 & 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 2 & 1 \\ 1 & \cdots & \cdots & 1 & 1 \end{pmatrix}_{n \times n}$$

These matrices are Hessenberg and the determinant of \mathcal{A}_n is the *n*th Fibonacci number f_n . Several Hessenberg matrices whose determinants are Fibonacci numbers have been introduced in [1], [2], [4], and [5]. Strang [5] has introduced real tridiagonal matrices such that their determinants are Fibonacci numbers, while in [2] we see complex Hessenberg matrices with this property. It has been shown in [4] that the maximum determinant achieved by $n \times n$ Hessenberg (0, 1)-matrices is the *n*th Fibonacci number f_n and a class of matrices (denoted in this paper by $\mathcal{E}_{n,0}$) achieving this bound has been introduced.

In this paper, we consider sequences of Hessenberg matrices whose determinants are in the form $tf_{n-1} + f_{n-2}$ or $f_{n-1} + tf_{n-2}$ for some real or complex number t. Such matrices will be referred to as Fibonacci-Hessenberg matrices.

In Section 2 we introduce five new classes of Fibonacci-Hessenberg matrices. As a new concept, the two-dimensional Fibonacci array is introduced in Section 3. Three classes of Fibonacci-Hessenberg matrices satisfying this property are given.

2. More Fibonacci-Hessenberg Matrices

As mentioned above, several connections between the Fibonacci sequence and Hessenberg matrices have been given in [1], [2], [4], and [5]. In this section we develop some of these connections and provide more examples.

The Fibonacci recurrence relation $a_n = a_{n-1} + a_{n-2}$ beginning with $a_1 = 1$ and $a_2 = t$ produces the sequence 1, t, t + 1, 2t + 1, 3t + 2, 5t + 3, \cdots . Thus $a_n = tf_{n-1} + f_{n-2}$ for $n \ge 1$ and $a_n = f_n$ if and only if t = 1. On the other hand, the sequence $a_n = a_{n-1} + a_{n-2}$ starting at $a_1 = t$ and $a_2 = 1$ satisfies $a_n = tf_{n-2} + f_{n-1}$.

Definition 1 Given a real or complex number t and an integer n, we refer to numbers $tf_{n-1} + f_{n-2}$ and $f_{n-1} + tf_{n-2}$ as type 1 and type 2, respectively, (t, n)-Fibonacci, briefly t-Fibonacci, numbers. A sequence of Hessenberg matrices $\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3, \cdots$, where \mathcal{A}_n is an $n \times n$ matrix, is defined to be a *Fibonacci-Hessenberg* matrix if there exists an integer m > 0 and a number t such that, for each $n \ge m$, the determinant of \mathcal{A}_n is a t-Fibonacci number and such that the determinants are of the same type.

Example 1 Given a number t, let $\mathcal{R}_{n,t}$ denote the $n \times n$ matrix given below.

$$\mathcal{R}_{n,t} := \begin{pmatrix} 2 & 1 & 0 & \cdots & \cdots & 0 \\ 1 & 2 & 1 & \ddots & \ddots & 1 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 2 & 1 \\ 1 & \cdots & \cdots & 1 & t+1 \end{pmatrix}_{n \times n}$$

The determinant of $\mathcal{R}_{n,t}$ is denoted by $r_{n,t}$. It can be shown that $r_{n,t} = tf_{n+1} + f_n$, $n \geq 1$, (see relation (10) in the proof of Theorem 2) and hence $\mathcal{R}_{n,t}$ is a Fibonacci-Hessenberg matrix. Thus, for instance, $r_{n,-1} = -f_{n+1} + f_n = -f_{n-1}$; that is $r_{n,-1}$ generates the additive inverse of the Fibonacci sequence. The Lucas numbers are defined by $l_1 = 1$, $l_2 = 3$ and $l_n = l_{n-1} + l_{n-2}$ for n > 2. One can easily verify by induction that $l_n =$ $f_{n-1} + f_{n+1}$. Hence $r_{n,3} = 3f_{n+1} + f_n = f_{n+1} + f_{n+3} = l_{n+2}$. For t = 0 we have $r_{n,0} = f_n$,

$t \backslash n$	1	2	3	4	5
3	4	7	11	18	29
2	3	5	8	13	21
1	2	3	5	8	13
0	1	1	2	3	5
-1	0	-1	-1	-2	-3

Table 1: Determinant $r_{n,t}$ for $1 \le n \le 5$ and t = -1, 0, 1, 2, 3.

while $r_{n,1} = f_{n+1} + f_n = f_{n+2}$ and $r_{n,2} = 2f_{n+1} + f_n = f_{n+3}$. These are illustrated by Table 1.

Given a positive integer n, let $C_{n,t}$ be the $n \times n$ matrix in which the entries below the diagonal are 1, the lowest entry of the nth column is t + 1 and the other diagonal entries are 2, the entries on the superdiagonal are -1 and the entries above the superdiagonal are zero. Changing the first element of the first column in $C_{n,t}$ to 2, we get another Hessenberg matrix denoted by $\mathcal{B}_{n,t}$. Matrices $\mathcal{C}_{5,t}$ and $\mathcal{B}_{5,t}$ are given below.

$$\mathcal{C}_{5,t} := \begin{pmatrix} 2 & -1 & 0 & 0 & 0 \\ 1 & 2 & -1 & 0 & 0 \\ 1 & 1 & 2 & -1 & 0 \\ 1 & 1 & 1 & 2 & -1 \\ 1 & 1 & 1 & 1 & t+1 \end{pmatrix} \quad \mathcal{B}_{5,t} := \begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 1 & 2 & -1 & 0 & 0 \\ 1 & 1 & 2 & -1 & 0 \\ 1 & 1 & 1 & 2 & -1 \\ 1 & 1 & 1 & t+1 \end{pmatrix}$$

Proposition 1 The determinant of $C_{n,t}$, denoted $c_{n,t}$, is $c_{n,t} = f_{2n} + tf_{2n-1}$, $n \ge 1$, and $\mathcal{B}_{n,t}$ has determinant $b_{n,t} = f_{2n-1} + tf_{2n-2}$, $n \ge 1$.

Proof. We prove the statements by induction on n. It is obvious that these statements hold for n = 1, 2. Suppose $n \ge 3$. By the cofactor expansion along the first row we get $c_{n,t} = 2c_{n-1,t} + b_{n-1,t}$ and $b_{n,t} = c_{n-1,t} + b_{n-1,t}$. It follows from these two relations that

$$b_{n,t} = c_{n,t} - c_{n-1,t}.$$
 (1)

Relations (1) and $c_{n,t} = 2c_{n-1,t} + b_{n-1,t}$ imply that $c_{n,t} = 3c_{n-1,t} - c_{n-2,t}$. Using the induction hypothesis we get

$$c_{n,t} = 3c_{n-1,t} - c_{n-2,t}$$

= $3(f_{2n-2} + tf_{2n-3}) - (f_{2n-4} + tf_{2n-5})$
= $(3f_{2n-2} - f_{2n-4}) + t(3f_{2n-3} - f_{2n-5})$
= $f_{2n} + tf_{2n-1}$.

Finally, it follows from $b_{n,t} = c_{n,t} - c_{n-1,t}$ and $c_{n,t} = f_{2n} + tf_{2n-1}$ that $b_{n,t} = f_{2n-1} + tf_{2n-2}$.

The three classes of Fibonacci-Hessenberg matrices given above are generalizations of matrices D_n , C_n , and B_n introduced in [1]. In fact the matrices D_n , C_n , and B_n given in [1] are $\mathcal{R}_{n,1}$, $\mathcal{C}_{n,1}$, and $\mathcal{B}_{n,1}$, respectively.

Now we introduce five new classes of Fibonacci-Hessenberg matrices. Given a number t, let $\mathcal{K}_{n,t}$ be the $n \times n$ Hessenberg matrix in which the superdiagonal entries are -1, the entry located on the *n*th row and *n*th column is t + 1 and the other diagonal entries are 2, and the entries on each column and below the diagonal are alternately -1 and 1 starting with -1. The matrix $\mathcal{K}_{5,t}$ is given by (2).

Replacing the top-left entry (the entry located in the first row and first column) in $\mathcal{K}_{n,t}$ with 1, we obtain another Hessenberg matrix denoted by $\mathcal{L}_{n,t}$. Replacing the superdiagonal entries in both $\mathcal{K}_{n,t}$ and $\mathcal{L}_{n,t}$ with 1, two more classes of Hessenberg matrices, denoted $\underline{\mathcal{K}}_{n,t}$ and $\underline{\mathcal{L}}_{n,t}$, respectively, are obtained.

$$\mathcal{K}_{5,t} = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 1 & -1 & 2 & -1 & 0 \\ -1 & 1 & -1 & 2 & -1 \\ 1 & -1 & 1 & -1 & t+1 \end{pmatrix} \mathcal{L}_{5,t} = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 1 & -1 & 2 & -1 & 0 \\ -1 & 1 & -1 & 2 & -1 \\ 1 & -1 & 1 & -1 & t+1 \end{pmatrix}$$

$$\underbrace{\mathcal{K}}_{5,t} = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ -1 & 2 & 1 & 0 & 0 \\ 1 & -1 & 2 & 1 & 0 \\ -1 & 1 & -1 & 2 & 1 \\ 1 & -1 & 1 & -1 & t+1 \end{pmatrix} \mathcal{L}_{5,t} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ -1 & 2 & 1 & 0 & 0 \\ 1 & -1 & 2 & 1 & 0 \\ -1 & 1 & -1 & 2 & 1 \\ 1 & -1 & 1 & -1 & t+1 \end{pmatrix} \mathcal{L}_{5,t} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ -1 & 2 & 1 & 0 & 0 \\ 1 & -1 & 2 & 1 & 0 \\ -1 & 1 & -1 & 2 & 1 \\ 1 & -1 & 1 & -1 & t+1 \end{pmatrix}$$

$$(2)$$

Theorem 1 Let $k_{n,t}$, $l_{n,t}$, $\underline{k}_{n,t}$ and $\underline{l}_{n,t}$ denote the determinants of $\mathcal{K}_{n,t}$, $\mathcal{L}_{n,t}$, $\underline{\mathcal{K}}_{n,t}$ and $\underline{\mathcal{L}}_{n,t}$, respectively. Then

$$\begin{cases} k_{n,t} = f_n + tf_{n+1}, \quad n \ge 1; \\ \begin{cases} l_{1,t} = t + 1, \\ l_{n,t} = k_{n-2,t} = f_{n-2} + tf_{n-1}, \quad n \ge 2; \\ \underline{k}_{n,t} = f_{2n} + tf_{2n-1}, \quad n \ge 1; \\ \begin{cases} \underline{l}_{1,t} = 1 + t, \\ \underline{l}_{n,t} = \underline{k}_{n-1,t} + \underline{l}_{n-1,t} = f_{2n-1} + tf_{2n-2}, \quad n \ge 2. \end{cases} \end{cases}$$

Therefore, the four introduced classes of Hessenberg matrices are indeed Fibonacci-Hessenberg matrices.

Proof. The proof is by induction on n. Due to the similarity between matrices $\mathcal{K}_{n,t}(\mathcal{L}_{n,t})$ and $\underline{\mathcal{K}}_{n,t}$ (resp. $\underline{\mathcal{L}}_{n,t}$), we just prove the first two statements. It is easily verified that the statements hold for $1 \leq n \leq 3$. Assume that $n \geq 4$. Using cofactor expansion along the first row we obtain:

$$\begin{cases} l_{n,t} = k_{n-1,t} - l_{n-1,t}, & n \ge 4; \\ k_{n,t} = 2k_{n-1,t} - l_{n-1,t}, & n \ge 4. \end{cases}$$
(3)

Therefore,

$$l_{n,t} = k_{n-1,t} - l_{n-1,t} = (2k_{n-2,t} - l_{n-2,t}) - (k_{n-2,t} - l_{n-2,t}) = k_{n-2,t}.$$
(4)

Relations (3) and (4) imply

$$k_{n,t} = 2k_{n-1,t} - l_{n-1,t} = 2k_{n-1,t} - k_{n-3,t}, \quad n \ge 4.$$
(5)

This, together with the induction hypothesis, result in:

$$\begin{aligned} k_{n,t} &= 2k_{n-1,t} - k_{n-3,t} = 2\left(f_{n-1} + tf_n\right) - \left(f_{n-3} + tf_{n-2}\right) \\ &= \left(f_{n-1} + f_{n-1} - f_{n-3}\right) + \left(tf_n + tf_n - tf_{n-2}\right) \\ &= \left(f_{n-1} + f_{n-2} + f_{n-3} - f_{n-3}\right) + \left(tf_n + tf_{n-1} + tf_{n-2} - tf_{n-2}\right) \\ &= f_n + tf_{n+1}. \end{aligned}$$

Define $\mathcal{E}_{1,t} = (t+1)$ and $\mathcal{E}_{2,t} = \begin{pmatrix} 1 & 1 \\ 0 & t+1 \end{pmatrix}$. Given the $n \times n$ matrix $\mathcal{E}_{n,t}$, a new matrix $\mathcal{E}_{n+1,t}$ is formed by adding one row of weight one and starting with 1 to the top of $\mathcal{E}_{n,t}$ and then adding a new column with alternating 1's and 0's, starting with a 1, to the left of the obtained matrix. The matrix $\mathcal{E}_{5,t}$ is given below. The matrix $\mathcal{E}_{n,0}$ was introduced in [4] and it was shown in [4] that the determinant of $\mathcal{E}_{n,0}$, $n \geq 1$, is f_n . Let **i** denote the usual complex unit with $\mathbf{i}^2 = -1$. Replacing the entry of $\mathcal{E}_{n,t}$ located in the *i*th row and (i+1)th column, $1 \leq i < n$, with $(-1)^{i+n}\mathbf{i}$, we obtain another Hessenberg matrix denoted by $\mathcal{H}_{n,t}$. The matrix $\mathcal{H}_{5,t}$ is shown below.

$$\mathcal{E}_{5,t} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & t+1 \end{pmatrix} \quad \mathcal{H}_{5,t} = \begin{pmatrix} 1 & \mathbf{i} & 0 & 0 & 0 \\ 0 & 1 & -\mathbf{i} & 0 & 0 \\ 1 & 0 & 1 & \mathbf{i} & 0 \\ 0 & 1 & 0 & 1 & -\mathbf{i} \\ 1 & 0 & 1 & 0 & t+1 \end{pmatrix}$$

Proposition 2 The determinants of $\mathcal{E}_{n,t}$ and $\mathcal{H}_{n,t}$, denoted by $e_{n,t}$ and $h_{n,t}$, respectively, are $e_{1,t} = h_{1,t} = t + 1$ and $e_{n,t} = h_{n,t} = tf_{n-1} + f_n$ for $n \ge 2$. Thus $\mathcal{E}_{n,t}$ and $\mathcal{H}_{n,t}$ are Fibonacci-Hessenberg matrices.

Proof. Consider $\mathcal{H}_{n,t}$. Obviously we have $h_{1,t} = h_{2,t} = t + 1$ and $h_{3,t} = 2t + 3$. Suppose $n \geq 4$ and that the statement holds for each integer 0 < m < n. Let $\mathcal{H}'_{n,t}$ be the matrix obtained from $\mathcal{H}_{n,t}$ by means of deleting the first row and second column. It is easy to see that using cofactor expansion along the first row on both $\mathcal{H}_{n,t}$ and $\mathcal{H}'_{n,t}$ results in $h_{n,t} = h_{n-1,t} + h_{n-2,t}$. Therefore, it follows from the induction hypothesis that $h_{n,t} = h_{n-1,t} + h_{n-2,t} = (tf_{n-2} + f_{n-1}) + (tf_{n-3} + f_{n-2}) = tf_{n-1} + f_n$. The same argument applies to $\mathcal{E}_{n,t}$.

3. Two-dimensional Fibonacci Arrays

From among the introduced Fibonacci matrices, the matrices $\mathcal{R}_{n,t}$, $\mathcal{C}_{n,t}$ and $\mathcal{E}_{n,t}$ have a further interesting property. Given an $n \times n$ matrix \mathcal{M} , let $\mathcal{M}^{(i)}$ be the matrix obtained from \mathcal{M} by replacing its *i*th column with the all one column vector **1**. The mentioned matrices have the property that the determinants of their associated matrices $\mathcal{R}_{n,t}^{(i)}$, $\mathcal{C}_{n,t}^{(i)}$

and $\mathcal{E}_{n,t}^{(i)}$, $1 \leq i \leq n$, are *t*-Fibonacci numbers. This leads to a connection between Fibonacci fractions and the all one vector **1**.

Theorem 2 Let $r_{n,t}^{(i)}$, $c_{n,t}^{(i)}$ and $e_{n,t}^{(i)}$ be determinants of $\mathcal{R}_{n,t}^{(i)}$, $\mathcal{C}_{n,t}^{(i)}$ and $\mathcal{E}_{n,t}^{(i)}$, respectively. Then we have

$$\begin{cases} r_{n,t}^{(i)} = tf_{n-i} + f_{n-i-1}, & n \ge i \ge 1; \\ r_{n,t} = t + \sum_{i=1}^{n} r_{n,t}^{(i)}; \\ c_{n,t}^{(i)} = f_{2(n-i)+1} + tf_{2(n-i)}, & n \ge i \ge 1; \\ c_{n,t} = t + \sum_{i=1}^{n} c_{n,t}^{(i)}; \\ c_{n,t} = t + \sum_{i=1}^{n} c_{n,t}^{(i)}; \\ e_{1,t}^{(1)} = 1; & e_{n,t}^{(1)} = tf_{n-3} + f_{n-2}, & n \ge 2; \\ e_{n,t}^{(i)} = tf_{n-i} + f_{n-i+1}, & n \ge i \ge 2; \\ 2e_{n,t} = (t+1) + \sum_{i=1}^{n} e_{n,t}^{(i)}, & n \ge 2. \end{cases}$$

$$(6)$$

Proof. We use induction on n to prove the statements related to the Fibonacci-Hessenberg matrices $\mathcal{R}_{n,t}$; similar arguments apply to the other two classes of matrices. Setting $f_0 = 0$ and $f_{-1} = 1$, it is easy to verify that the statements hold for $1 \leq n \leq 3$. Evaluating the determinants of matrices $\mathcal{R}_{n,t}$ and $\mathcal{R}_{n,t}^{(1)}$ by cofactor expansion along the first row, we have

$$\begin{cases} r_{n,t}^{(1)} = r_{n-1,t} - r_{n-1,t}^{(1)}, & n \ge 3; \\ r_{n-1,t} = 2r_{n-2,t} - r_{n-2,t}^{(1)}, & n \ge 3. \end{cases}$$
(7)

Therefore,

It follows from (7) and (8) that

$$r_{n,t} = 2r_{n-1,t} - r_{n-1,t}^{(1)} = 2r_{n-1,t} - r_{n-3,t}, \quad n \ge 3.$$
(9)

This together with the induction hypothesis result in

$$r_{n,t} = 2r_{n-1,t} - r_{n-3,t}$$

= 2 (tf_n + f_{n-1}) - (tf_{n-2} + f_{n-3})
= t(2f_n - f_{n-2}) + (2f_{n-1} - f_{n-3})
= tf_{n+1} + f_n, (10)

and hence

$$r_{n,t}^{(1)} = r_{n-2,t} = tf_{n-1} + f_{n-2}.$$
(11)

By cofactor expansion along the first row, one can easily verify that $r_{n,t}^{(i)} = r_{n-1,t}^{(i-1)}$ if $2 \le i \le n-1$, and thus

$$r_{n,t}^{(i)} = r_{n-i-1,t} = tf_{n-i} + f_{n-i-1}, \quad 2 \le i \le n-1.$$
(12)

The augmented matrices obtained from a given matrix \mathcal{M} by adding the all one column vector $\mathbf{1}$ to the left and the right of \mathcal{M} are denoted by $\mathbf{1}\mathcal{M}$ and $\mathcal{M}\mathbf{1}$, respectively. Evaluating the determinants by using cofactors along the first row, we obtain $r_{n,t}^{(n)} = 2r_{n-1,t}^{(n-1)} + (-1)^{n+1} \det(\mathbf{1}\mathcal{M})$ where $\mathcal{M}\mathbf{1}$ is the matrix $\mathcal{R}_{n-1,t}^{(n-1)}$. Therefore,

$$r_{n,t}^{(n)} = 2r_{n-1,t}^{(n-1)} + (-1)^{2n-1}r_{n-1,t}^{(n-1)} = r_{n-1,t}^{(n-1)} = 1 = tf_0 + f_{-1}.$$
(13)

It is easily checked by induction on n that $\sum_{j=-1}^{n} f_j = f_{n+2}$. This together with the equations $r_{n,t} = tf_{n+1} + f_n$ and $r_{n,t}^{(i)} = tf_{n-i} + f_{n-i-1}$ imply that $r_{n,t} = t + \sum_{i=1}^{n} r_{n,t}^{(i)}$. \Box

Corollary 1 (*Fibonacci Fractions and Hessenberg Matrices*) The system of equations $\mathcal{R}_{n,t}\mathbf{x} = \mathbf{1}$ has the unique solution

$$x_{i} = \frac{f_{n-i-1} + tf_{n-i}}{f_{n} + tf_{n+1}}, \quad 1 \le i \le n.$$
(14)

Similarly, the system of equations $C_{n,t}\mathbf{x} = \mathbf{1}$ has the solution

$$x_{i} = \frac{f_{2(n-i)+1} + tf_{2(n-i)}}{f_{2n} + tf_{2n-1}}, \quad 1 \le i \le n.$$
(15)

We also have $x_1 = \frac{tf_{n-3}+f_{n-2}}{tf_{n-1}+f_n}$ and $x_i = \frac{tf_{n-i}+f_{n-i+1}}{tf_{n-1}+f_n}$, $2 \le i \le n$, as the unique solution of $\mathcal{E}_{n,t}\mathbf{x} = \mathbf{1}$.

Proof. It follows from (6) and Cramer's rule that the system $\mathcal{R}_{n,t}\mathbf{x} = \mathbf{1}$ has unique solution $x_i = \frac{r_{n,t}^{(i)}}{r_{n,t}} = \frac{f_{n-i-1}+tf_{n-i}}{f_n+tf_{n+1}}, \quad 1 \leq i \leq n$. The same argument applies to the systems $\mathcal{C}_{n,t}\mathbf{x} = \mathbf{1}$ and $\mathcal{E}_{n,t}\mathbf{x} = \mathbf{1}$.

In particular, according to (14), for t = 0, 1, 2 the system $\mathcal{R}_{n,t}\mathbf{x} = \mathbf{1}$ has solutions:

$$\begin{cases} x_i = \frac{f_{n-i-1}}{f_n}, & t = 0; \\ x_i = \frac{f_{n-i}+f_{n-i-1}}{f_{n+1}+f_n} = \frac{f_{n-i+1}}{f_{n+2}}, & t = 1; \\ x_i = \frac{2f_{n-i}+f_{n-i-1}}{2f_{n+1}+f_n} = \frac{f_{n-i+2}}{f_{n+3}}, & t = 2. \end{cases}$$

It also follows from (15) that for t = 0, 1, 2 the system $C_{n,t} \mathbf{x} = \mathbf{1}$ has solutions

$$\begin{cases} x_i = \frac{f_{2(n-i)+1}}{f_{2n}}, & t = 0; \\ x_i = \frac{f_{2(n-i+1)}}{f_{2n+1}}, & t = 1; \\ x_i = \frac{f_{2(n-i+1)}+f_{2(n-i)}}{f_{2n+1}+f_{2n-1}}, & t = 2. \end{cases}$$

Consider the $n \times n$ Fibonacci-Hessenberg matrix $\mathcal{R}_{n,t}$. For $1 \leq i \leq n$ we have $r_{n,t}^{(i)} = tf_{n-i} + f_{n-i+1}$. This *t*-Fibonacci number depends on both *n* and *i*, and hence we have a *two-dimensional array* r(n, i; t) of *t*-Fibonacci numbers.

$n \backslash i$	1	2	3	4	5	6
1	$tf_0 + f_{-1}$					
2	$tf_1 + f_0$	$tf_0 + f_{-1}$				
3	$tf_2 + f_1$	$tf_1 + f_0$	$tf_0 + f_{-1}$			
4	$tf_3 + f_2$	$tf_2 + f_1$	$tf_1 + f_0$	$tf_0 + f_{-1}$		
5	$tf_4 + f_3$	$tf_3 + f_2$	$tf_2 + f_1$	$tf_1 + f_0$	$tf_0 + f_{-1}$	
6	$tf_5 + f_4$	$tf_4 + f_3$	$tf_3 + f_2$	$tf_2 + f_1$	$tf_1 + f_0$	$tf_0 + f_{-1}$

Table 2: The Values of $r_{n,t}^{(i)}$ for $1 \le n, i \le 6$.

Table 3: The Values of $r_{n,1}^{(i)}$ for $1 \le n, i \le 6$.

$n \backslash i$	1	2	3	4	5	6
1	1					
2	1	1				
3	2	1	1			
4	3	2	1	1		
5	5	3	2	1	1	
6	8	5	3	2	1	1

Table 2 represents r(n, i; t) for $1 \le n, i \le 6$. Asymptotically, all rows and columns of the array r(n, i; t) are the same. Table 3 represents r(n, i; 1) for $1 \le n, i \le 6$. For a fixed n the nth row of the array consists of the first n Fibonacci numbers and, for each i, the ith column, starting at the ith entry, is also the Fibonacci sequence.

In the context of systems theory [3], we may consider the determinant function as an operator and interpret $r(n, i; t) = \text{Det}(\mathcal{R}_{n,t}^{(i)})$ as a two-dimensional system. The results show that this system is invariant in the sense that its output is always a *t*-Fibonacci number. We can also say that the system is invariant with respect to fixing any of the two variables *n* and *i*; that is, its output with a fixed *n* is identical to the output when *i* is fixed and *n* varies.

References

- N.D. Cahill, J.R. D'Errico, D.A. Narayan and J.Y. Narayan, "Fibonacci Determinants," The College Math. Journal of The Math. Association of America, vol. 33, no. 3, pp. 221–225, May 2002.
- [2] N.D. Cahill, J.R. D'Errico, J. Spence, "Complex factorizations of the Fibonacci and Lucas numbers," *Fibonacci Quarterly*, vol. 41, no. 1, pp. 13–19, Feb. 2003.
- [3] K.B. Datta and B. M. Mohan, Orthogonal Functions in Systems and Control, IIT, Kharagpur, India, 1995.
- [4] Ching Li, "The Maximum Determinant of an nxn Lower Hessenberg (0,1) matrix," *Linear Algebra and Its Applications*, 183, pp. 147–153, 1993.
- [5] G. Strang, Introduction to Linear Algebra, 2nd Edition, Wellesley MA, Wellesley-Cambridge, 1998.