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Abstract

The cardinalities of the sets of even and odd permutations with a given ascent number
are investigated by an operator that was introduced by the author. We will deduce the
recurrence relations for such Eulerian numbers of even and odd permutations, and deduce
divisibility properties by prime powers concerning them and some related numbers.
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1. Introduction

An ascent (or descent) of a permutation a1a2 · · · an of [n] = {1, 2, . . . , n} is an adjacent
pair such that ai < ai+1 (or ai > ai+1) for some i (1 ≤ i ≤ n− 1). Let E(n, k) be the set
of all permutations of [n] with exactly k ascents, where 0 ≤ k ≤ n − 1. Its cardinality is
the classical Eulerian number;

An,k = |E(n, k)|,

whose properties and identities can be found in [2-6], for example.

An inversion of a permutation A = a1a2 · · · an is a pair (i, j) such that 1 ≤ i < j ≤ n
and ai > aj. Let us denote by inv(A) the number of inversions in a permutation A, and
by Ee(n, k) or Eo(n, k) the subsets of all permutations in E(n, k) that have, respectively,
even or odd numbers of inversions.

The aim of this paper is to investigate their cardinalities;

Bn,k = |Ee(n, k)| and Cn,k = |Eo(n, k)|.

Obviously we have An,k = Bn,k +Cn,k, while the differences Dn,k = Bn,k −Cn,k are called
signed Eulerian numbers in [1], where the descent number was considered instead of the
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ascent number. Therefore, the identities for Dn,k presented here correspond to those in
[1] that are obtained by replacing k with n − k − 1.

In order to study these numbers, we make use of an operator on permutations in [n],
which was introduced in [9]. The operator σ is defined by adding one to all entries of a
permutation and by changing n + 1 into one. However, when n appears at either end of
a permutation, it is removed and one is put at the other end. That is, for a permutation
a1a2 · · · an with ai = n for some i (2 ≤ i ≤ n − 1), we have

(i) σ(a1a2 · · · an) = b1b2 · · · bn,

where bi = ai + 1 for all i (1 ≤ i ≤ n) and n + 1 is replaced by one. However, for a
permutation a1a2 · · · an−1 of [n − 1], we have:

(ii) σ(a1a2 · · · an−1n) = 1b1b2 · · · bn−1;

(iii) σ(na1a2 · · · an−1) = b1b2 · · · bn−11,

where bi = ai + 1 for all i (1 ≤ i ≤ n− 1). We denote by σ!A the repeated " applications
of σ to a permutation A. It is obvious that the operator preserves the numbers of ascents
and descents in a permutation, that is, σA ∈ E(n, k) if and only if A ∈ E(n, k).

Let us observe the number of inversions of a permutation when σ is applied. When n
appears at either end of a permutation A = a1a2 · · · an as in (ii) or (iii), it is evident that

inv(σA) = inv(A).

Next let us consider the case (i). When ai = n for some i (2 ≤ i ≤ n − 1), we
get σ(a1a2 · · · an) = b1b2 · · · bn, where bi = 1 is at the ith position. In this case, n − i
inversions (i, i+1), . . . , (i, n) of A vanish and, in turn, i− 1 inversions (1, i), . . . , (i− 1, i)
of σA occur. Hence the difference between the numbers of inversions is

inv(σA) − inv(A) = (i − 1) − (n − i) = 2i − (n + 1). (1)

Therefore, if n is odd, the operator σ preserves the parity of all permutations of
[n]. When n is even, however, each application of the operator changes the parity of
permutations as long as n remains in the interior of permutations.

For convenience sake we denote by E−
e (n, k) and E+

e (n, k) the sets of permutations
a1a2 · · · an in Ee(n, k) with a1 < an and a1 > an, respectively. Similarly, E−

o (n, k)
and E+

o (n, k) denote those in Eo(n, k), respectively. In E−
e (n, k) and E−

o (n, k) canonical
permutations are defined as those of the form a1a2 · · · an−1n, and in E+

e (n, k) and E+
o (n, k)

as those of the form na1a2 · · · an−1, where a1a2 · · · an−1 is a permutation of [n − 1].
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In [8] and the references therein, even and odd permutations were classified by the
anti-excedance number, not by the ascent number. An anti-excedance in a permuta-
tion a1a2 · · · an means an inequality i ≥ ai. Recurrence relations were given for the
cardinalities Pn,k and Qn,k of the sets of even and odd permutations, respectively, with
anti-excedance number k. They hold for all natural integers n as follows:

Pn,k = kQn−1,k + (n − k)Qn−1,k−1 + Pn−1,k−1;

Qn,k = kPn−1,k + (n − k)Pn−1,k−1 + Qn−1,k−1.

The recurrence relations for Bn,k and Cn,k seem not so simple, because they have
different expressions according to the parity of n, as will be revealed in the following
sections.

First we derive the recurrence relation for the signed Eulerian numbers Dn,k = Bn,k −
Cn,k. The relation was conjectured in [7] and an analytic proof for it was given in [1]. In
Section 4 we will derive it from a quite different point of view, based on the properties
of the operator σ. Making use of it, the recurrence relations for Bn,k and Cn,k will be
obtained.

In Section 5 it is shown that divisibility properties for Bn,k, Cn,k and some related
numbers by prime powers can be obtained by our approach.

2. The Numbers Bn,k and Cn,k

The numbers Bn,k and Cn,k enjoy some symmetry properties according to the values of
n. The permutation n · · · 21 ∈ E(n, 0) has n(n − 1)/2 inversions. Hence the values of
Bn,0 and Cn,0 are given by

Bn,0 =

{
1 if n ≡ 0 or 1 (mod 4),
0 if n ≡ 2 or 3 (mod 4),

and

Cn,0 =

{
0 if n ≡ 0 or 1 (mod 4),
1 if n ≡ 2 or 3 (mod 4).

For a permutation A = a1a2 · · · an we define its reflection by A∗ = an · · · a2a1. Using
reflected permutations and the parity of n(n − 1)/2, the following symmetry properties
between Bn,k and Cn,k are easily checked.

(i) n ≡ 0 or 1 (mod 4). In this case, A ∈ Ee(n, k) if and only if A∗ ∈ Ee(n, n−k−1),
and A ∈ Eo(n, k) if and only if A∗ ∈ Eo(n, n − k − 1), so we have

Bn,k = Bn,n−k−1 and Cn,k = Cn,n−k−1.
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(ii) n ≡ 2 or 3 ( mod 4). In this case, A ∈ Ee(n, k) if and only if A∗ ∈ Eo(n, n−k−1),
and A ∈ Eo(n, k) if and only if A∗ ∈ Ee(n, n − k − 1), so we have

Bn,k = Cn,n−k−1 and Cn,k = Bn,n−k−1.

The values of Bn,k and Cn,k for small n are shown in the next two tables. The integers
in their top rows represent the values of k. In Section 4 a formula for calculating these
numbers will be supplied by means of An,k and Dn,k.

Bn,k 0 1 2 3 4 5 6 7 8 9
n = 2 0 1
n = 3 0 2 1
n = 4 1 5 5 1
n = 5 1 14 30 14 1
n = 6 0 28 155 147 29 1
n = 7 0 56 605 1208 586 64 1
n = 8 1 127 2133 7819 7819 2133 127 1
n = 9 1 262 7288 44074 78190 44074 7288 262 1
n = 10 0 496 23947 227623 655039 655315 227569 23893 517 1

Cn,k 0 1 2 3 4 5 6 7 8 9
n = 2 1 0
n = 3 1 2 0
n = 4 0 6 6 0
n = 5 0 12 36 12 0
n = 6 1 29 147 155 28 0
n = 7 1 64 586 1208 605 56 0
n = 8 0 120 2160 7800 7800 2160 120 0
n = 9 0 240 7320 44160 78000 44160 7320 240 0
n = 10 1 517 23893 227569 655315 655039 227623 23947 496 0

3. The Case of Odd n

Throughout this section we assume that n is an odd integer. It was shown in [9] that to
each permutation A of [n] there corresponds a smallest positive integer π(A) such that
σπ(A)A = A, which is called the period of A. Its trace

{σA, σ2A, . . . , σπ(A)A = A}

is called the orbit of A. The orbit of a permutation of E−
e (n, k) under σ is entirely

contained in E−
e (n, k) and similarly for E+

e (n, k), as is shown previously in the case of
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odd n. Here we mainly deal with the set Ee(n, k) = E−
e (n, k)∪E+

e (n, k) and its cardinality
Bn,k, since the same arguments can also be applied to Eo(n, k) = E−

o (n, k) ∪ E+
o (n, k)

and its cardinality Cn,k.

It was shown in [9] that the period satisfies the relation

π(A) =

{
(n − k) gcd(n, π(A)) if A ∈ E−

e (n, k) ∪ E−
o (n, k),

(k + 1) gcd(n, π(A)) if A ∈ E+
e (n, k) ∪ E+

o (n, k).
(2)

It follows from (2) that the period of a permutation A ∈ E(n, k) is either d(n − k)
or d(k + 1) for a positive divisor d of n, i.e., d = gcd(n, π(A)), although there may be no
permutations having such periods for some divisors. In this paper, divisors of n always
mean positive divisors.

For a divisor d of n, we denote by αk
d the number of orbits of period d(n − k) in

E−
e (n, k) and by βk

d that of orbits of period d(k + 1) in E+
e (n, k). In the case of odd n

the next theorem plays a fundamental role.

Theorem 3.1 Let n be an odd integer and let k be an integer satisfying 1 ≤ k ≤ n − 1.
Then it follows that

Bn−1,k−1 =
∑

d|n

dαk
d, (3)

Bn−1,k =
∑

d|n

dβk
d , (4)

Bn,k =
∑

d|n

d{(n − k)αk
d + (k + 1)βk

d}. (5)

Proof. First let us consider permutations in E−
e (n, k). In this case each orbit contains

canonical permutations of the form a1a2 · · · an−1n by (i) and (ii) of Section 1. It suffices
to deal only with canonical ones in counting orbits. If A = a1a2 · · · an−1n ∈ E−

e (n, k), we
see that a1a2 · · · an−1 ∈ Ee(n − 1, k − 1), since

inv(a1a2 · · · an−1) = inv(A)

and n is deleted. Therefore, there exist Bn−1,k−1 canonical permutations in E−
e (n, k). It

follows from (2) that the period of a permutation A ∈ E−
e (n, k) is equal to d(n− k) for a

divisor d of n. There exist n canonical permutations in {σA, σ2A, . . . , σn(n−k)A = A} due
to [9, Corollary 2], and hence each orbit {σA, σ2A, . . . , σd(n−k)A = A} of a permutation
A with period d(n− k) contains exactly d canonical permutations. This follows from the
fact that the latter repeats itself n/d times in the former. Since there exist αk

d orbits of
period d(n− k) for each divisor d of n, classifying all canonical permutations of E−

e (n, k)
into orbits leads us to (3).

The proof of (4) is similar. To do this we consider permutations in E+
e (n, k). In this

case each orbit contains canonical permutations of the form na1a2 · · · an−1 by (i) and (iii)
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of Section 1. If A = na1a2 · · · an−1 ∈ E+
e (n, k), we see that a1a2 · · · an−1 ∈ Ee(n − 1, k),

since
inv(a1a2 · · · an−1) = inv(A) − (n − 1)

and n − 1 is an even number by assumption. Therefore, the set of all canonical permu-
tations in E+

e (n, k) has cardinality Bn−1,k. Again using (2), the period of a permutation
A ∈ E+

e (n, k) is equal to d(k + 1) for a divisor d of n. By [9, Corollary 2] there exist n
canonical permutations in {σA, σ2A, . . . , σn(k+1)A = A} and hence, as above, there exist
exactly d such permutations in each orbit {σA, σ2A, . . . , σd(k+1)A = A} of a permutation
A with period d(k + 1). There exist βk

d orbits of period d(k + 1) for each divisor d of
n. Hence, we can obtain (4) by classifying all canonical permutations in E+

e (n, k) into
orbits.

Considering the numbers of orbits and periods, we see that the cardinalities of
E±

e (n, k) are obtained by

|E−
e (n, k)| =

∑

d|n

d(n − k)αk
d and |E+

e (n, k)| =
∑

d|n

d(k + 1)βk
d . (6)

Since the set Ee(n, k) is a disjoint union of E−
e (n, k) and E+

e (n, k), we conclude that

Bn,k = |E−
e (n, k)| + |E+

e (n, k)| =
∑

d|n

d{(n − k)αk
d + (k + 1)βk

d}, (7)

which proves (5). This completes the proof. !

Let us denote by γk
d the number of orbits of period d(n − k) in E−

o (n, k) and by δk
d

that of orbits of period d(k + 1) in E+
o (n, k). When n is odd, analogous relations to

(3)-(6) hold for Cn,k, γk
d and δk

d , since the orbit of a permutation of E±
o (n, k) under σ is

also contained in E±
o (n, k).

We state them for the sake of completeness;

Cn−1,k−1 =
∑

d|n

dγk
d , Cn−1,k =

∑

d|n

dδk
d ,

and

|E−
o (n, k)| =

∑

d|n

d(n − k)γk
d , |E+

o (n, k)| =
∑

d|n

d(k + 1)δk
d .

Since the set Eo(n, k) is a disjoint union of E−
o (n, k) and E+

o (n, k), we obtain

Cn,k = |E−
o (n, k)| + |E+

o (n, k)| =
∑

d|n

d{(n − k)γk
d + (k + 1)δk

d}, (8)
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Making use of (3) and (4), we see that both cardinalities in (6) can be written simply
by the notation Bn,k and their counterparts for Eo(n, k) also follow from the above
relations in a similar manner.

Corollary 3.2 When n is odd, the cardinalities of E±
e (n, k) and E±

o (n, k) are given by

(i) |E−
e (n, k)| = (n−k)Bn−1,k−1 and |E−

o (n, k)| = (n−k)Cn−1,k−1 (1 ≤ k ≤ n−1),

(ii) |E+
e (n, k)| = (k + 1)Bn−1,k and |E+

o (n, k)| = (k + 1)Cn−1,k (0 ≤ k ≤ n − 2).

Using (7), (8) and this corollary, we can obtain the following two corollaries. The
relations in Corollary 3.3 have the same form as the recurrence relation for classical
Eulerian numbers An,k in [3];

An,k = (n − k)An−1,k−1 + (k + 1)An−1,k. (9)

Corollary 3.3 When n is odd, the following relations hold for Bn,k and Cn,k:

Bn,k = (n − k)Bn−1,k−1 + (k + 1)Bn−1,k; (10)

Cn,k = (n − k)Cn−1,k−1 + (k + 1)Cn−1,k. (11)

Corollary 3.4 When n is odd, the following relations hold:

(i) |E−
e (n, k)|− |E−

o (n, k)| = (n − k)Dn−1,k−1 (1 ≤ k ≤ n − 1);

(ii) |E+
e (n, k)|− |E+

o (n, k)| = (k + 1)Dn−1,k (0 ≤ k ≤ n − 2).

4. Recurrences for Bn,k and Cn,k

When n is even, neither equality (10) nor (11) holds, as is seen from the tables of Section
2. For example, an odd integer C10,4 cannot be written as a linear sum of C9,k’s or B9,k’s
(1 ≤ k ≤ 7) with integral coefficients, since they are all even. Therefore, neither (10) nor
(11) provide a recurrence relation of the numbers Bn,k or Cn,k.

As for the differences Dn,k = Bn,k − Cn,k, however, their recurrence relation was
conjectured in [7] and an analytic proof for it was given in [1]. In our notation it is
described as the next theorem, for which we provide another proof from a combinatorial
point of view. Notice that there is a different flavor in the case of even n.

Theorem 4.1 The recurrence relation for Dn,k is given by

Dn,k =

{
(n − k)Dn−1,k−1 + (k + 1)Dn−1,k, if n is odd,
Dn−1,k−1 − Dn−1,k, if n is even.

(12)
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Proof. The first part of this relation follows immediately from (10) and (11) of Corollary
3.3. Assuming that n is even, we show the second part by means of the operator σ.

Recall that when n is even, the operator may change the parity of permutations
of E(n, k), but it is a bijection on E−

e (n, k) ∪ E−
o (n, k) and on E+

e (n, k) ∪ E+
o (n, k),

respectively.

First let us consider permutations A = a1a2 · · · an in E−
e (n, k) ∪ E−

o (n, k) and divide
all permutations in E−

e (n, k) ∪ E−
o (n, k) into the following two types:

(i) A = a1a2 · · · an−1n, where a1a2 · · · an−1 is a permutation of [n − 1];

(ii) A = a1a2 · · · an with a1 < an, where ai = n for some i (2 ≤ i ≤ n − 1).

Suppose A ∈ E−
e (n, k). If A is of type (i), then σA remains an even permutation, since

inv(σA) = inv(A). We see that the cardinality of permutations of type (i) is Bn−1,k−1,
since A is even and n is the last entry. However, if A ∈ E−

e (n, k) is of type (ii), then we
have σA ∈ E−

o (n, k) by (1), since n + 1 is an odd integer. Therefore, the cardinality of
permutations of type (ii) in E−

e (n, k) is

|E−
e (n, k)|− Bn−1,k−1, (13)

and precisely so many permutations change the parity from even to odd under σ.

Similarly, suppose A ∈ E−
o (n, k). If A is of type (i), then σA remains an odd permuta-

tion. We see that the cardinality of permutations of type (i) is Cn−1,k−1. If A ∈ E−
o (n, k)

is of type (ii), then we have σA ∈ E−
e (n, k) by (1). The cardinality of permutations of

type (ii) in E−
o (n, k) is

|E−
o (n, k)|− Cn−1,k−1, (14)

and precisely so many permutations change the parity from odd to even under σ.

Since σ is a bijection on E−
e (n, k) ∪ E−

o (n, k), both cardinalities given by (13) and
(14) must be equal. Hence we obtain

|E−
e (n, k)|− |E−

o (n, k)| = Bn−1,k−1 − Cn−1,k−1 = Dn−1,k−1. (15)

Next let us consider permutations A = a1a2 · · · an in E+
e (n, k) ∪ E+

o (n, k) and divide
all permutations in E+

e (n, k) ∪ E+
o (n, k) into the following two types:

(iii) A = na1a2 · · · an−1, where a1a2 · · · an−1 is a permutation of [n − 1];

(iv) A = a1a2 · · · an with a1 > an, where ai = n for some i (2 ≤ i ≤ n − 1).
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If A ∈ E+
e (n, k) is of type (iii), then σA remains an even permutation. We see that the

cardinality of permutations of type (iii) is Cn−1,k, since inv(A)− inv(a1a2 · · · an−1) = n−1
and n − 1 is odd. However, if A ∈ E+

e (n, k) is of type (iv), then we have σA ∈ E+
o (n, k)

by (1). The cardinality of permutations of type (iv) in E+
e (n, k) is

|E+
e (n, k)|− Cn−1,k, (16)

and precisely so many permutations change the parity from even to odd under σ.

Similarly, if A ∈ E+
o (n, k) is of type (iii), then σA remains an odd permutation. We

see that the cardinality of permutations of type (iii) is Bn−1,k as above. If A ∈ E+
o (n, k)

is of type (iv), then we have σA ∈ E+
e (n, k) by (1). The cardinality of permutations of

type (iv) in E+
o (n, k) is

|E+
o (n, k)|− Bn−1,k, (17)

and precisely so many permutations change the parity from odd to even under σ.

Since σ is a bijection on E+
e (n, k) ∪ E+

o (n, k), both cardinalities given by (16) and
(17) must be equal. Hence we obtain

|E+
e (n, k)|− |E+

o (n, k)| = −Bn−1,k + Cn−1,k = −Dn−1,k. (18)

From (7) and (8), adding (15) and (18) yields Bn,k−Cn,k = Dn,k = Dn−1,k−1−Dn−1,k,
which is the required relation. This completes the proof. !

Symmetry properties for Dn,k follow from the relations presented in Section 2:

(i) For n ≡ 0 or 1 (mod 4), Dn,k = Dn,n−k−1;

(ii) For n ≡ 2 or 3 (mod 4), Dn,k = −Dn,n−k−1.

The values of Dn,k for small n is given below.

Dn,k 0 1 2 3 4 5 6 7 8 9
n = 2 −1 1
n = 3 −1 0 1
n = 4 1 −1 −1 1
n = 5 1 2 −6 2 1
n = 6 −1 −1 8 −8 1 1
n = 7 −1 −8 19 0 −19 8 1
n = 8 1 7 −27 19 19 −27 7 1
n = 9 1 22 −32 −86 190 −86 −32 22 1
n = 10 −1 −21 54 54 −276 276 −54 −54 21 1



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A31 10

Thus the values of Bn,k and Cn,k can be known through

Bn,k =
An,k + Dn,k

2
, Cn,k =

An,k − Dn,k

2
,

using An,k and Dn,k that are calculated according to the respective recurrence relations
(9) and (12). From these equalities, we can obtain the expressions of Bn,k and Cn,k by
means of Bn−1,k’s and Cn−1,k’s in the case of even n, which constitute recurrence relations
for Bn,k and Cn,k together with Corollary 3.3.

Corollary 4.2 When n is even, the following relations hold for Bn,k and Cn,k:

2Bn,k = (n − k + 1)Bn−1,k−1 + kBn−1,k + (n − k − 1)Cn−1,k−1 + (k + 2)Cn−1,k;

2Cn,k = (n − k + 1)Cn−1,k−1 + kCn−1,k + (n − k − 1)Bn−1,k−1 + (k + 2)Bn−1,k.

From (15) and (18) we get a counterpart of Corollary 3.4.

Corollary 4.3 When n is even, the following relations hold:

(i) |E−
e (n, k)|− |E−

o (n, k)| = Dn−1,k−1 (1 ≤ k ≤ n − 1);

(ii) |E+
e (n, k)|− |E+

o (n, k)| = −Dn−1,k (0 ≤ k ≤ n − 2).

5. Orbits and their Applications

Again assume that n is an odd integer. We examine the numbers of orbits of particu-
lar types and from them deduce divisibility properties for Bn,k, Cn,k and some related
numbers by prime powers.

For a positive integer " with gcd(", n) = 1, a canonical permutation of [n] of the form

P !
n = 1(1 + ")(1 + 2") · · · (1 + (n − 1)")

can be defined, where ", 2", . . . , (n − 1)" represent numbers modulo n. According to
whether P !

n is an even or odd permutation, let us put

ε!
n =

{
1 if P !

n is even,
0 if P !

n is odd.

Theorem 5.1 Let n be an odd integer and let k be an integer such that 1 ≤ k ≤ n − 1.

(i) If a divisor d of n satisfies gcd(k, n/d) > 1, then αk
d = γk

d = 0.

(ii) If gcd(k, n) = 1, then αk
1 = εn−k

n and γk
1 = 1 − εn−k

n .
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Proof. In order to prove (i), suppose A is a permutation that belongs to E−
e (n, k). From

(2) its period π(A) satisfies π(A) = (n−k) gcd(n, π(A)). Then, putting d = gcd(n, π(A)),
we have π(A) = d(n − k) and d = gcd(n, d(n − k)), which implies gcd(n − k, n/d) = 1
or gcd(k, n/d) = 1. Consequently, we see that there exist no permutations of period
d(n − k), i.e., αk

d = 0, if a divisor d of n satisfies gcd(k, n/d) > 1.

The same arguments can be applied to permutations in E−
o (n, k) and we obtain the

assertion that γk
d = 0 if d satisfies gcd(k, n/d) > 1.

Next, in order to prove (ii), suppose gcd(k, n) = 1. In case of d = 1, due to [9,
Theorem 7], there exists a unique orbit of period n − k in E−

e (n, k) ∪ E−
o (n, k), which

contains only one canonical permutation P n−k
n . Hence, if it is an even permutation, then

we have αk
1 = 1 and γk

1 = 0. Otherwise, αk
1 = 0 and γk

1 = 1. This completes the proof. !

From Theorem 5.1 we can derive a criterion under which Bn−1,k−1, Cn−1,k−1 and
Dn−1,k−1 are divisible by a prime power.

Corollary 5.2 Suppose that p is a prime and that an odd integer n is divisible by pm for
a positive integer m. If k is divisible by p, then Bn−1,k−1, Cn−1,k−1 and Dn−1,k−1 are also
divisible by pm.

Proof. Without loss of generality we can assume that m is the largest integer for which
pm divides n. Suppose k is a multiple of p. In Theorem 5.1 (i) we have seen that αk

d = 0
for a divisor d of n such that gcd(k, n/d) > 1. On the other hand, a divisor d for which
gcd(k, n/d) = 1 must be a multiple of pm, since k is a multiple of p. Therefore, equality
(3) of Theorem 3.1 implies that Bn−1,k−1 is divisible by pm. By the same arguments we
see that Cn−1,k−1 and Dn−1,k−1 are also divisible by pm, if k is a multiple of p. This
completes the proof. !

When k is not a multiple of a prime p in Corollary 5.2, Bn−1,k−1 and Cn−1,k−1 are not
necessarily divisible by p. For example, the next result summarizes the case where n is
a prime power.

Corollary 5.3 Let p be an odd prime and m a positive integer. Then

Bpm−1,k−1 ≡
{

εpm−k
pm (mod p), if gcd(p, k) = 1,
0 (mod pm), if gcd(p, k) = p,

Cpm−1,k−1 ≡
{

1 − εpm−k
pm (mod p), if gcd(p, k) = 1,

0 (mod pm), if gcd(p, k) = p.

Proof. Remarking Corollary 5.2, it suffices to treat the case where gcd(p, k) = 1. From
equality (3) we get

Bpm−1,k−1 =
∑

d|pm

dαk
d,
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and we know that αk
1 = εpm−k

pm by Theorem 5.1 (ii). Thus we get the first part. Similarly,
the second one follows from the equality

Cpm−1,k−1 =
∑

d|pm

dγk
d ,

together with γk
1 = 1 − εpm−k

pm . !

The final corollary easily follows from Corollaries 3.2 and 5.2.

Corollary 5.4 Under the same assumptions as Corollary 5.2 the following hold.

(i) If k is divisible by pi for some i (1 ≤ i ≤ m), then |E−
e (n, k)| and |E−

o (n, k)| are
divisible by pm+i.

(ii) If k + 1 is divisible by pi for some i (i ≥ 1), then |E+
e (n, k)| and |E+

o (n, k)| are
divisible by pm+i.
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