DAVENPORT CONSTANT WITH WEIGHTS AND SOME RELATED QUESTIONS

Sukumar Das Adhikari
Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, INDIA
adhikari@mri.ernet.in
Purusottam Rath
Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, INDIA
rath@mri.ernet.in

Received: 5/22/06, Revised: 7/5/06, Accepted: 8/12/06, Published: 10/20/06

Abstract

Let $n \in \mathbb{N}$ and let $A \subseteq \mathbb{Z} / n \mathbb{Z}$ be such that A does not contain 0 and it is non-empty. Generalizing a well known constant, $E_{A}(n)$ is defined to be the least $t \in \mathbb{N}$ such that for all sequences $\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{Z}^{t}$, there exist indices $j_{1}, \ldots, j_{n} \in \mathbb{N}, 1 \leq j_{1}<\cdots<j_{n} \leq t$, and $\left(\vartheta_{1}, \cdots, \vartheta_{n}\right) \in A^{n}$ with $\sum_{i=1}^{n} \vartheta_{i} x_{j_{i}} \equiv 0(\bmod n)$. Similarly, for any such set A, we define the Davenport Constant of $\mathbb{Z} / n \mathbb{Z}$ with weight A denoted by $D_{A}(n)$ to be the least natural number k such that for any sequence $\left(x_{1}, \cdots, x_{k}\right) \in \mathbb{Z}^{k}$, there exists a non-empty subsequence $\left\{x_{j_{1}}, \cdots, x_{j_{l}}\right\}$ and $\left(a_{1}, \cdots a_{l}\right) \in A^{l}$ such that $\sum_{i=1}^{l} a_{i} x_{j_{i}} \equiv 0(\bmod n)$. In the present paper, in the special case where $n=p$ is a prime, we determine the values of $D_{A}(p)$ and $E_{A}(p)$ where A is $\{1,2, \cdots, r\}$ or the set of quadratic residues $(\bmod p)$.

1. Introduction

Here we shall be concerned with certain generalizations of two important combinatorial invariants related to zero-sum problems (for detailed accounts one may see [10], [3], [13], [9]) in finite abelian groups.

For an abelian group G, the Davenport constant $D(G)$ is defined to be the smallest natural number k such that any sequence of k elements in G has a non-empty subsequence whose sum is zero (the identity element). For an abelian group G of cardinality n, another interesting constant is the smallest natural number k such that any sequence of k elements in G has a subsequence of length n whose sum is zero; we shall denote it by $E(G)$.

The following result due to Gao [8] (see also [10], Proposition 5.7.9) connects these two invariants.

Theorem 1. If G is a finite abelian group of order n, then $E(G)=D(G)+n-1$.

For the particular group $\mathbb{Z} / n \mathbb{Z}$, the following generalization of $E(G)$ was considered in [2] recently. Let $n \in \mathbb{N}$ and assume $A \subseteq \mathbb{Z} / n \mathbb{Z}$. Then $E_{A}(n)$ is the least $t \in \mathbb{N}$ such that for all sequences $\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{Z}^{t}$ there exist indices $j_{1}, \ldots, j_{n} \in \mathbb{N}, 1 \leq j_{1}<\cdots<j_{n} \leq t$, and $\left(\vartheta_{1}, \cdots, \vartheta_{n}\right) \in A^{n}$ with

$$
\sum_{i=1}^{n} \vartheta_{i} x_{j_{i}} \equiv 0(\bmod n)
$$

To avoid trivial cases, one assumes that the weight set A does not contain 0 and it is nonempty.

Similarly, for any such set $A \subset \mathbb{Z} / n \mathbb{Z} \backslash\{0\}$ of weights, we define the Davenport Constant of $\mathbb{Z} / n \mathbb{Z}$ with weight A denoted by $D_{A}(n)$ to be the least natural number k such that for any sequence $\left(x_{1}, \cdots, x_{k}\right) \in \mathbb{Z}^{k}$, there exists a non-empty subsequence $\left\{x_{j_{1}}, \cdots, x_{j_{l}}\right\}$ and $\left(a_{1}, \cdots a_{l}\right) \in A^{l}$ such that

$$
\sum_{i=1}^{l} a_{i} x_{j_{i}} \equiv 0 \quad(\bmod n)
$$

Thus, for the group $G=\mathbb{Z} / n \mathbb{Z}$, if we take $A=\{1\}$, then $E_{A}(n)$ and $D_{A}(n)$ are respectively $E(G)$ and $D(G)$ as defined earlier.

For several sets $A \subset \mathbb{Z} / n \mathbb{Z} \backslash\{0\}$ of weights, exact values of $E_{A}(n)$ and $D_{A}(n)$ have been determined: The case $A=\{1\}$ is classical and is covered by the well-known theorem (EGZ theorem) due to Erdős, Ginzburg and Ziv [6] (one may also see [11] or [10]) and Theorem 1 is also applicable; the case $A=\{1,-1\}$, was done in [2] where it is shown that $E_{A}(n)=n+\left[\log _{2} n\right]$. Furthermore, by the pigeonhole principle (see [2]), $D_{A}(n) \leq\left[\log _{2} n\right]+1$, and by considering the sequence $\left(1,2, \ldots, 2^{r}\right)$, where r is defined by $2^{r+1} \leq n<2^{r+2}$, it follows that $D_{A}(n) \geq\left[\log _{2} n\right]+1$; the case observed in [2] shows that for $A=\{1,2 \cdots n-1\}$ we have $E_{A}(n)=n+1$. In this case, it is easy to see that $D_{A}(n)=2$; lastly, settling a conjecture from [2], it was proved in [7] that for $A=(\mathbb{Z} / n \mathbb{Z})^{*}=\{a:(a, n)=1\}, E_{A}(n)=n+\Omega(n)$, where $\Omega(n)$ denotes the number of prime factors of n, multiplicity included.

It is not difficult to observe that

$$
\begin{equation*}
E_{A}(n) \geq D_{A}(n)+n-1 \text { for any } A \subset \mathbb{Z} / n \mathbb{Z} \backslash\{0\} \tag{1}
\end{equation*}
$$

Taking $A=(\mathbb{Z} / n \mathbb{Z})^{*}$, it follows from (1) and the above result that $D_{A}(n) \leq 1+\Omega(n)$. On the other hand, in this case, writing $n=p_{1} \cdots p_{s}$ as a product of $s=\Omega(n)$ (not necessarily distinct) primes, the sequence $\left(1, p_{1}, p_{1} p_{2}, \ldots, p_{1} p_{2} \cdots p_{s-1}\right)$ gives the lower bound $D_{A}(n) \geq$ $1+\Omega(n)$.

Thus, in all these above cases, namely when A is one of the sets appearing in the chain $\{1\} \subset\{1,-1\} \subset(\mathbb{Z} / n \mathbb{Z})^{*} \subset\{1,2, \cdots, n-1\}$, one has $E_{A}(n)=D_{A}(n)+n-1$.

In the present paper, in the special case where $n=p$ is a prime (other than 2 , the trivial case), we determine the values of $D_{A}(p)$ and $E_{A}(p)$ where A is $\{1,2, \cdots, r\}$ or the set of quadratic residues $(\bmod p)$. In both cases, the equality $E_{A}(p)=D_{A}(p)+p-1$ holds.

Perhaps one would expect that for any set $A \subset \mathbb{Z} / n \mathbb{Z} \backslash\{0\}$ of weights, the equality $E_{A}(n)=D_{A}(n)+n-1$ holds.
2. $D_{A}(p)$ and $E_{A}(p)$ for certain subsets A of $(\mathbb{Z} / p \mathbb{Z})^{*}$

In what follows, p will always denote an odd prime.
Theorem 2. Let $A=\{1,2, \cdots, r\}$, where r is an integer such that $1<r<p$. We have
(i) $D_{A}(p)=\left\lceil\frac{p}{r}\right\rceil$, where for a real number $x,\lceil x\rceil$ denotes the smallest integer $\geq x$,
(ii) $E_{A}(p)=p-1+D_{A}(p)$.

Proof. Consider any sequence $S=\left(s_{1}, \cdots, s_{\left\lceil\frac{p}{r}\right\rceil}\right)$ of elements of $\mathbb{Z} / p \mathbb{Z}$ of length $\left\lceil\frac{p}{r}\right\rceil$. Considering the sequence

$$
S^{\prime}=(\overbrace{s_{1}, s_{1}, \cdots, s_{1}}^{r \text { times }}, \overbrace{s_{2}, s_{2}, \cdots, s_{2}}^{r \text { times }}, \cdots, \overbrace{s_{\left\lceil\frac{p}{r}\right\rceil}, \cdots, s_{\left\lceil\frac{p}{r}\right\rceil}}^{r \text { times }}),
$$

obtained from S by repeating each element r times, and observing that the length of this sequence is $\geq p$, it follows that

$$
\begin{equation*}
D_{A}(p) \leq\left\lceil\frac{p}{r}\right\rceil . \tag{2}
\end{equation*}
$$

On the other hand, considering the sequence $(\overbrace{1,1, \cdots, 1}^{\left(\left[\frac{p}{r}\right\rceil-1\right) \text { times }})$, for any non-empty subsequence $\left(s_{j_{1}}, \cdots, s_{j_{l}}\right)$ of this sequence and $\left(a_{1}, \cdots a_{l}\right) \in A^{l}$,

$$
0<\sum_{i=1}^{l} a_{i} s_{j_{i}}<r l \leq p-1
$$

Therefore,

$$
\begin{equation*}
D_{A}(p) \geq\left\lceil\frac{p}{r}\right\rceil \tag{3}
\end{equation*}
$$

From equations (2) and (3), part (i) follows.

Now, consider any sequence $S=\left(s_{1}, \cdots, s_{N}\right)$ of elements of $\mathbb{Z} / p \mathbb{Z}$ of length

$$
N=p-1+\left\lceil\frac{p}{r}\right\rceil
$$

Case I. (The sequence S has at least p non-zero elements in it).
Let $\left(s_{i_{1}}, s_{i_{2}}, \cdots, s_{i_{p}}\right)$ be a subsequence of S of p non-zero elements and let $A_{k}=\left\{s_{i_{k}}, 2 s_{i_{k}}\right\}$ for $k=1, \cdots, p$. Since $\left|A_{k}\right|=2$ for all k, by the Cauchy-Davenport Theorem (see [11], Theorem 2.3) it follows that $\left|A_{1}+A_{2}+\cdots+A_{p}\right| \geq p$ and hence

$$
\sum_{k=1}^{p} a_{k} s_{i_{k}}=0, \text { where } a_{k} \in\{1,2\} \subset A .
$$

Case II. (The sequence S has less than p non-zero elements in it).
In this case, at least $\left\lceil\frac{p}{r}\right\rceil$ elements of the sequence are equal to zero. We reorder the sequence in such a way that $s_{1}=s_{2}=\cdots=s_{t}=0$ and the remaining elements are non-zero. We have $N-t<p$. Let $B=\left\{r_{1}, \ldots, r_{l}\right\} \subseteq\{t+1, t+2, \cdots, N\}$ be maximal with respect to the property that there exist $a_{1}, \cdots, a_{l} \in\{1,2, \cdots, r\}$ with

$$
\sum_{j=1}^{l} a_{j} s_{r_{j}}=0
$$

Now we claim that $l+t \geq p$. Indeed, if this were not the case then the set $C=$ $\{t+1, \cdots, N\} \backslash\left\{r_{1}, \cdots, r_{l}\right\}$ would contain $N-t-l \geq\left\lceil\frac{p}{r}\right\rceil$ elements. Hence by part (i), there would exist a non-empty $B^{\prime} \subset C$ and $a_{j} \in\{1,2, \cdots, r\}$ for each $j \in B^{\prime}$ such that

$$
\sum_{j \in B^{\prime}} a_{j} s_{j}=0
$$

Now, $B \cup B^{\prime}$ would contradict the maximality of B. Hence $l+t \geq p$. Therefore, appending the sequence B to $\left(s_{1}, s_{2}, \cdots, s_{p-l}\right)=(0,0, \cdots, 0)$, we get a sequence of length p with desired property.

From Cases (I) and (II), and part (i), $E_{A}(p) \leq p-1+\left\lceil\frac{p}{r}\right\rceil=p-1+D_{A}(p)$, and hence from equation (1), part (ii) follows.

Theorem 3. Let A be the set of quadratic residues $(\bmod p)$. That is, A consists of all the squares in $(\mathbb{Z} / p \mathbb{Z})^{*}$. We have
(i) $D_{A}(p)=3$,
(ii) $E_{A}(p)=p+2$.

Proof. Given any sequence $S=\left(s_{1}, \cdots, s_{p+2}\right)$ of elements of $\mathbb{Z} / p \mathbb{Z}$ of length $p+2$, we consider the following system of equations in $(p+2)$ variables over the finite field \mathbb{F}_{p} :

$$
\sum_{i=1}^{p+2} s_{i} x_{i}^{2}=0, \quad \sum_{i=1}^{p+2} x_{i}^{p-1}=0 .
$$

By Chevalley - Warning Theorem (see [12] or [1], for instance), there is a nontrivial solution $\left(y_{1}, \cdots, y_{p+2}\right)$ of the above system. Writing $I=\left\{i: y_{i} \neq 0\right\}$, from the first equation it follows that $\sum_{i \in I} a_{i} s_{i}=0$ where a_{i} 's belong to the set of squares in $(\mathbb{Z} / p \mathbb{Z})^{*}$. By Fermat's little theorem, from the second equation we have $|I|=p$. Hence

$$
\begin{equation*}
E_{A}(p) \leq p+2 \tag{4}
\end{equation*}
$$

From (1), we have $E_{A}(p) \geq D_{A}(p)+p-1$, and hence by (4),

$$
\begin{equation*}
D_{A}(p) \leq E_{A}(p)-p+1 \leq 3 \tag{5}
\end{equation*}
$$

On the other hand, considering a sequence $v_{1},-v_{2}$, where v_{1} is a quadratic residue and v_{2} a quadratic non-residue $(\bmod p)$, for two elements $a_{1}, a_{2} \in A, a_{1} v_{1}+a_{2}\left(-v_{2}\right)=0$ implies $a_{1} v_{1}=a_{2} v_{2}$, - an absurdity, since $a_{1} v_{1}$ is a quadratic residue and $a_{2} v_{2}$ a non-residue.

Therefore, $D_{A}(p) \geq 3$ and this together with (5) proves part (i) of the theorem.
Again, since $E_{A}(p) \geq D_{A}(p)+p-1$, by part (i), $E_{A}(p) \geq p+2$, which, together with (4) gives part (ii) of the theorem.

Remarks. First, we note that the values of $D_{A}(p)$ and $E_{A}(p)$ remain unchanged if one replaces A by $c A=\{c a \mid a \in A\}$ for any $c \in(\mathbb{Z} / p \mathbb{Z})^{*}$. Hence, in particular, the statement of Theorem 3 holds with A as the set of quadratic non-residues $(\bmod p)$.

Finally, in Theorem 2, if $A \subset\{1,2, \cdots, r\}$, where r is an integer such that $1<r<p$, then also the lower bound (3) for $D_{A}(p)$ (and hence a corresponding lower bound for $E_{A}(p)$, namely $E_{A}(p) \geq p-1+\left\lceil\frac{p}{r}\right\rceil$, obtained by (1)) holds. However, taking $A=\{1, p-1\}$, for instance, this may not be a good lower bound in general. It is interesting to note the difference in the values of the constant $D_{A}(p)$ (from Theorem 2 and the result in [2] quoted in the introduction) corresponding to the weight sets $\{1,2\}$ and $\{1,-1\}$ having the same cardinality.

Acknowledgement. We thank the referee whose suggestions helped us improve the presentation of the paper.

References

[1] S. D. Adhikari, Aspects of combinatorics and combinatorial number theory, Narosa, New Delhi, 2002.
[2] S. D. Adhikari, Y. G. Chen, J. B. Friedlander, S. V. Konyagin and F. Pappalardi, Contributions to zero-sum problems, Discrete Math. 306, 1-10 (2006).
[3] Y. Caro, Zero-sum problems - A survey, Discrete Math. 152, 93-113 (1996).
[4] A. L. Cauchy, Recherches sur les nombres, J. Ecôle Polytech. 9, 99-123 (1813).
[5] H. Davenport, On the addition of residue classes, J. London Math. Soc. 22, 100-101 (1947).
[6] P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Research Council Israel, 10F, 41-43 (1961).
[7] Florian Luca, A generalization of a classical zero-sum problem, Preprint.
[8] W. D. Gao, A combinatorial problem on finite abelian groups, J. Number Theory, 58, 100-103 (1996).
[9] W. D. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: A survey, to appear.
[10] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations, Chapman \& Hall, CRC (2006).
[11] Melvyn B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer, 1996.
[12] J. -P. Serre, A course in Arithmetic, Springer, 1973.
[13] R. Thangadurai, Interplay between four conjectures on certain zero-sum problems, Expo. Math. 20, no. 3, 215-228 (2002).

