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Abstract

Let n ∈ N and let A ⊆ Z/nZ be such that A does not contain 0 and it is non–empty.
Generalizing a well known constant, EA(n) is defined to be the least t ∈ N such that for
all sequences (x1, . . . , xt) ∈ Zt, there exist indices j1, . . . , jn ∈ N, 1 ≤ j1 < · · · < jn ≤ t,
and (ϑ1, · · · , ϑn) ∈ An with

∑n
i=1 ϑixji ≡ 0 (mod n). Similarly, for any such set A, we

define the Davenport Constant of Z/nZ with weight A denoted by DA(n) to be the least
natural number k such that for any sequence (x1, · · · , xk) ∈ Zk, there exists a non-empty
subsequence {xj1 , · · · , xjl

} and (a1, · · · al) ∈ Al such that
∑l

i=1 aixji ≡ 0 (mod n). In the
present paper, in the special case where n = p is a prime, we determine the values of DA(p)
and EA(p) where A is {1, 2, · · · , r} or the set of quadratic residues (mod p).

1. Introduction

Here we shall be concerned with certain generalizations of two important combinatorial
invariants related to zero-sum problems (for detailed accounts one may see [10], [3], [13], [9])
in finite abelian groups.

For an abelian group G, the Davenport constant D(G) is defined to be the smallest
natural number k such that any sequence of k elements in G has a non-empty subsequence
whose sum is zero (the identity element). For an abelian group G of cardinality n, another
interesting constant is the smallest natural number k such that any sequence of k elements
in G has a subsequence of length n whose sum is zero; we shall denote it by E(G).
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The following result due to Gao [8] (see also [10], Proposition 5.7.9) connects these two
invariants.

Theorem 1. If G is a finite abelian group of order n, then E(G) = D(G) + n − 1.

For the particular group Z/nZ, the following generalization of E(G) was considered in
[2] recently. Let n ∈ N and assume A ⊆ Z/nZ. Then EA(n) is the least t ∈ N such that for
all sequences (x1, . . . , xt) ∈ Zt there exist indices j1, . . . , jn ∈ N, 1 ≤ j1 < · · · < jn ≤ t, and
(ϑ1, · · · , ϑn) ∈ An with

n∑

i=1

ϑixji ≡ 0 (mod n).

To avoid trivial cases, one assumes that the weight set A does not contain 0 and it is non–
empty.

Similarly, for any such set A ⊂ Z/nZ \ {0} of weights, we define the Davenport Constant
of Z/nZ with weight A denoted by DA(n) to be the least natural number k such that for
any sequence (x1, · · · , xk) ∈ Zk, there exists a non-empty subsequence {xj1 , · · · , xjl

} and
(a1, · · · al) ∈ Al such that

l∑

i=1

aixji ≡ 0 (mod n).

Thus, for the group G = Z/nZ, if we take A = {1}, then EA(n) and DA(n) are respec-
tively E(G) and D(G) as defined earlier.

For several sets A ⊂ Z/nZ \ {0} of weights, exact values of EA(n) and DA(n) have
been determined: The case A = {1} is classical and is covered by the well-known theorem
(EGZ theorem) due to Erdős, Ginzburg and Ziv [6] (one may also see [11] or [10]) and
Theorem 1 is also applicable; the case A = {1,−1}, was done in [2] where it is shown that
EA(n) = n+[log2 n]. Furthermore, by the pigeonhole principle (see [2]), DA(n) ≤ [log2 n]+1,
and by considering the sequence (1, 2, . . . , 2r), where r is defined by 2r+1 ≤ n < 2r+2, it
follows that DA(n) ≥ [log2 n]+1; the case observed in [2] shows that for A = {1, 2 · · ·n−1} we
have EA(n) = n+1. In this case, it is easy to see that DA(n) = 2; lastly, settling a conjecture
from [2], it was proved in [7] that for A = (Z/nZ)∗ = {a : (a, n) = 1}, EA(n) = n + Ω(n),
where Ω(n) denotes the number of prime factors of n, multiplicity included.

It is not difficult to observe that

EA(n) ≥ DA(n) + n − 1 for any A ⊂ Z/nZ \ {0}. (1)

Taking A = (Z/nZ)∗, it follows from (1) and the above result that DA(n) ≤ 1+Ω(n). On
the other hand, in this case, writing n = p1 · · · ps as a product of s = Ω(n) (not necessarily
distinct) primes, the sequence (1, p1, p1p2, . . . , p1p2 · · · ps−1) gives the lower bound DA(n) ≥
1 + Ω(n).
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Thus, in all these above cases, namely when A is one of the sets appearing in the chain
{1} ⊂ {1,−1} ⊂ (Z/nZ)∗ ⊂ {1, 2, · · · , n − 1}, one has EA(n) = DA(n) + n − 1.

In the present paper, in the special case where n = p is a prime (other than 2, the trivial
case), we determine the values of DA(p) and EA(p) where A is {1, 2, · · · , r} or the set of
quadratic residues (mod p). In both cases, the equality EA(p) = DA(p) + p − 1 holds.

Perhaps one would expect that for any set A ⊂ Z/nZ \ {0} of weights, the equality
EA(n) = DA(n) + n − 1 holds.

2. DA(p) and EA(p) for certain subsets A of (Z/pZ)∗

In what follows, p will always denote an odd prime.

Theorem 2. Let A = {1, 2, · · · , r}, where r is an integer such that 1 < r < p. We have

(i) DA(p) = (p
r), where for a real number x, (x) denotes the smallest integer ≥ x,

(ii) EA(p) = p − 1 + DA(p).

Proof. Consider any sequence S = (s1, · · · , s# p
r $) of elements of Z/pZ of length (p

r). Consid-
ering the sequence

S ′ = (
r times︷ ︸︸ ︷

s1, s1, · · · , s1,
r times︷ ︸︸ ︷

s2, s2, · · · , s2, · · · ,
r times︷ ︸︸ ︷

s# p
r $, · · · , s# p

r $),

obtained from S by repeating each element r times, and observing that the length of this
sequence is ≥ p, it follows that

DA(p) ≤
⌈p

r

⌉
. (2)

On the other hand, considering the sequence (

(# p
r $−1) times

︷ ︸︸ ︷
1, 1, · · · , 1), for any non-empty subsequence

(sj1 , · · · , sjl
) of this sequence and (a1, · · · al) ∈ Al,

0 <
l∑

i=1

aisji < rl ≤ p − 1.

Therefore,

DA(p) ≥
⌈p

r

⌉
. (3)

From equations (2) and (3), part (i) follows.
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Now, consider any sequence S = (s1, · · · , sN) of elements of Z/pZ of length

N = p − 1 +
⌈p

r

⌉
.

Case I. (The sequence S has at least p non-zero elements in it).

Let (si1 , si2 , · · · , sip) be a subsequence of S of p non-zero elements and let Ak = {sik , 2sik}
for k = 1, · · · , p. Since |Ak| = 2 for all k, by the Cauchy-Davenport Theorem (see [11],
Theorem 2.3) it follows that |A1 + A2 + · · · + Ap| ≥ p and hence

p∑

k=1

aksik = 0, where ak ∈ {1, 2} ⊂ A.

Case II. (The sequence S has less than p non-zero elements in it).

In this case, at least (p
r) elements of the sequence are equal to zero. We reorder the

sequence in such a way that s1 = s2 = · · · = st = 0 and the remaining elements are non-zero.
We have N − t < p. Let B = {r1, . . . , rl} ⊆ {t + 1, t + 2, · · · , N} be maximal with respect
to the property that there exist a1, · · · , al ∈ {1, 2, · · · , r} with

l∑

j=1

ajsrj = 0.

Now we claim that l + t ≥ p. Indeed, if this were not the case then the set C =
{t + 1, · · · , N} \ {r1, · · · , rl} would contain N − t − l ≥ (p

r) elements. Hence by part (i),
there would exist a non–empty B′ ⊂ C and aj ∈ {1, 2, · · · , r} for each j ∈ B′ such that

∑

j∈B′

ajsj = 0.

Now, B∪B′ would contradict the maximality of B. Hence l+t ≥ p. Therefore, appending
the sequence B to (s1, s2, · · · , sp−l) = (0, 0, · · · , 0), we get a sequence of length p with desired
property.

From Cases (I) and (II), and part (i), EA(p) ≤ p − 1 +
⌈

p
r

⌉
= p − 1 + DA(p), and hence

from equation (1), part (ii) follows.

Theorem 3. Let A be the set of quadratic residues (mod p). That is, A consists of all the
squares in (Z/pZ)∗. We have

(i) DA(p) = 3,

(ii) EA(p) = p + 2.
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Proof. Given any sequence S = (s1, · · · , sp+2) of elements of Z/pZ of length p+2, we consider
the following system of equations in (p + 2) variables over the finite field Fp:

p+2∑

i=1

six
2
i = 0,

p+2∑

i=1

xp−1
i = 0.

By Chevalley - Warning Theorem (see [12] or [1], for instance), there is a nontrivial solution
(y1, · · · , yp+2) of the above system. Writing I = {i : yi += 0}, from the first equation it
follows that

∑
i∈I aisi = 0 where ai’s belong to the set of squares in (Z/pZ)∗. By Fermat’s

little theorem, from the second equation we have |I| = p. Hence

EA(p) ≤ p + 2. (4)

From (1), we have EA(p) ≥ DA(p) + p − 1, and hence by (4),

DA(p) ≤ EA(p) − p + 1 ≤ 3. (5)

On the other hand, considering a sequence v1,−v2, where v1 is a quadratic residue and
v2 a quadratic non-residue (mod p), for two elements a1, a2 ∈ A, a1v1 +a2(−v2) = 0 implies
a1v1 = a2v2, – an absurdity, since a1v1 is a quadratic residue and a2v2 a non-residue.

Therefore, DA(p) ≥ 3 and this together with (5) proves part (i) of the theorem.

Again, since EA(p) ≥ DA(p) + p− 1, by part (i), EA(p) ≥ p + 2, which, together with (4)
gives part (ii) of the theorem.

Remarks. First, we note that the values of DA(p) and EA(p) remain unchanged if one
replaces A by cA = {ca|a ∈ A} for any c ∈ (Z/pZ)∗. Hence, in particular, the statement of
Theorem 3 holds with A as the set of quadratic non-residues (mod p).

Finally, in Theorem 2, if A ⊂ {1, 2, · · · , r}, where r is an integer such that 1 < r < p,
then also the lower bound (3) for DA(p) (and hence a corresponding lower bound for EA(p),
namely EA(p) ≥ p − 1 +

⌈
p
r

⌉
, obtained by (1)) holds. However, taking A = {1, p − 1},

for instance, this may not be a good lower bound in general. It is interesting to note the
difference in the values of the constant DA(p) (from Theorem 2 and the result in [2] quoted
in the introduction) corresponding to the weight sets {1, 2} and {1,−1} having the same
cardinality.
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[6] P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Research Council Israel,
10F, 41–43 (1961).

[7] Florian Luca, A generalization of a classical zero-sum problem, Preprint.

[8] W. D. Gao, A combinatorial problem on finite abelian groups, J. Number Theory, 58, 100–103 (1996).

[9] W. D. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: A survey, to appear.

[10] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations, Chapman & Hall, CRC (2006).

[11] Melvyn B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets,
Springer, 1996.

[12] J. -P. Serre, A course in Arithmetic, Springer, 1973.

[13] R. Thangadurai, Interplay between four conjectures on certain zero-sum problems, Expo. Math. 20, no.
3, 215–228 (2002).


