DAVENPORT CONSTANT WITH WEIGHTS AND SOME RELATED QUESTIONS

Sukumar Das Adhikari

Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, INDIA adhikari@mri.ernet.in

Purusottam Rath

Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, INDIA rath@mri.ernet.in

Received: 5/22/06, Revised: 7/5/06, Accepted: 8/12/06, Published: 10/20/06

Abstract

Let $n \in \mathbb{N}$ and let $A \subseteq \mathbb{Z}/n\mathbb{Z}$ be such that A does not contain 0 and it is non-empty. Generalizing a well known constant, $E_A(n)$ is defined to be the least $t \in \mathbb{N}$ such that for all sequences $(x_1, \ldots, x_t) \in \mathbb{Z}^t$, there exist indices $j_1, \ldots, j_n \in \mathbb{N}, 1 \leq j_1 < \cdots < j_n \leq t$, and $(\vartheta_1, \cdots, \vartheta_n) \in A^n$ with $\sum_{i=1}^n \vartheta_i x_{j_i} \equiv 0 \pmod{n}$. Similarly, for any such set A, we define the Davenport Constant of $\mathbb{Z}/n\mathbb{Z}$ with weight A denoted by $D_A(n)$ to be the least natural number k such that for any sequence $(x_1, \cdots, x_k) \in \mathbb{Z}^k$, there exists a non-empty subsequence $\{x_{j_1}, \cdots, x_{j_l}\}$ and $(a_1, \cdots, a_l) \in A^l$ such that $\sum_{i=1}^l a_i x_{j_i} \equiv 0 \pmod{n}$. In the present paper, in the special case where n = p is a prime, we determine the values of $D_A(p)$ and $E_A(p)$ where A is $\{1, 2, \cdots, r\}$ or the set of quadratic residues \pmod{p} .

1. Introduction

Here we shall be concerned with certain generalizations of two important combinatorial invariants related to zero-sum problems (for detailed accounts one may see [10], [3], [13], [9]) in finite abelian groups.

For an abelian group G, the Davenport constant D(G) is defined to be the smallest natural number k such that any sequence of k elements in G has a non-empty subsequence whose sum is zero (the identity element). For an abelian group G of cardinality n, another interesting constant is the smallest natural number k such that any sequence of k elements in G has a subsequence of length n whose sum is zero; we shall denote it by E(G). The following result due to Gao [8] (see also [10], Proposition 5.7.9) connects these two invariants.

Theorem 1. If G is a finite abelian group of order n, then E(G) = D(G) + n - 1.

For the particular group $\mathbb{Z}/n\mathbb{Z}$, the following generalization of E(G) was considered in [2] recently. Let $n \in \mathbb{N}$ and assume $A \subseteq \mathbb{Z}/n\mathbb{Z}$. Then $E_A(n)$ is the least $t \in \mathbb{N}$ such that for all sequences $(x_1, \ldots, x_t) \in \mathbb{Z}^t$ there exist indices $j_1, \ldots, j_n \in \mathbb{N}, 1 \leq j_1 < \cdots < j_n \leq t$, and $(\vartheta_1, \cdots, \vartheta_n) \in A^n$ with

$$\sum_{i=1}^n \vartheta_i x_{j_i} \equiv 0 \pmod{n}.$$

To avoid trivial cases, one assumes that the weight set A does not contain 0 and it is nonempty.

Similarly, for any such set $A \subset \mathbb{Z}/n\mathbb{Z} \setminus \{0\}$ of weights, we define the Davenport Constant of $\mathbb{Z}/n\mathbb{Z}$ with weight A denoted by $D_A(n)$ to be the least natural number k such that for any sequence $(x_1, \dots, x_k) \in \mathbb{Z}^k$, there exists a non-empty subsequence $\{x_{j_1}, \dots, x_{j_l}\}$ and $(a_1, \dots, a_l) \in A^l$ such that

$$\sum_{i=1}^{l} a_i x_{j_i} \equiv 0 \pmod{n}.$$

Thus, for the group $G = \mathbb{Z}/n\mathbb{Z}$, if we take $A = \{1\}$, then $E_A(n)$ and $D_A(n)$ are respectively E(G) and D(G) as defined earlier.

For several sets $A \subset \mathbb{Z}/n\mathbb{Z} \setminus \{0\}$ of weights, exact values of $E_A(n)$ and $D_A(n)$ have been determined: The case $A = \{1\}$ is classical and is covered by the well-known theorem (EGZ theorem) due to Erdős, Ginzburg and Ziv [6] (one may also see [11] or [10]) and Theorem 1 is also applicable; the case $A = \{1, -1\}$, was done in [2] where it is shown that $E_A(n) = n + [\log_2 n]$. Furthermore, by the pigeonhole principle (see [2]), $D_A(n) \leq [\log_2 n] + 1$, and by considering the sequence $(1, 2, \ldots, 2^r)$, where r is defined by $2^{r+1} \leq n < 2^{r+2}$, it follows that $D_A(n) \geq [\log_2 n] + 1$; the case observed in [2] shows that for $A = \{1, 2 \cdots n - 1\}$ we have $E_A(n) = n+1$. In this case, it is easy to see that $D_A(n) = 2$; lastly, settling a conjecture from [2], it was proved in [7] that for $A = (\mathbb{Z}/n\mathbb{Z})^* = \{a : (a, n) = 1\}, E_A(n) = n + \Omega(n)$, where $\Omega(n)$ denotes the number of prime factors of n, multiplicity included.

It is not difficult to observe that

$$E_A(n) \ge D_A(n) + n - 1 \text{ for any } A \subset \mathbb{Z}/n\mathbb{Z} \setminus \{0\}.$$
(1)

Taking $A = (\mathbb{Z}/n\mathbb{Z})^*$, it follows from (1) and the above result that $D_A(n) \leq 1 + \Omega(n)$. On the other hand, in this case, writing $n = p_1 \cdots p_s$ as a product of $s = \Omega(n)$ (not necessarily distinct) primes, the sequence $(1, p_1, p_1 p_2, \dots, p_1 p_2 \cdots p_{s-1})$ gives the lower bound $D_A(n) \geq 1 + \Omega(n)$. Thus, in all these above cases, namely when A is one of the sets appearing in the chain $\{1\} \subset \{1, -1\} \subset (\mathbb{Z}/n\mathbb{Z})^* \subset \{1, 2, \cdots, n-1\}$, one has $E_A(n) = D_A(n) + n - 1$.

In the present paper, in the special case where n = p is a prime (other than 2, the trivial case), we determine the values of $D_A(p)$ and $E_A(p)$ where A is $\{1, 2, \dots, r\}$ or the set of quadratic residues (mod p). In both cases, the equality $E_A(p) = D_A(p) + p - 1$ holds.

Perhaps one would expect that for any set $A \subset \mathbb{Z}/n\mathbb{Z} \setminus \{0\}$ of weights, the equality $E_A(n) = D_A(n) + n - 1$ holds.

2. $D_A(p)$ and $E_A(p)$ for certain subsets A of $(\mathbb{Z}/p\mathbb{Z})^*$

In what follows, p will always denote an odd prime.

Theorem 2. Let $A = \{1, 2, \dots, r\}$, where r is an integer such that 1 < r < p. We have

- (i) $D_A(p) = \lceil \frac{p}{r} \rceil$, where for a real number x, $\lceil x \rceil$ denotes the smallest integer $\geq x$,
- (*ii*) $E_A(p) = p 1 + D_A(p)$.

Proof. Consider any sequence $S = (s_1, \dots, s_{\lceil \frac{p}{r} \rceil})$ of elements of $\mathbb{Z}/p\mathbb{Z}$ of length $\lceil \frac{p}{r} \rceil$. Considering the sequence

$$S' = (\overbrace{s_1, s_1, \cdots, s_1}^{r \text{ times}}, \overbrace{s_2, s_2, \cdots, s_2}^{r \text{ times}}, \cdots, \overbrace{s_{\lceil \frac{p}{r} \rceil}^{r}, \cdots, s_{\lceil \frac{p}{r} \rceil}^{r}})$$

obtained from S by repeating each element r times, and observing that the length of this sequence is $\geq p$, it follows that

$$D_A(p) \le \left\lceil \frac{p}{r} \right\rceil. \tag{2}$$

 $\left(\left\lceil \frac{p}{r}\right\rceil - 1\right)$ times

On the other hand, considering the sequence $(1, 1, \dots, 1)$, for any non-empty subsequence $(s_{j_1}, \dots, s_{j_l})$ of this sequence and $(a_1, \dots, a_l) \in A^l$,

$$0 < \sum_{i=1}^{l} a_i s_{j_i} < rl \le p - 1.$$

Therefore,

$$D_A(p) \ge \left\lceil \frac{p}{r} \right\rceil. \tag{3}$$

From equations (2) and (3), part (i) follows.

Now, consider any sequence $S = (s_1, \cdots, s_N)$ of elements of $\mathbb{Z}/p\mathbb{Z}$ of length

$$N = p - 1 + \left\lceil \frac{p}{r} \right\rceil.$$

Case I. (The sequence S has at least p non-zero elements in it).

Let $(s_{i_1}, s_{i_2}, \dots, s_{i_p})$ be a subsequence of S of p non-zero elements and let $A_k = \{s_{i_k}, 2s_{i_k}\}$ for $k = 1, \dots, p$. Since $|A_k| = 2$ for all k, by the Cauchy-Davenport Theorem (see [11], Theorem 2.3) it follows that $|A_1 + A_2 + \dots + A_p| \ge p$ and hence

$$\sum_{k=1}^{p} a_k s_{i_k} = 0, \text{ where } a_k \in \{1, 2\} \subset A.$$

Case II. (The sequence S has less than p non-zero elements in it).

In this case, at least $\lceil \frac{p}{r} \rceil$ elements of the sequence are equal to zero. We reorder the sequence in such a way that $s_1 = s_2 = \cdots = s_t = 0$ and the remaining elements are non-zero. We have N - t < p. Let $B = \{r_1, \ldots, r_l\} \subseteq \{t + 1, t + 2, \cdots, N\}$ be maximal with respect to the property that there exist $a_1, \cdots, a_l \in \{1, 2, \cdots, r\}$ with

$$\sum_{j=1}^{l} a_j s_{r_j} = 0.$$

Now we claim that $l + t \ge p$. Indeed, if this were not the case then the set $C = \{t + 1, \dots, N\} \setminus \{r_1, \dots, r_l\}$ would contain $N - t - l \ge \lceil \frac{p}{r} \rceil$ elements. Hence by part (i), there would exist a non-empty $B' \subset C$ and $a_j \in \{1, 2, \dots, r\}$ for each $j \in B'$ such that

$$\sum_{j\in B'} a_j s_j = 0.$$

Now, $B \cup B'$ would contradict the maximality of B. Hence $l+t \ge p$. Therefore, appending the sequence B to $(s_1, s_2, \dots, s_{p-l}) = (0, 0, \dots, 0)$, we get a sequence of length p with desired property.

From Cases (I) and (II), and part (i), $E_A(p) \leq p - 1 + \left\lceil \frac{p}{r} \right\rceil = p - 1 + D_A(p)$, and hence from equation (1), part (ii) follows.

Theorem 3. Let A be the set of quadratic residues (mod p). That is, A consists of all the squares in $(\mathbb{Z}/p\mathbb{Z})^*$. We have

- (*i*) $D_A(p) = 3$,
- (*ii*) $E_A(p) = p + 2$.

Proof. Given any sequence $S = (s_1, \dots, s_{p+2})$ of elements of $\mathbb{Z}/p\mathbb{Z}$ of length p+2, we consider the following system of equations in (p+2) variables over the finite field \mathbb{F}_p :

$$\sum_{i=1}^{p+2} s_i x_i^2 = 0, \quad \sum_{i=1}^{p+2} x_i^{p-1} = 0.$$

By Chevalley - Warning Theorem (see [12] or [1], for instance), there is a nontrivial solution (y_1, \dots, y_{p+2}) of the above system. Writing $I = \{i : y_i \neq 0\}$, from the first equation it follows that $\sum_{i \in I} a_i s_i = 0$ where a_i 's belong to the set of squares in $(\mathbb{Z}/p\mathbb{Z})^*$. By Fermat's little theorem, from the second equation we have |I| = p. Hence

$$E_A(p) \le p+2. \tag{4}$$

From (1), we have $E_A(p) \ge D_A(p) + p - 1$, and hence by (4),

$$D_A(p) \le E_A(p) - p + 1 \le 3.$$
 (5)

On the other hand, considering a sequence $v_1, -v_2$, where v_1 is a quadratic residue and v_2 a quadratic non-residue (mod p), for two elements $a_1, a_2 \in A$, $a_1v_1 + a_2(-v_2) = 0$ implies $a_1v_1 = a_2v_2$, – an absurdity, since a_1v_1 is a quadratic residue and a_2v_2 a non-residue.

Therefore, $D_A(p) \ge 3$ and this together with (5) proves part (i) of the theorem.

Again, since $E_A(p) \ge D_A(p) + p - 1$, by part (i), $E_A(p) \ge p + 2$, which, together with (4) gives part (ii) of the theorem.

Remarks. First, we note that the values of $D_A(p)$ and $E_A(p)$ remain unchanged if one replaces A by $cA = \{ca | a \in A\}$ for any $c \in (\mathbb{Z}/p\mathbb{Z})^*$. Hence, in particular, the statement of Theorem 3 holds with A as the set of quadratic non-residues (mod p).

Finally, in Theorem 2, if $A \subset \{1, 2, \dots, r\}$, where r is an integer such that 1 < r < p, then also the lower bound (3) for $D_A(p)$ (and hence a corresponding lower bound for $E_A(p)$, namely $E_A(p) \ge p - 1 + \left\lceil \frac{p}{r} \right\rceil$, obtained by (1)) holds. However, taking $A = \{1, p - 1\}$, for instance, this may not be a good lower bound in general. It is interesting to note the difference in the values of the constant $D_A(p)$ (from Theorem 2 and the result in [2] quoted in the introduction) corresponding to the weight sets $\{1, 2\}$ and $\{1, -1\}$ having the same cardinality.

Acknowledgement. We thank the referee whose suggestions helped us improve the presentation of the paper.

References

- [1] S. D. Adhikari, Aspects of combinatorics and combinatorial number theory, Narosa, New Delhi, 2002.
- [2] S. D. Adhikari, Y. G. Chen, J. B. Friedlander, S. V. Konyagin and F. Pappalardi, Contributions to zero-sum problems, Discrete Math. 306, 1–10 (2006).
- [3] Y. Caro, Zero-sum problems A survey, Discrete Math. 152, 93–113 (1996).
- [4] A. L. Cauchy, Recherches sur les nombres, J. Ecôle Polytech. 9, 99–123 (1813).
- [5] H. Davenport, On the addition of residue classes, J. London Math. Soc. 22, 100–101 (1947).
- [6] P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Research Council Israel, 10F, 41–43 (1961).
- [7] Florian Luca, A generalization of a classical zero-sum problem, Preprint.
- [8] W. D. Gao, A combinatorial problem on finite abelian groups, J. Number Theory, 58, 100–103 (1996).
- [9] W. D. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: A survey, to appear.
- [10] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations, Chapman & Hall, CRC (2006).
- [11] Melvyn B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer, 1996.
- [12] J.-P. Serre, A course in Arithmetic, Springer, 1973.
- [13] R. Thangadurai, Interplay between four conjectures on certain zero-sum problems, Expo. Math. 20, no. 3, 215–228 (2002).