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Abstract

Let n € N and let A C Z/nZ be such that A does not contain 0 and it is non—empty.
Generalizing a well known constant, E4(n) is defined to be the least t € N such that for
all sequences (r1,...,2;) € Z', there exist indices ji,... ,J, € N1 < j; < -+ < j, < 1,
and (¥q,---,9,) € A" with >."  d;z;, = 0 (mod n). Similarly, for any such set A, we
define the Davenport Constant of Z/nZ with weight A denoted by D4(n) to be the least
natural number k such that for any sequence (zy,---, ;) € ZF, there exists a non-empty
subsequence {zj,, - ,r;} and (aj,---a;) € A’ such that Zi:l a;xj, = 0 (mod n). In the
present paper, in the special case where n = p is a prime, we determine the values of D4(p)
and F4(p) where A is {1,2,--- ,r} or the set of quadratic residues (mod p).

1. Introduction

Here we shall be concerned with certain generalizations of two important combinatorial
invariants related to zero-sum problems (for detailed accounts one may see [10], [3], [13], [9])
in finite abelian groups.

For an abelian group G, the Davenport constant D(G) is defined to be the smallest
natural number k such that any sequence of k elements in G has a non-empty subsequence
whose sum is zero (the identity element). For an abelian group G of cardinality n, another
interesting constant is the smallest natural number £k such that any sequence of k elements
in G has a subsequence of length n whose sum is zero; we shall denote it by F(G).
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The following result due to Gao [8] (see also [10], Proposition 5.7.9) connects these two
invariants.

Theorem 1. If G is a finite abelian group of order n, then E(G) = D(G) +n — 1.

For the particular group Z/nZ, the following generalization of E(G) was considered in
2] recently. Let n € N and assume A C Z/nZ. Then E4(n) is the least t € N such that for
all sequences (1, ... ,x;) € Z' there exist indices ji,...,j, € N;1 < j; <--- < j, <, and
(91, ,¥,) € A™ with

n
Zﬁixji =0 (mod n).
i=1
To avoid trivial cases, one assumes that the weight set A does not contain 0 and it is non—
empty.

Similarly, for any such set A C Z/nZ\ {0} of weights, we define the Davenport Constant
of Z/nZ with weight A denoted by D4(n) to be the least natural number k such that for
any sequence (x1,---,x;) € Z*, there exists a non-empty subsequence {zj,---,z;} and
(a1,---a;) € A such that

I
Z a;zj, =0 (mod n).
i=1

Thus, for the group G = Z/nZ, if we take A = {1}, then E4(n) and D(n) are respec-
tively E(G) and D(G) as defined earlier.

For several sets A C Z/nZ \ {0} of weights, exact values of E4(n) and D4(n) have
been determined: The case A = {1} is classical and is covered by the well-known theorem
(EGZ theorem) due to Erdés, Ginzburg and Ziv [6] (one may also see [11] or [10]) and
Theorem 1 is also applicable; the case A = {1, —1}, was done in [2] where it is shown that
E4(n) = n+[log, n]. Furthermore, by the pigeonhole principle (see [2]), Da(n) < [logyn]+1,
and by considering the sequence (1,2,...,2"), where 7 is defined by 2" < n < 272 it
follows that D a(n) > [log, n]+1; the case observed in [2] shows that for A = {1,2---n—1} we
have E4(n) = n+1. In this case, it is easy to see that D(n) = 2; lastly, settling a conjecture
from [2], it was proved in [7] that for A = (Z/nZ)* = {a : (a,n) = 1}, Ea(n) = n+ Q(n),
where Q(n) denotes the number of prime factors of n, multiplicity included.

It is not difficult to observe that

Ea(n) > Da(n)+n—1for any A C Z/nZ\ {0}. (1)

Taking A = (Z/nZ)*, it follows from (1) and the above result that D4(n) < 1+Q(n). On
the other hand, in this case, writing n = p; - - - ps as a product of s = Q(n) (not necessarily
distinct) primes, the sequence (1, p1, p1pa, ..., p1P2 -« Ps—1) gives the lower bound D4(n) >

1+ Q(n).
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Thus, in all these above cases, namely when A is one of the sets appearing in the chain
{1} c {1,-1} € (Z/nZ)* € {1,2,--- ,n— 1}, one has E4(n) = Da(n) +n — 1.

In the present paper, in the special case where n = p is a prime (other than 2, the trivial
case), we determine the values of D4(p) and FE4(p) where A is {1,2,--- ,r} or the set of
quadratic residues (mod p). In both cases, the equality F4(p) = Da(p) + p — 1 holds.

Perhaps one would expect that for any set A C Z/nZ \ {0} of weights, the equality
Ea(n) = Ds(n) +n — 1 holds.

2. D4(p) and E4(p) for certain subsets A of (Z/pZ)*

In what follows, p will always denote an odd prime.

Theorem 2. Let A ={1,2,--- ,r}, where r is an integer such that 1 < r < p. We have

(i) Da(p) = [2], where for a real number x, [x] denotes the smallest integer > ,

(ii) Ea(p) =p— 1+ Da(p).

Proof. Consider any sequence S = (s, -+, sfz1) of elements of Z/pZ of length [2]. Consid-
ering the sequence

r times r times r times
N\ N\

Sl_ ~ N ™~ ——N—
—(517517"' y 51,825,582, , 82, 7S|—£-\7"' 7S|—g1)7

obtained from S by repeating each element r times, and observing that the length of this
sequence is > p, it follows that

b
Dalp) < 2] (2)
(TB7-1) times
——
On the other hand, considering the sequence (1, 1,--- 1), for any non-empty subsequence
Si,-++,8;) of this sequence and (aq,--- ;) € A’,
g i) of thi d Al

!
O<Zaisji<rl§p—1.

i=1

Therefore,

Dafp) = | 2], (3)

r

From equations (2) and (3), part (i) follows.
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Now, consider any sequence S = (s, -+, sy) of elements of Z/pZ of length

N:p—1+m.

Case I. (The sequence S has at least p non-zero elements in it).

Let (s4,, Siy, - -+ 5 5,) be a subsequence of S of p non-zero elements and let A, = {s;,,2s;, }
for k = 1,--- p. Since |A| = 2 for all k, by the Cauchy-Davenport Theorem (see [11],
Theorem 2.3) it follows that |A; + Ay +--- + A,| > p and hence

p
Zaksik =0, where q; € {1,2} C A.
k=1

Case II. (The sequence S has less than p non-zero elements in it).

In this case, at least [2] elements of the sequence are equal to zero. We reorder the

sequence in such a way that s; = sy = --- = 5, = 0 and the remaining elements are non-zero.
We have N —t <p. Let B={ry,...,r} C{t+1,t+2,---, N} be maximal with respect
to the property that there exist ay,--- ,a; € {1,2,--- ,r} with

Z ajsy; = 0.

j=1

Now we claim that [ +t > p. Indeed, if this were not the case then the set C' =
{t+1,--- ,N}\ {ry,---,m} would contain N —¢ —1 > [2] elements. Hence by part (i),
there would exist a non-empty B’ C C and a; € {1,2,--- ,r} for each j € B’ such that

Z a;S; = 0.

jEB

Now, BUB’ would contradict the maximality of B. Hence [+t > p. Therefore, appending
the sequence B to (s1, 82, -+, Sp—1) = (0,0,---,0), we get a sequence of length p with desired

property.

From Cases (I) and (II), and part (i), Ea(p) <p—1+ [B] =p— 14 Da(p), and hence
from equation (1), part (ii) follows.

Theorem 3. Let A be the set of quadratic residues (mod p). That is, A consists of all the
squares in (Z/pZ)*. We have
(it) Ealp) =p+2.
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Proof. Given any sequence S = (s, - , Sp42) of elements of Z/pZ of length p+2, we consider
the following system of equations in (p 4 2) variables over the finite field F:

p+2 p+2

-1
E sixs =0, E 2 =0.
=1 i=1

By Chevalley - Warning Theorem (see [12] or [1], for instance), there is a nontrivial solution
(Y1, ,Ypt2) of the above system. Writing I = {i : y; # 0}, from the first equation it
follows that )., a;s; = 0 where a;’s belong to the set of squares in (Z/pZ)*. By Fermat’s
little theorem, from the second equation we have |I| = p. Hence

Es(p) <p+2. (4)

From (1), we have E4(p) > Da(p) +p — 1, and hence by (4),

Da(p) < Ea(p) —p+1<3. (5)

On the other hand, considering a sequence vy, —vy, where v; is a quadratic residue and
v9 a quadratic non-residue (mod p), for two elements a;,as € A, ajv; +az(—ve) = 0 implies
a1V = agvq, — an absurdity, since a,v; is a quadratic residue and asv, a non-residue.

Therefore, D4(p) > 3 and this together with (5) proves part (i) of the theorem.

Again, since E4(p) > Da(p)+p—1, by part (i), Ea(p) > p+ 2, which, together with (4)
gives part (ii) of the theorem.

Remarks. First, we note that the values of D4(p) and E4(p) remain unchanged if one
replaces A by cA = {cala € A} for any ¢ € (Z/pZ)*. Hence, in particular, the statement of
Theorem 3 holds with A as the set of quadratic non-residues (mod p).

Finally, in Theorem 2, if A C {1,2,--- ,r}, where r is an integer such that 1 < r < p,
then also the lower bound (3) for D4(p) (and hence a corresponding lower bound for E4(p),
namely Ea(p) > p — 1+ [2], obtained by (1)) holds. However, taking A = {1,p — 1},
for instance, this may not be a good lower bound in general. It is interesting to note the
difference in the values of the constant D4(p) (from Theorem 2 and the result in [2] quoted
in the introduction) corresponding to the weight sets {1,2} and {1,—1} having the same
cardinality.
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