
INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A28

AN IMPROVED UPPER BOUND ON THE MAXIMUM SIZE OF
k-PRIMITIVE SETS

Peter Hegarty
Chalmers University of Technology, 41296 Göteborg, Sweden
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Abstract

For k ≥ 3 and sufficiently large n depending on k, Sujith Vijay recently provided non-trivial
lower and upper bounds for the size of the largest subset of {1, 2, . . . , n} such that no element
divides k others. The gap between his lower and upper bounds is, however, substantial, and
here we provide a better upper bound which significantly reduces this gap for large k.

1. Introduction

Let n be a positive integer. A subset S of {1, . . . , n} is said to be primitive if no member
of S divides any other. It is a well-known application of the pigeonhole principle, or if one
prefers, of Dilworth’s theorem, that |S| ≤ #n/2$; the divisibility poset on {1, . . . , n} can be
decomposed into #n/2$ disjoint chains Cx, one for each odd number x ∈ {1, . . . , n}, where
Cx = {1, . . . , n} ∩ {2kx : k ≥ 0}. On the other hand, the set S0,n = {x : n/2 < x ≤ n} is
primitive, so #n/2$ is the maximum size of a primitive subset of {1, . . . , n}.

Now let k ≥ 2 be an integer. A subset S of {1, . . . , n} is said to be k-primitive if no
member of S divides k or more others. Following [5], we denote by fk(n) the maximum size
of a k-primitive subset of {1, . . . , n}. No simple formula for fk(n), for any fixed k ≥ 2, is
known (see [2], Problem B24). A trivial lower bound is found by generalizing the set S0,n

above: the set {x : n/(k+1) < x ≤ n} is k-primitive. Larger k-primitive sets are constructed
explicitly in [5], and it is deduced that, for all sufficiently large n, depending on k,

fk(n)

n
≥ k

k + 1
+ O

(
1

k4

)
.

In the special case k = 2, Lebensold [3] had earlier provided an even better construction. He
also used the decomposition of the divisibility poset referred to above to provide an upper



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A28 2

bound in this special case. He obtains the result that, for sufficiently large n,

0.6725 . . . .. ≤ f2(n)

n
≤ 0.6736 . . . .

and remarks that the gap between these can be improved simply by resort to more com-
putation, rather than to any new ideas. Now as k grows, it is easy to see that the type of
argument used in [3] to obtain an upper bound on fk(n)/n becomes less and less effective.
A non-trivial upper bound is provided in [5] for all k but, as we shall see when we quote the
result below, it leaves a substantial ‘gap’ between the lower and upper bounds in a ‘non-
computational’ sense. In this note we will modify the argument in [5] which produces a new
upper bound that closes this gap significantly for large k.

For convenience we set gk(n) := 1− fk(n)
n (this reverses the role of upper and lower bounds:

we hope no confusion arises in what follows). The following results are proven in [5] :

Theorem A (i) For each k ≥ 3 and sufficiently large n,

1

8k ln k
< gk(n) <

1

k + 1
− 1

8k4
. (1)

(ii) For each ε > 0 there exists k0(ε) such that, for each k ≥ k0(ε) and all n ≥ n0(k),

1

(2eγ + ε)k ln k
< gk(n) <

1

k + 1
− 1 − ε

k4
, (2)

where γ is Euler’s constant.

The point is that the lower and upper bounds in (1) and (2) have different orders of
magnitude as functions of k. We will prove better lower bounds which eliminate this gap.
Our result is the following

Theorem B (i) There exists an absolute constant C > 0 such that, for all k ≥ 3, and all n
sufficiently large, depending on k,

1

Ck
< gk(n). (3)

In fact, one can take C to be the unique solution in [2,∞) of the equation

1

t
=

5

9

[
ln

(
2t

t + 2

)
− 11(t − 2)

20t

]
, (4)

namely C ≈ 18.1439 . . .
(ii) Let ε > 0. Then there exists k0(ε) such that, for each k ≥ k0(ε) and all n ≥ n0(k),

1 − ε

k
< gk(n). (5)
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2. Proof of Theorem B

Although inequality (5) is a stronger result than (3), except for the explicit value of the
constant C, we shall first prove (3) separately. A somewhat technical modification of the
argument will then provide (5).

Proof of part (i). For given k and n, let S be a k-primitive subset of {1, . . . , n} and denote
its complement inside {1, . . . , n} by S ′. Let c > 2 be a real number and suppose that
|S ′| < n/ck. We will show that, for sufficiently large n, depending on k, it must hold that

1

c
≥ k

2(k − 1)

[
ln

(
2c

c + 2

)
− c − 2

2c

(
1 +

1

k

)]
. (6)

This says that c ≤ ck for some ck ∈ [2,∞), where c10 is the solution C to (4). For k ≥ 10
this means that c ≤ ck ≤ c10 = C. This, together with (1) and the fact that 8 ln k < c10 for
all k < 10, gives the desired result.

Let I := Z ∩
(

n
2k , n

k

]
. For each x ∈ I we let Cx := {jx : 1 ≤ j and jx ≤ n}. Clearly,

k ≤ |Cx| = *n

x
+ ≤ 2k − 1.

Since |I| = n/2k + O(1), it follows by our assumptions that |I ∩ S| > n
k

(
c−2
2c

)
− O(1). For

each x ∈ I ∩ S let Dx := Cx ∩ S ′. Since S is k-primitive we have |Dx| ≥ |Cx|− k = *n
x+ − k.

Thus

∑

x∈I∩S

|Dx| ≥
%n

k &∑

x=%n
k &−|I∩S|+1

⌊n

x

⌋
− k

≥
n
k +O(1)∑

x=n
k ( c+2

2c )+O(1)

*n

x
+ − k

≥ n ·
[∫ n

k

n
k ( c+2

2c )

dx

x
+ O

(
k

n

)]
− (k + 1) ·

[
n

k

(
c − 2

2c

)
+ O(1)

]

= n ·
[
ln

(
2c

c + 2

)
− c − 2

2c

(
1 +

1

k

)]
+ O(k).

Now, by definition,
⋃

x∈I∩S Dx ⊆ S ′. Let y be a member of this union. Set Ay := {x ∈ I∩S :
y ∈ Dx} and ay := |Ay|. We have an injection Ay ↪→ {2, . . . , 2k − 1} given by y .→ y/x,
hence ay ≤ 2(k − 1) for every y. It follows that

∣∣∣∣∣
⋃

x∈I∩S

Dx

∣∣∣∣∣ ≥
1

2(k − 1)

∑

x∈I∩S

|Dx|

and hence that

n

ck
> |S ′| ≥ n

2(k − 1)

[
ln

(
2c

c + 2

)
− c − 2

2c

(
1 +

1

k

)]
+ O(1).
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Thus we’ll obtain a contradiction for sufficiently large n unless (6) is satisfied, so we’re done.

Proof of part (ii). Let ε ∈ (0, 1) be given. We consider a fixed, sufficiently large k and in turn
a sufficiently large n (how large will be determined in due course) and let S be a k-primitve
subset of {1, . . . , n} with complement S ′. We suppose that |S ′| < (1− ε)n

k and aim to derive
a contradiction.

Let I := Z ∩
(

ε
2 ·

n
k , n

k

]
. It follows from our assumptions that |I ∩ S| > ε

2 ·
n
k − O(1). For

each x ∈ I ∩ S define the chain Cx and its subset Dx as before. Arguing as before we have
that

∑

x∈I∩S

|Dx| ≥ n ·
[∫ n

k

n
k (1− ε

2)

dx

x
+ O

(
k

εn

)]
− (k + 1) ·

[ ε

2
· n

k
+ O(1)

]

= n ·
[
ln

(
2

2 − ε

)
− ε

2

(
1 +

1

k

)]
+ O

(
k

ε

)
.

Hence for any fixed k ≥ Θ
(

1
ε

)
we have, for all sufficiently large n,

∑

x∈I∩S

|Dx| ≥ Θ(ε2n). (7)

On the other hand, ∣∣∣∣∣
⋃

x∈I∩S

Dx

∣∣∣∣∣ ≤ |S ′| <
εn

k
. (8)

For each y ∈
⋃

x∈I∩S Dx we define the set Ay as before. The map y .→ y/x gives an injection
of Ay into {2, 3, . . . , *2k

ε +}, hence ay < 2k/ε for each y. On the other hand, (7) and (8) imply
that, on average, ay ≥ Θ(εk). At the very least, we can thus deduce the following :

‘There are at least Θ
(

ε3

k n
)

numbers in {1, . . . , n}, each with at least Θ(εk) divisors in

{1, . . . , *2k
ε +}’.

But now we have the desired contradiction, as the above statement cannot possibly be
true, for any fixed ε ∈ (0, 1], any fixed k sufficiently large depending on ε, and all sufficiently
large n depending on k. This follows immediately from the following lemma :

Lemma Let δ ∈ (0, 1). For each pair l, n of positive integers, set

A(n, l) := {x ∈ {1, . . . , n} : x has at least δ · l divisors in {1, . . . , l}}.

Then for each l >>δ 0,

lim
n→∞

|A(n, l)|
n

= 0. (9)

Proof. The result follows from a number of standard estimates in analytic number theory, but
for the sake of completeness we present the argument in detail. First recall some standard
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notation : for each pair (x, y) of positive real numbers with 1 ≤ y ≤ x, we denote by Ψ(x, y)
the number of integers in [1, x] all of whose prime divisors lie in [1, y]. It was first proven by
Dickman [1] that, if ρ : [0,∞) → (0, 1] is the unique continuous function satisfying

ρ(u) = 1, for 0 ≤ u ≤ 1,

ρ(u − 1) + u
dρ

du
= 0, for 1 < u < ∞,

then, for each u ∈ (1,∞), lim
x→∞

Ψ(x, x1/u)

x
= ρ(u). From this and the prime number theorem

it follows easily that, for any δ′ ∈ (0, 1/ρ−1(δ)) and all sufficently large l (depending on δ, δ′),
if A is a subset of {1, . . . , l} of size at least δ · l, then the numbers in A contain in total
at least lδ

′
distinct prime factors. Now consider a fixed large l and suppose (9) were false.

Then for all large n there would be a positive proportion of the integers in {1, . . . , n} each
divisible by at least lδ

′
distinct primes in {1, . . . , l}. A positive proportion of these will in

turn each have at least Θl

[
(ln n)lδ

′−1
]

distinct divisors. But for all sufficiently large n this

will contradict the result of Dirichlet (see any standard number theory text, for example [4],
Theorem 8.28) that 1

n

∑n
i=1 d(i) ∼ ln n, where d(i) denotes the number of divisors of i. This

completes the proof of the lemma, and with it that of Theorem B.

3. Concluding Remarks

The trivial lower bound gk(n) ≤ 1
k+1 gives a lower bound on the function k0(ε) in part (ii)

of Theorem B of the form

k0(ε) ! 1

ε
. (10)

The lower bound obtained by the above proof is, however, much worse. This is because, in

the proof of the Lemma, we require at the very least that l
1

ρ−1(δ) = Ω(1). This in turn implies
a lower bound of the form

k0(ε) = Ω
[
ε · exp

{
ρ−1(cε2)

}]
, (11)

for some absolute constant c. The gap between (10) and (11) remains a challenging problem.
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