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Abstract

A cyclotomic array is an array of numbers that can be written as a linear combination of
lines of 1’s running parallel to the coordinate axes and running the full length of the array.
In this paper we show that the sum of the entries of a cyclotomic array with nonnegative
integer entries is a nonnegative integer linear combination of the sidelengths of the array.

Introduction

A cyclotomic array is an array of numbers that can be written as a linear combination of lines
of 1’s running parallel to the coordinate axes and running the full length of the array. Figure
1 shows for example a 2-dimensional cyclotomic array of size 3 × 4 and how it is obtained
as a linear combination of lines of 1’s. Figure 2 shows a similar example of a 3-dimensional
cyclotomic array. The purpose of this paper is to prove the following theorem:

Theorem 1. The sum of the entries of a cyclotomic array with nonnegative integer entries
is a nonnegative integer linear combination of the sidelengths of the array.

Lam and Leung [6] prove the special case of Theorem 1 when the two smallest sidelengths
of the array are coprime (Corollary 2 in our paper). Their paper, however, is written in
the slightly different context of vanishing sums of roots of unity. The connection between
vanishing sums of roots of unity and cyclotomic arrays is briefly discussed below. A more
complete discussion can be found in [9] (where the term “cyclotomic array” is also coined).

We shall refer to the lines of 1’s in an array as fibers. Thus an array is cyclotomic if and
only if it can be written as a linear combination of fibers. It is shown in [9] that any integer-
valued cyclotomic array can always be written as an integer linear combination of fibers,
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Figure 1: A 3 × 4 cyclotomic array (on the left) shown decomposed as a linear combination
of lines of 1’s. Blank entries denote zeroes.
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Figure 2: A 2 × 2 × 2 cyclotomic array shown decomposed as a linear combination of lines
of 1’s; shaded cubes denote 1’s, other entries are 0.

from which it follows that the entry sum of an integer-valued cyclotomic array is always
an integer linear combination of the sidelengths of the array. Theorem 1 shows this integer
linear combination can be written with nonnegative coefficients if the array also happens to
be nonnegative.

Theorem 1 is trivial for 1-dimensional cyclotomic arrays, which have all their entries equal.
It is also easy for 2-dimensional cyclotomic arrays, as it turns out that any nonnegative 2-
dimensional cyclotomic array is just a positive sum of fibers [9]. The problem only becomes
interesting for 3-dimensional arrays and higher, as nonnegative 3-dimensional cyclotomic
arrays or higher are not always positive sums of fibers (such as the array of Fig. 2).

If one wishes one can restrict one’s attention to arrays that are minimal, in the sense of not
being decomposable as the sum of two other (nonzero) cyclotomic arrays with nonnegative
integer entries, since if Theorem 1 is true for minimal arrays then it obviously holds for all
arrays. However minimal cyclotomic arrays of 3 or more dimensions can have surprisingly
complicated structures. For example they may contain entries that are arbitrarily large,
even superpolynomially large compared to the volume of the array [9]. It is therefore not of
much use to restrict one’s attention to minimal cyclotomic arrays. An exception is Lam and
Leung’s proof of Theorem 1 for arrays whose two smallest sidelengths are coprime, which can
be obtained simply by giving a lower bound on the entry sum of non-fiber minimal cyclotomic
arrays (see Corollaries 1 and 2 in our paper). Another promising but ultimately doomed
approach for proving Theorem 1, as noted by Lam and Leung, is to show that any integer-
valued nonnegative cyclotomic array has a representation as an integer linear combination
of fibers where the sum of the coefficients of fibers parallel to the j-th coordinate direction
is nonnegative for each j. In fact, even the 2 × 2 × 2 array of Fig. 2 does not admit such a
representation, as the reader may verify.
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As just mentioned, Theorem 1 for 2-dimensional arrays is a consequence of the fact that
nonnegative 2-dimensional cyclotomic arrays are positive sums of fibers (or alternatively,
that the only minimal 2-dimensional cyclotomic arrays are fibers). A proof of this can be
found in [9] or can be deduced from Proposition 1 below. To warm up we give a slightly
different argument showing Theorem 1 for 2-dimensional arrays; this argument is closer in
structure to our proof for n-dimensional arrays.

If A is a cyclotomic array we write [A] for the sum of the entries, [A]+ for the sum
of the positive entries and [A]− for the sum of the negative entries in absolute value (so
[A] = [A]+ − [A]−). A “j-fiber” means a fiber parallel to the j-th coordinate direction and a
“j-layer” means an array layer perpendicular to the j-th coordinate direction (thus a j-layer
of an array of size a1 × · · ·×an is an array of size a1 × · · ·×aj−1 ×aj+1 × · · ·×an). We index
coordinates starting at 0 instead of at 1, so the j-th coordinate of a cyclotomic array of size
a1 × · · · × an is a number in Zaj = {0, 1, 2, . . . , aj − 1}. We first note a defining feature of
cyclotomic arrays:

Proposition 1. The difference of two j-layers of a cyclotomic array of dimension n > 1 is
a cyclotomic array of dimension n − 1.

Proof. Let A be a cyclotomic array of size a1 × · · ·× an. Fix some representation of A as a
linear combination of fibers. When we take the difference of two j-layers of A the contribution
of j-fibers to those layers cancels, leaving only the contributions of i-fibers for i #= j. Thus
the result of the difference is a cyclotomic array of size a1 × · · ·× aj−1 × aj+1 × · · ·× an.

Thus two 1-layers or two 2-layers of a 2-dimensional cyclotomic array differ only by an
additive constant, since 1-dimensional cyclotomic arrays have all their entries equal. From
this we can easily find a proof of Theorem 1 for 2-dimensional cyclotomic arrays. The
notation “Z+(a1, a2)” means the set of nonnegative integer linear combinations of a1, a2:

Proposition 2. If A is a nonnegative integer-valued cyclotomic array of size a1 × a2 then
[A] ∈ Z+(a1, a2).

Proof. Let A0, . . . , Aa2−1 be the a2 2-layers of A, and let A• be a 2-layer of A such that
[A•] = min([Ar] : r ∈ Za2). Also let Ar = Ar − A• for all r ∈ Za2 . We have

[A] = [A•]a2 +
∑

r∈Za2

[Ar]. (1)

By Proposition 1 each Ar is a 1-dimensional integer-valued cyclotomic array of size a1, so
[Ar] is a multiple of a1 for every r (recall that the entries of a 1-dimensional cyclotomic array
are all equal). But [Ar] = [Ar]− [A•] ≥ 0 so [Ar] is a nonnegative multiple of a1 for all r. It
thus directly follows from (1) that [A] ∈ Z+(a1, a2).
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Figure 3: Inflating an array.
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Figure 4: Another inflation.

(Note that the same type of proof cannot work for 3-dimensional cyclotomic arrays because
a 2-dimensional integer-valued cyclotomic array A can have [A] ≥ 0 but [A] /∈ Z+(a1, a2),
such as the array of Fig. 1.)

Some interesting applications of Theorem 1 can be found by exhibiting cyclotomic arrays
whose entry sums are not obviously nonnegative integer linear combination of the sidelengths.
A simple way to construct cyclotomic arrays is to use a process called inflation. Let Ai1,...,in

denote the (i1, . . . , in)-th entry of an array A of dimension n. Formally, a cyclotomic array
A′ of size a′

1 × · · ·× a′
n is said to be an inflate of a cyclotomic array A of size a1 × · · ·× an

if there are functions κ1 : Za′
1
→ Za1 , . . . , κn : Za′

n
→ Zan such that A′

i1,...,in = Aκ1(i1),..., κn(in)

for all (i1, . . . , in) ∈ Za′
1
× · · · × Za′

n
(this notion of inflation differs slightly from the one

defined in [9], where the functions κj are required to be surjections). The basic idea behind
inflation is shown in Fig. 3. It is easy to check that the inflates of cyclotomic arrays are
again cyclotomic.

The sum of the entries of an inflate of the Fig. 2 cyclotomic array is equal to b1b2b3 +
(a1 − b1)(a2 − b2)(a3 − b3) for some integers a1, a2, a3, b1, b2, b3 with 0 ≤ b1 ≤ a1, 0 ≤ b2 ≤ a2,
0 ≤ b3 ≤ a3. It follows from Theorem 1 that

b1b2b3 + (a1 − b1)(a2 − b2)(a3 − b3) ∈ Z+(a1, a2, a3) (2)

for all integers a1, a2, a3, b1, b2, b3 such that 0 ≤ b1 ≤ a1, 0 ≤ b2 ≤ a2, 0 ≤ b3 ≤ a3. The
inclusion (2) is not easy to verify without Theorem 1 and this paper is, as far as we know,
the first place it has been noted. Considering more generally the inflates of odd-dimensional
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Figure 5: The two fiber tilings of a 5× 4 array. The shaded strips represent the fibers used.

2 × · · · × 2 arrays with two entries of 1 at opposing corners of the array and entries of 0
elsewhere (which are easily verified to be cyclotomic), we get that

n∏

i=1

bi +
n∏

i=1

(ai − bi) ∈ Z+(a1, . . . , an) (3)

for all integers a1, . . . , an and b1, . . . , bn such that 0 ≤ bi ≤ ai for all i, for all odd n. At
the end of this section we give a self-contained proof of (3) that does not rely on cyclotomic
arrays. Any number of identities of the type (2) and (3) can be found using Theorem 1. For
another example, it follows from considering inflates of the 3×3×3 cyclotomic array on the
left of Fig. 4 that

t1(r1s1 + r1s2 + r2s1)

+ t2(r2s1 + r2s3 + r3s3)

+ t3(r1s2 + r3s2 + r3s3) ∈ Z+(r, s, t) (4)

for all integers r1, r2, r3, s1, s2, s3, t1, t2, t3 ≥ 0, where r = r1 + r2 + r3, s = s1 + s2 + s3,
t = t1 + t2 + t3.

We have also found an amusing application of Theorem 1 which concerns the notion of a
fiber tiling of an array. A fiber tiling is a collection F of fibers in an array of size a1× · · ·×an

such that the sum of all the fibers in F is the all 1’s array (put another way, F is a fiber
tiling if and only if the supports of the fibers in F partition the set Za1 × · · ·× Zan). There
are only two kinds of two-dimensional fiber-tilings: the tiling by horizontal fibers and the
tiling by vertical fibers (Fig. 5). Three-dimensional fiber tilings are only slightly more varied,
since these can always be decomposed as a sandwich of two-dimensional fiber tilings, while
four-dimensional fiber tilings start showing better diversity (in particular, four is the first
dimension for which fibers in all the coordinate directions can appear simultaneously in the
same tiling, if we exclude one-dimensional tilings). Theorem 1 gives us:

Theorem 2. Let F be a fiber tiling of an array of size a1 × · · ·× an where n ≥ 2. Then the
number of j-fibers in F is in Z+(a1, . . . , aj−1, aj+1, . . . , an).

Proof. Let F0 denote all i-fibers in F , i #= j, that are contained in the first j-layer of the
array, and let A be the 0-1 a1 × · · · × aj−1 × aj+1 × · · · × an cyclotomic array obtained by
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adding all the fibers in F0. Note that the j-fibers of F are in 1-to-1 correspondence with the
0 entries of A. Let B denote the all 1’s a1 × · · ·× aj−1 × aj+1 × · · ·× an array. Because the
dimension of B is greater than or equal to 1 (as we supposed n ≥ 2) B is also a cyclotomic
array, so B − A is another 0-1 a1 × · · · × aj−1 × aj+1 × · · · × an cyclotomic array. But the
number of j-fibers in F is the entry sum of B − A, so is in Z+(a1, . . . , aj−1, aj+1, . . . , an) by
Theorem 1.

We can also mention as an application of Theorem 1 the original result of Lam and Leung
[6] on vanishing sums of roots of unity:

Theorem 3. (Lam and Leung [6]) Let ζn be a primitive n-th root of unity and let

n−1∑

i=0

ciζ
i
n = 0

be a vanishing sum of n-th roots of unity where the ci’s are nonnegative integers. Then∑n−1
i=0 ci is a nonnegative integer linear combination of the primes dividing n.

We only sketch the reduction from Theorem 3 to Theorem 1, since a detailed account
of the relationship between cyclotomic arrays and vanishing sums of roots of unity can be
found in [9]. Firstly Theorem 3 can be reduced to the case where n is squarefree (because
Φnp(x) = Φn(xp) if p is a prime dividing n, where Φm(x) is the m-th cyclotomic polynomial).
Then if n = p1 · · · pk is squarefree there is a bijection between vanishing sums of n-th roots
of unity and cyclotomic arrays of size p1 × · · ·× pk, given by putting the coefficient of ζ i

n in
the vanishing sum as the value of the entry with coordinates (i mod p1, . . . , i mod pk) in the
array (note that under this bijection, a j-fiber maps to a regular pj-gon in the complex plane,
so the bijection essentially states that any vanishing sum of roots of unity can be obtained
by addition and subtraction of regular p-gons from one another). Thus if the coefficients ci

are nonnegative integers it directly follows from Theorem 1 that
∑n−1

i=0 ci is in Z+(p1, . . . , pk).
Conversely, Theorem 3 implies Theorem 1 for arrays whose sides are distinct primes, though
the proof technique of Lam and Leung can be more generally adapted to prove Theorem 1
for all arrays whose two smallest sides are coprime (cf. Corollary 2). Lam and Leung show
some further applications of Theorem 3 to representation theory and there are many other
independent applications of vanishing sums of roots of unity (e.g. [3, 8, 10]).

Since the j-fibers of an a1 × · · · × an array are the incidence vectors of cosets of the
canonical copy of Zaj in Za1 × · · · × Zan , Theorem 1 suggests the question of whether,
more generally, any nonnegative vector obtained as the integer combination of cosets in a
finite abelian group has entry sum equal to some nonnegative integer combination of the
sizes of the cosets used. This is false; Fig. 6 shows an example where a single element of
G = (Z3)2 × (Z2)3 is written as the difference of seven cosets of size 2 from five cosets of
size 3, whereas 1 /∈ Z+(2, 3) (a similar example fits in the group G = (Z3)2 × (Z2)2, but is
harder to draw due to overlap between the cosets of size 3). However Theorem 1 does have
a generalization in the non-abelian setting, essentially due to Hertweck [5]:
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Figure 6: An integer combination of cosets of sizes 2 and 3 in G = (Z3)2 × (Z2)3 resulting in
a single element. Each group of 3 dots connected by lines is a coset of size 3 added to the
linear combination and each pair of dots with the same letter is a coset of size 2 subtracted
from the linear combination. The shaded dot is the leftover element.

Theorem 4. Let G be a finite group and let N1, . . . , Nk be normal subgroups of G such that
|N1 · · ·Nk| = |N1| · · · |Nk|. Then any nonnegative integer-valued vector in Z|G| obtained as a
linear combination of cosets of N1, . . . , Nk has entry sum in Z+(|N1|, . . . , |Nk|).

Proof. (Reducing from Theorem 1.) It obviously suffices to consider the case where G =
N1 · · ·Nk. Then every element of G can be uniquely written as a product n1n2 . . . nk where
ni ∈ Ni. For each Ni choose an arbitrary one-to-one map fi from Ni to Z|Ni|, and define
f : G → Z|N1|× · · ·×Z|Nk| by f(n1 · · ·nk) = (f1(n1), . . . , fk(nk)). If N ′

i is a coset of Ni we can
write N ′

i = n1 . . . ni−1Nini+1 . . . nk for some n1, . . . , ni−1, ni+1, . . . , nk with nj ∈ Nj for all j
(using the normality of N1, . . . , Nk) so f(N ′

i) = f1(n1)× · · ·×fi−1(ni−1)×Z|Ni|×fi+1(ni+1)×
· · ·× fk(nk) is a coset of Z|Ni| in Z|N1| × · · · × Z|Nk|. Therefore every linear combination of
cosets of N1, . . . , Nk in G corresponds to a linear combination of fibers in an array of size
|N1|× · · ·× |Nk| and Theorem 4 follows directly from Theorem 1.

(Hertweck [5] did the equivalent generalization for Lam and Leung’s result rather than for
Theorem 1, of which he was unaware; he also adapted Lam and Leung’s proof to the non-
abelian setting instead of reducing the non-abelian case to the abelian one.)

The reader will have noted that the counterexample of Fig. 6 uses “diagonal” cosets of
size 3 (for lack of a better term). It seems hard to construct a counterexample without using
such diagonal cosets. In this connection we offer up the following conjecture generalizing
Theorem 1:

Conjecture 1. Let G = Za1 × · · ·×Zan and let v ∈ (Z+)|G| be obtained as an integer linear
combination of incidence vectors of cosets of subgroups H1, . . . , Hm of G where each Hi is
of the form Ji1 × · · ·× Jin for some subgroups Ji1, . . . , Jin of Za1 , . . . , Zan respectively. Then
the sum of the entries of v is in Z+(|H1|, . . . , |Hm|).
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Conjecture 1 reduces to Theorem 1 if we let m = n and let Hi = 0× · · ·×Zai × · · ·×0 for
1 ≤ i ≤ n. If on the other hand we set n = 1 then Conjecture 1 simply stipulates that any
nonnegative vector obtained as the integer linear combination of cosets in a cyclic group has
entry sum equal to some nonnegative integer linear combination of the sizes of the cosets
used. It is noteworthy that Conjecture 1 can be reduced to the case where every Jik is either
0 or Zak

:

Proposition 3. Conjecture 1 reduces to the case where for all 1 ≤ i ≤ m each Jik is either
0 or Zak

.

Proof. We can assume without loss of generality that each ai is a prime power, since otherwise
Zai can be expanded as the direct product of cyclic groups of prime power order. It is now
sufficient to show that if a = pα is a prime power then there is a 1-to-1 mapping f from
Za to (Zp)α such that for any subgroup J of Za and any j ∈ Za the image f(J + j) of the
coset J + j is a “direct product” coset of (Zp)α, namely a coset of the form J ′ + j′ where
J ′ = J ′

1 × · · · × J ′
α where each J ′

k is either 0 or Zp and where j′ ∈ (Zp)α. A simple map f
with this property is the “radix p map”, defined by setting the i-th coordinate of f(j) equal
to the i-th digit of j written base p. It is then easy to verify that cosets of Za are mapped
to direct product cosets of (Zp)α under f , which completes the reduction.

We finish the introduction with a purely number-theoretic proof of (3). This proof is
independent of the main result, so can be safely skipped if wished. We should still quickly
mention, however, that our main result is actually stronger than Theorem 1, as we have
shown that Theorem 1 also holds for cyclotomic arrays with a limited number of negative
entries. Theorem 6 in the next section gives the full statement.

Our proof of (3), as well as much else that we do, relies on the following proposition:

Proposition 4. (Bauer [1], Bauer and Shockley [2]) Let a1 ≤ a2 ≤ · · · ≤ an be natural
numbers. Let λn = gcd(a1, . . . , an) and let z > a1an/λn − a1 − an be divisible by λn. Then
z ∈ Z+(a1, . . . , an).

Proof. We do the proof by induction on n, as the conclusion obviously holds for n = 1.

Let n ≥ 2 and let λn−1 = gcd(a1, . . . , an−1). Let u ≥ 0 be the least integer such that
z − uan ≡ 0 mod λn−1. Notice u ≤ λn−1/λn. We have

z − uan > a1an/λn − a1 − an − uan

≥ a1an/λn − a1 − an − (λn−1/λn − 1)an

= an(a1 − λn−1)/λn − a1

≥ an−1(a1 − λn−1)/λn−1 − a1

= a1an−1/λn−1 − a1 − an−1

so that, by induction, z − uan ∈ Z+(a1, . . . , an−1), which implies z ∈ Z+(a1, . . . , an).
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Theorem 5. (Proof of (3)) Let n be odd and let a1, . . . , an, b1, . . . , bn be integers such that
0 ≤ bi ≤ ai for 1 ≤ i ≤ n. Then

n∏

i=1

bi +
n∏

i=1

(ai − bi) ∈ Z+(a1, . . . , an) (5)

Proof. We do the proof by induction on n with the case n = 1 being obvious and the case
n = 3 serving as our induction basis.

Assume therefore that n = 3. We can assume without loss of generality that a1 ≤ a2 ≤ a3

and that 0 < bi < ai since if bi = 0 or bi = ai for some i the conclusion is obvious. We
can also assume that b1b2 ≤ (a1 − b1)(a2 − b2) since otherwise we can effect the change of
variables b′1 = a1 − b1, b′2 = a2 − b2. Put N = b1b2b3 + (a1 − b1)(a2 − b2)(a3 − b3). Note that

N = b1b2a3 + ((a1 − b1)(a2 − b2) − b1b2)(a3 − b3)

≥ b1b2a3 + ((a1 − b1)(a2 − b2) − b1b2). (6)

The minimum of the function f(B1, B2) = (a1 −B1)(a2 −B2)−B1B2 = a1a2 −B1a2 −B2a1

subject to the constraints B1, B2 ≥ 1, B1B2 = b1b2 is attained at B1 = b1b2, B2 = 1 (since
a1 ≤ a2) so f(B1, B2) ≥ (a1 − b1b2)(a2 −1)− b1b2 = (a1 − b1b2)a2 −a1 for all B1, B2 ≥ 1 such
that B1B2 = b1b2. Since b1, b2 ≥ 1 we get in particular that

(a1 − b1)(a2 − b2) − b1b2 ≥ (a1 − b1b2)a2 − a1 (7)

so (6) implies that

N ≥ b1b2a3 + (a1 − b1b2)a2 − a1. (8)

Now put λ2 = gcd(a1, a2), λ3 = gcd(a1, a2, a3) (note N ≡ 0 mod λ3, since the b1b2b3

cancels out with its negative in the expansion of (a1 − b1)(a2 − b2)(a3 − b3)). Let u ≥ 0 be
the least integer such that N − ua3 ≡ 0 mod λ2. Then u ≤ λ2/λ3 − 1 and also u ≤ b1b2

since N − b1b2a3 = ((a1 − b1)(a2 − b2) − b1b2)(a3 − b3) ≡ 0 mod λ2. From (8) we have

N − ua3 ≥ (b1b2 − u)a3 + (a1 − b1b2)a2 − a1

≥ (b1b2 − u)a2 + (a1 − b1b2)a2 − a1

= a1a2/λ2 + a1(a2 − a2/λ2) − ua2 − a1

≥ a1a2/λ2 + λ2(a2 − a2/λ2) − (λ2/λ3 − 1)a2 − a1

= a1a2/λ2 + a2(λ2 − λ2/λ3) − a1

≥ a1a2/λ2 − a1

> a1a2/λ2 − a1 − a2

which means that N − ua3 ∈ Z+(a1, a2) by Proposition 4 and thus that N ∈ Z+(a1, a2, a3).
This dispatches the case n = 3.
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Assume now that n ≥ 5. Assume first that al = am for some l #= m. Put a = al = am. By
symmetry we can assume that (a − bl)(a − bm) ≥ blbm (or else effect the change of variables
b′i = ai − bi). This implies that a − bl − bm ≥ 0. But then

n∏

i=1

bi +
n∏

i=1

(ai − bi) = blbm

n∏

i=1
i"=l,m

bi + (a − bl)(a − bm)
n∏

i=1
i"=l,m

(ai − bi)

= blbm(
n∏

i=1
i"=l,m

bi +
n∏

i=1
i"=l,m

(ai − bi)) + a(a − bl − bm)
n∏

i=1
i"=l,m

(ai − bi).

Here the term blbm(
∏n

i=1
i"=l,m

bi +
∏n

i=1
i"=l,m

(ai − bi)) is in Z+({ai : i #= l, m}) by induction on n

and the second term a(a− bl − bm)
∏n

i=1
i"=l,m

(ai − bi) is a nonnegative multiple of a = al = am.

Therefore
∏n

i=1 bi +
∏n

i=1(ai − bi) is in Z+(a1, . . . , an). We can thus assume that ai #= aj for
all i, j, and by symmetry that a1 < · · · < an.

Put

β = gcd(a1, . . . , an−1),

X =
n−1∏

i=1

(ai − bi),

Y =
n−1∏

i=1

bi,

N = X(an − bn) + Y bn.

Note that X − Y ≡ 0 mod β as n is odd. Our job is to prove N ∈ Z+(a1, . . . , an). We
can assume without loss of generality that X ≥ Y . If Y ≥ a1/β + β then we can write
Y = mβ + r for some m, r ≥ 0 such that mβ > a1/β, and we will have

N = Y an + (X − Y )(an − bn)

= ran + {mβan + [(X − Y )(an − bn)]}

where the quantity in brackets {. . .} is a multiple of β strictly greater than a1an−1/β, so
is in Z+(a1, . . . , an−1) by Proposition 4. But then N ∈ Z+(a1,. . . , an). So we can assume
Y < a1/β + β.

Recall X − Y ≡ 0 mod β. If we assume that X − Y > a1an−1/β − a1 − an−1 then
X − Y ∈ Z+(a1, . . . , an−1) and N = (X − Y )(an − bn) + Y an ∈ Z+(a1, . . . , an). We can
therefore assume X − Y ≤ a1an−1/β − a1 − an−1. We now have

X = (X − Y ) + Y

≤ (a1an−1/β − a1 − an−1) + (a1/β + β − 1)

= (1/β)(a1 − β)(an−1 − β + 1)

≤ (a1 − 1)an−1
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Figure 7: An a1 × a2 cyclotomic array with [A] = (a1 − b1)(a2 − b2) − b1b2 and [A]− = b1b2.

so that

XY ≤ a1(a1 − 1)an−1.

On the other hand XY =
∏n−1

i=1 bi(ai − bi) ≥
∏n−1

i=1 (ai − 1), so we get

a1an−1 ≥
n−1∏

i=2

(ai − 1). (9)

But since a1 < · · · < an, n ≥ 5, we have that (an−2 − 1)(an−1 − 1) > an−1, 2 < n− 2, and so
a1an−1 < (a2 − 1)(an−2 − 1)(an−1 − 1) ≤

∏n−1
i=2 (ai − 1), a contradiction.

Results

We will start by showing that a cyclotomic array whose negative entries have a small but
nonzero sum in absolute value has a large overall entry sum. More precisely, we will show
that if A is an integer-valued cyclotomic array with two smallest sidelengths a1 and a2,
a1 ≤ a2, and if [A]− > 0, then

[A] ≥ (a1 − [A]−)a2 − a1. (10)

Note that if [A]− is very small compared to a1 then (10) gives that [A] ≈ a1a2, which fits
somewhat well with Proposition 4 (see Corollaries 1 and 2 and the remarks thereafter for
the continuation of this idea). Also note that (7) is a special case of (10), as illustrated by
Fig. 7. Inequality (10) was first proved under a different form by Lam and Leung (cf. [6]
Thm. 4.1). Lam and Leung in fact prove the stronger inequality

{A}+ − {A}− ≥ (a1 − {A}−)a2 − a1 (11)

where {A}+ is the number of positive entries of A and {A}− is the number of negative entries
of A, where (11) holds provided A is integer-valued and {A}− > 0. We will not require this
stronger version of (10). The proof that we give here of Inequality (10) is different from Lam
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a

aa

aa
a

(x1, x2, x3)

(y1, y2, y3)

Figure 8: An 5×5×6 array with entries of 0 and ±1; ‘+’ symbols denote entries of 1 and ‘−’
symbols denote entries of −1. Since this array is orthogonal in R5·5·6 to all fibers it is also
orthogonal to all cyclotomic arrays. Therefore if A is a cyclotomic array of size 5× 5× 6 we
have Ax1,x2,x3 −Ax1,x2,y3 −Ax1,y2,x3 −Ay1,x2,x3 + Ax1,y2,y3 + Ay1,x2,y3 + Ay1,y2,x3 −Ay1,y2,y3 = 0,
i.e.

∑
(j1,j2,j3)∈{0,1}3(−1)j1+j2+j3Aj1x1+(1−j1)y1, j2x2+(1−j2)y2, j3x3+(1−j3)y3 = 0.

and Leung’s proof, with the main advantage that it is shorter and does not require induction
on the dimension of the array.

Since the n-dimensional case of our proof of (10) is a bit opaque we will first give a proof
of the 2-dimensional case to illustrate the basic idea (we will generally be in the habit of
proving things several times over in successive degrees of generality, which we hope the reader
will find more instructive than annoying). We start by noting that if A is an a1 × · · ·× an

cyclotomic array then
∑

(j1,...,jn)∈
{0,1}n

(−1)j1+...+jnAj1x1+(1−j1)y1,...,jnxn+(1−jn)yn = 0 (12)

for all pairs of coordinates (x1, . . . , xn), (y1, . . . , yn) in Za1 × · · ·× Zan . To understand why
(12) holds it suffices to look at Fig. 8 illustrating the 3-dimensional case.

Proposition 5. Let A be an a1 × a2 cyclotomic array such that a1 ≤ a2 and such that
[A]− > 0. Then [A] ≥ (a1 − [A]−)a2 − a1.

Proof. Assume that a counterexample exists with [A]− as small as possible. If [A]− ≥ 2 then
we can add either a 1-fiber or a 2-fiber to A (depending on whether the negative entries
of A are contained in a common 1-fiber or not) such as to decrease [A]− by at least 1 and
increase [A] by at most a2 while keeping [A]− > 0, thus obtaining a counterexample with
smaller [A]−. It is therefore sufficient to consider the case when [A]− = 1. In particular, we
can assume that A0,0 = −1 and that Ai,j ≥ 0 for (i, j) #= (0, 0).

Eq. (12) gives us that

Ax1,x2 − Ay1,x2 − Ax1,y2 + Ay1,y2 = 0

for all (x1, x2), (y1, y2) ∈ Za1 × Za2 . Summing up the relations

A0,0 − Ai,0 − A0,j + Ai,j = 0
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over all (i, j) ∈ Za1 × Za2 such that i #= 0, j #= 0, we get

(a1 − 1)(a2 − 1)A0,0 − (a1 − 1)
∑

j∈Za2
j "=0

A0,j − (a2 − 1)
∑

i∈Za1
i"=0

Ai,0 +
∑

(i,j)∈Za1×Za2
i"=0,j "=0

Ai,j = 0.

But A0,0 = −1 and Ai,0, A0,j ≥ 0 for all i, j #= 0, so we get

∑

(i,j)∈Za1×Za2
i"=0,j "=0

Ai,j ≥ (a1 − 1)(a2 − 1)

or, since [A]− = 1,
[A]+ ≥ (a1 − [A]−)a2 − a1 + [A]−,

which is to say that [A] ≥ (a1 − [A]−)a2 − a1, a contradiction.

At this point, before moving on to prove the equivalent of Proposition 5 for n-dimensional
arrays, we note that we can already use Proposition 5 to prove Theorem 1 for 3-dimensional
arrays. The proof is quite similar to the proof of the case n = 3 of Theorem 5, reflecting the
parallel between inequalities (7) and (10).

Proposition 6. Theorem 1 is true for 3-dimensional arrays.

Proof. Let a1 ≤ a2 ≤ a3 and let λ2 = gcd(a1, a2), λ3 = gcd(a1, a2, a3). Let A be a nonnegative
integer-valued a1 × a2 × a3 cyclotomic array. Let A0, . . . , Aa3−1 be the 3-layers of A. Let A•

be a 3-layer chosen such that [A•] = min([Ar] : r ∈ Za3). Put Ar = Ar − A• for all r ∈ Za3 .
Then Ar is a cyclotomic array of size a1 × a2 by Proposition 1 and [Ar] ≥ 0 for all r.

If Ar ≥ 0 for all r then [Ar] ∈ Z+(a1, a2) for all r by Theorem 1 for 2-dimensional arrays,
so that

[A] = [A•]a3 +
∑

r∈Za3

[Ar] ∈ Z+(a1, a2, a3).

We can therefore assume there is some s ∈ Za3 such that [As]− > 0. Because [As]− ≤ [A•],
Proposition 5 gives that [As] ≥ (a1 − [A•])a2 − a1. Therefore, since [Ar] ≥ 0 for all r,∑

r∈Za3
[Ar] ≥ [As] ≥ (a1 − [A•])a2 − a1.

As the sum of the entries of any integer-valued cyclotomic array is congruent to 0 modulo
the gcd of the sidelengths (because any integer-valued cyclotomic array can be written as an
integer linear combination of fibers, cf. [9]) we have [A] ≡ 0 mod λ3 and [Ar] ≡ 0 mod λ2

for all r. Let u ≥ 0 be the least integer such that [A] − ua3 ≡ 0 mod λ2. Note that
u ≤ λ2/λ3 − 1 and that u ≤ [A•] since [A]− [A•]a3 =

∑
r∈Za3

[Ar] ≡ 0 mod λ2. We thus get

[A] − ua3 = ([A•] − u)a3 +
∑

r∈Za3

[Ar]

≥ ([A•] − u)a2 + (a1 − [A•])a2 − a1
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= a1a2 − ua2 − a1

≥ a1a2 − (λ2/λ3 − 1)a2 − a1

= a1a2/λ2 + a1(a2 − a2/λ2) − (λ2/λ3 − 1)a2 − a1

≥ a1a2/λ2 + λ2(a2 − a2/λ2) − (λ2/λ3 − 1)a2 − a1

≥ a1a2/λ2 − a1

> a1a2/λ2 − a1 − a2

so [A] − ua3 ∈ Z+(a1, a2) by Proposition 4, and [A] ∈ Z+(a1, a2, a3).

We now prove inequality (10) by generalizing the proof of Proposition 5 to n-dimensional
arrays:

Lemma 1. (cf. [6] Thm. 4.1) Let A be an integer-valued a1 × · · ·×an cyclotomic array such
that a1 ≤ · · · ≤ an and such that [A]− > 0. Then [A] ≥ (a1 − [A]−)a2 − a1.

Proof. Assume that a counterexample exists with [A]− as small as possible. We can again
assume (by adding 1-fibers or 2-fibers to the array) that [A]− = 1 and that A0,...,0 = −1
(meaning Ai1,...,in ≥ 0 for (i1, . . . , in) #= (0, . . . , 0)).

Put F = Za1 × · · ·×Zan and let E ⊂ F be the set of coordinates in Za1 × · · ·×Zan that
have all nonzero entries. Summing up the relations

∑

(j1,...,jn)
∈{0,1}n

(−1)j1+...+jnAi1j1,...,injn = 0

over all (i1, . . . , in) ∈ E , we get

∑

(i1,...,in)
E∈EE

∑

(j1,...,jn)
∈{0,1}n

(−1)j1+...+jnAi1j1,...,injn = 0

∑

(i1,...,in)
E∈FE

(−1)|{h: ih>0}|Ai1,...,in

∏

1≤h≤n
ih=0

(ah − 1) = 0

∑

(i1,...,in)∈F
|{h: ih>0}|≥2

(−1)|{h: ih>0}|Ai1,...,in

∏

1≤h≤n
ih=0

(ah − 1) ≥
∏

1≤h≤n

(ah − 1)

∑

(i1,...,in)∈F
|{h: ih>0}|≥2

Ai1,...,in

∏

3≤h≤n

(ah − 1) ≥
∏

1≤h≤n

(ah − 1)

[A]+ ≥ (a1 − 1)(a2 − 1)

[A]+ ≥ (a1 − [A]−)a2 − a1 + [A]−

[A] ≥ (a1 − [A]−)a2 − a1,

a contradiction.
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The estimate of Lemma 1 is enough to prove Theorem 1 in the special case when the
two smallest dimensions of the array are coprime, as shown by the next two corollaries also
due to Lam and Leung. These corollaries do not enter into our proof of Theorem 1 but
are interesting nonetheless since they suffice, for example, to prove Theorem 3 on vanishing
sums of roots of unity. (We also include them to facilitate comparison between our results
and those of [6], which are written up in a different language.)

Corollary 1. (cf. [6] Thm 4.8) Let A be a non-fiber minimal a1 × · · ·× an cyclotomic array
where a1 ≤ · · · ≤ an. Then n ≥ 3 and [A] ≥ (a3 − 1) + (a1 − 1)(a2 − 1).

Proof. The fact that n ≥ 3 is simply because the only minimal 1- and 2-dimensional cy-
clotomic arrays are fibers. Let A0, . . . , Aan−1 be the n-layers of A. If Ar = 0 for some r
then only one n-layer of A is nonzero and this n-layer is an a1 × · · ·× an−1 cyclotomic array,
so that the corollary is established by induction on the dimension of the array. We can
therefore assume that none of the n-layers of A are zero. Let A• be an n-layer of A such
that [A•] = min([Ai] : i ∈ Zan) (by the previous remark, [A•] ≥ 1). Put Ar = Ar −A• for all
r ∈ Zan . Thus Ar is a cyclotomic array of size a1 × · · ·× an−1 by Proposition 1.

Since A is not an n-fiber there must be some s ∈ Zan such that As #= A•. We cannot
have As ≥ A• since A is minimal, so [As]− > 0. Since [As]− ≤ [A•] we then have [As] ≥
(a1 − [A•])a2 − a1 by Lemma 1. Now because [A•] ≥ 1 and an ≥ a2, we have

[A] =
∑

r∈Zan

[Ar]

≥ (an − 1)[A•] + [As]

= (an − 1)[A•] + [A•] + [As]

≥ an[A•] + (a1 − [A•])a2 − a1

≥ an + (a1 − 1)a2 − a1

≥ (a3 − 1) + (a1 − 1)(a2 − 1)

as desired.

Corollary 2. (cf. [6] Thm 5.2) If A is a nonnegative integer-valued cyclotomic array of size
a1 × · · ·× an where a1 ≤ · · · ≤ an and where a1, a2 are coprime, then [A] ∈ Z+(a1, . . . , an).

Proof. It suffices to consider the case when the array A is minimal. If A is a fiber then [A] = ai

for some i, and the result is trivial. Otherwise n ≥ 3 and [A] ≥ (a3 − 1) + (a1 − 1)(a2 − 1) >
a1a2 − a1 − a2 by Corollary 1, which implies [A] ∈ Z+(a1, a2) by Proposition 4.

From Lemma 1 and Proposition 4 we know that if A is an integer-valued a1×a2 cyclotomic
array such that [A]− > 0 and such that (a1 − [A]−)a2 − a1 > a1a2/λ − a1 − a2, where
λ = gcd(a1, a2), then [A] ∈ Z+(a1, a2) since [A] ≡ 0 mod λ. Solving this inequality for [A]−,
we get:

(a1 − [A]−)a2 − a1 > a1a2/λ − a1 − a2
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(a1 − [A]−)a2 > a1a2/λ − a2

a1 − [A]− > a1/λ − 1

[A]− ≤ a1 − a1/λ.

Therefore [A] ∈ Z+(a1, a2) for any a1 × a2 integer-valued cyclotomic array A such that
[A]− ≤ a1 − a1/λ, where λ = gcd(a1, a2). This strengthening of the 2-dimensional case of
Theorem 1 surprisingly extends to all dimensions. More precisely, we have the following
generalization of Theorem 1:

Theorem 6. If a1 ≤ · · · ≤ an and A is an integer-valued cyclotomic array of size a1×· · ·×an

such that [A]− ≤ a1 − a1/λ where λ = gcd(a1, . . . , an), then [A] ∈ Z+(a1, . . . , an).

Theorem 1 will be established as a corollary of Theorem 6, whose proof is found further
down. Theorem 6 is trivially true for 1-dimensional arrays and is true for 2-dimensional
arrays by the preceding remarks. We prove the 3-dimensional case next. This result is also
covered by our general proof of Theorem 6, which handles all arrays of dimension 3 or more,
so the reader can skip it if they wish.

Proposition 7. Theorem 6 is true for n = 3.

Proof. Let a1 ≤ a2 ≤ a3 and let λ2 = gcd(a1, a2), λ3 = gcd(a1, a2, a3). Let A be an a1×a2×a3

integer-valued cyclotomic array such that [A]− ≤ a1 − a1/λ3.

Let A0, . . . , Aa3−1 be the 3-layers of A. Since [A]− < a3 there is at least one 3-layer
of A with no negative entries. Let A• be such a nonnegative 3-layer, chosen such that
[A•] = min([Ar] : Ar ≥ 0). Put Ar = Ar − A• for all r. We can assume [A•] < a1 since
otherwise

[A] ≥
∑

r∈Za3

[Ar]

≥
∑

r:Ar≥0

[Ar] − [A]−

≥ [A•]|{r : Arn ≥ 0}|− [A]−

≥ a1(a3 − [A]−) − [A]−

≥ a1(a3 − a1(1 − 1/λ3)) − a1(1 − 1/λ3)

≥ a1(a3 − a3(1 − 1/λ3)) − a1(1 − 1/λ3)

= a1a3/λ3 − a1(1 − 1/λ3)

> a1a3/λ3 − a1 − a3

which implies by Proposition 4 that [A] ∈ Z+(a1, a2, a3).

If Ar ≥ 0 for all r then [Ar] ∈ Z+(a1, a2) by Theorem 1 for 2-dimensional arrays, so that

[A] = [A•]a3 +
∑

r∈Za3

[Ar] ∈ Z+(a1, a2, a3).
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We can therefore assume there is some s ∈ Za3 such that [As]− > 0. Using Lemma 1 we get
∑

r∈Za3

[Ar] = [As] +
∑

r &=s

[Ar]

≥ (a1 − [As]−)a2 − a1 +
∑

r "=s

[Ar ]−>0

[Ar]

≥ (a1 − [As]− − [A•])a2 − a1 +
∑

r "=s
[Ar]−>0

((a1 − [Ar]−)a2 − a1)

≥ a1a2 − a1 − [A•]a2 − a2[A
s]− +

∑

r "=s

[Ar]−>0

((a1 − [Ar]− − [A•])a2 − a1)

≥ a1a2 − a1 − [A•]a2 − a2[A]− +
∑

r "=s

[Ar ]−>0

((a1 − [A•])a2 − a1)

≥ a1a2 − a1 − [A•]a2 − a2[A]−

≥ a1a2 − a1 − [A•]a2 − a2(a1 − a1/λ3)

= a1a2/λ3 − a1 − [A•]a2.

Let u ≥ 0 be the least integer such that [A]−ua3 ≡ 0 mod λ2. Note that u ≤ λ2/λ3 − 1
and that u ≤ [A•] since [A] − [A•]a3 =

∑
r[A

r] ≡ 0 mod λ2. We thus get

[A] − ua3 = ([A•] − u)a3 +
∑

r

[Ar]

≥ ([A•] − u)a2 + a1a2/λ3 − a1 − [A•]a2

= a1a2/λ3 − ua2 − a1

≥ a1a2/λ3 − (λ2/λ3 − 1)a2 − a1

= a1a2/λ2 + a1(a2/λ3 − a2/λ2) − (λ2/λ3 − 1)a2 − a1

≥ a1a2/λ2 + λ2(a2/λ3 − a2/λ2) − (λ2/λ3 − 1)a2 − a1

= a1a2/λ2 − a1

> a1a2/λ2 − a1 − a2

so [A] − ua3 ∈ Z+(a1, a2) by Proposition 4, and thus [A] ∈ Z+(a1, a2, a3).

The proof of Theorem 6 requires a number-theoretic proposition generalizing the bound
u ≤ λ2/λ3 − 1 found in the proofs of Propositions 6 and 7. To better understand the
statement, note that if λ, a1, . . . , an are natural numbers and λ′ = gcd(λ, a1, . . . , an) then the
quantity λ/λ′ is equal to the number of different possible values that an integer combination
of the ai’s can take mod λ.

Proposition 8. Let λ, a1, . . . , an ∈ N, U1, . . . , Un ∈ Z+. Let λ′ = gcd(λ, a1, . . . , an). Then
there are u1, . . . , un ∈ Z, 0 ≤ ui ≤ Ui for 1 ≤ i ≤ n, such that (U1−u1)a1+· · ·+(Un−un)an ≡
0 mod λ and such that u1 + · · · + un ≤ λ/λ′ − 1.
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Proof. There obviously exist integers u1, . . . , un such that 0 ≤ ui ≤ Ui for all i and such that
(U1 − u1)a1 + · · · + (Un − un)an ≡ 0 mod λ, namely ui = Ui for all i. Now among all such
choices of tuples (u1, . . . , un) we can assume that we have chosen a tuple that minimizes the
sum u1 + · · ·+ un. All that we have left to prove is that u1 + · · ·+ un ≤ λ/λ′ − 1.

Let S0 = U1a1 + · · · + Unan. For 1 ≤ t ≤ u1 let St = S0 − ta1. For 1 ≤ t ≤ u2

let Su1+t = Su1 − ta2. Continue like this until Su1+···+un has been defined, which is equal
to (U1 − u1)a1 + · · · + (Un − un)an. Note that for each 0 ≤ g < h ≤ u1 + . . . + un we
have Sg − Sh =

∑n
i=1 viai for some v1, . . . , vn such that 0 ≤ vi ≤ ui for all i. If Sg ≡ Sh

mod λ then the tuple u′
1 = u1 − v1, . . ., u′

n = un − vn has 0 ≤ u′
i ≤ Ui for all i, and

(U1−u′
1)a1 + · · ·+(Un−u′

n)an ≡ 0 mod λ and u′
1 + · · ·+u′

n < u1 + · · ·+un, a contradiction.
Therefore no two Sh’s have the same value mod λ. However since each Sh is an integer linear
combination of the ai’s there are only λ/λ′ different possible values for the Sh’s mod λ. It
follows that |{0, 1, 2, . . . , u1 + · · · + un}| ≤ λ/λ′, i.e., that u1 + · · ·+ un ≤ λ/λ′ − 1.

We still need to finalize some notation before proving Theorem 6. If A is a cyclotomic
array of size a1 × · · ·× an then Ar stands for the r-th n-layer of A, Ar,t stands for the t-th
(n−1)-layer of the r-th n-layer of A, and so forth. We say that r is the “index” of the n-layer
Ar. If {r ∈ Zan : Ar ≥ 0} #= ∅ then we define A• to be a nonnegative n-layer of A such that
[A•] = min([Ar] : Ar ≥ 0, r ∈ Zan). If several choices are available for A• then we can choose
the n-layer with least index (this convention simply allows A• to be uniquely defined, and is
not otherwise important). If {r ∈ Zan : Ar ≥ 0} = ∅ then A• is undefined. Note that A• is
always well-defined if [A]− < an, for then at least one n-layer of A is nonnegative. If A• is
well-defined then we let Ar = Ar − A• for all r ∈ Zan . Thus Ar is a cyclotomic array of size
a1 × · · ·× an−1 by Proposition 1.

To practice this notation a little more, note for example that

Ar,s = Ar,s − Ar,• = Ar,s − A•,s − Ar,•

provided A• and Ar,• are well-defined (the prerequisite for Ar,s to be well-defined). On the
other hand Ar,• is generally not equal to Ar,• − A•,•, since the quantity represented by the
rightmost ‘•’ varies according to the superscript preceding it. We will mostly be dealing
with arrays of the form Arn,rn−1,...,rk+1,•,rk−1,...,ri. It is worth emphasizing that any array of
this type is nonnegative (as Arn,rn−1,...,rk+1,• is a nonnegative array).

We can now prove Theorem 6 and thus establish the paper’s main result.

Proof of Theorem 6: Let A be an integer-valued cyclotomic array of size a1 × · · ·× an such
that a1 ≤ · · · ≤ an and [A]− ≤ a1 − a1/λn, where λn = gcd(a1, . . . , an). We need to show
[A] ∈ Z+(a1, . . . , an). We can assume that n ≥ 3. We define statements Xi, Yi and Zi for
3 ≤ i ≤ n by

Xi = “Arn,rn−1,...,ri+1,• is well-defined for all (rn, rn−1, . . . , ri+1) ∈ Zan × · · ·× Zai+1”
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Yi = “Xi and [Arn,rn−1,...,ri+1,•] < a1 for all (rn, rn−1, . . . , ri+1) ∈ Zan × · · ·× Zai+1”

Zi = “Xi and
∑n

k=i[A
rn,...,rk+1,•,rk−1,...,ri] < a1 for all (rn, . . . , ri) ∈ Zan × · · ·× Zai”

(The variable rk will always denote an index taking values in the set Zak
, for 1 ≤ k ≤ n. In

particular we will use “
∑

rk
” as a shorthand for “

∑
rk∈Zak

”.) Note that Arn,...,rk+1,•,rk−1,...,ri is

well-defined whenever Arn,rn−1,...,ri+1,• is well-defined, so the statement Zi makes sense. The
reader may check the following easy implications:

Xi =⇒ Arn,rn−1,...,ri+1,ri is well-defined for all (rn, rn−1, . . . , ri) ∈ Zan × · · ·× Zai

Xi =⇒ Xi+1 for 3 ≤ i < n

Zi =⇒ (Xi ∧ Yi) for 3 ≤ i ≤ n

The Theorem will follow from proving the following claims C1 − C5:

C1 : Xn and ((Yn ∧ Zn) ∨ [A] ∈ Z+(a1, . . . , an)) are true statements

C2 : Zi =⇒ (Xi−1 ∨ [A] ∈ Z+(a1, . . . , an)) for i > 3

C3 : (Zi ∧ Xi−1) =⇒ (Yi−1 ∨ [A] ∈ Z+(a1, . . . , an)) for i > 3

C4 : (Zi ∧ Yi−1) =⇒ (Zi−1 ∨ [A] ∈ Z+(a1, . . . , an)) for i > 3

C5 : Z3 =⇒ [A] ∈ Z+(a1, . . . , an)

Note that claims C2−C4 imply Zi =⇒ (Zi−1∨ [A] ∈ Z+(a1, . . . , an)). Before proving claims
C1 − C5 we wish to make one observation and prove two mini-lemmas.

Observation: If 3 ≤ i ≤ n and Xi holds (i.e. if Arn,rn−1,...,ri is well-defined for all (rn, rn−1, . . . , ri) ∈
Zan × · · ·× Zai) then we have

[A] = [A•]an +
∑

rn

[Arn ]

= [A•]an +
∑

rn

(
[Arn,•]an−1 +

∑

rn−1

[Arn,rn−1 ]
)

= [A•]an +
( ∑

rn

[Arn,•]
)
an−1 +

∑

rn,rn−1

[Arn,rn−1 ]

= . . .

= [A•]an +
( ∑

rn

[Arn,•]
)
an−1 +

( ∑

rn,rn−1

[Arn,rn−1,•]
)
an−2 + . . .

+
( ∑

rn,...,ri+1

[Arn,...,ri+1,•]
)
ai +

∑

rn,...,ri

[Arn,...,ri],
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which we can rewrite more succinctly as

[A] = Unan + Un−1an−1 + · · ·+ Uiai +
∑

rn,...,ri

[Arn,...,ri ] (13)

where Un = [A•] and Uk =
∑

rn,...,rk+1
[Arn,...,rk+1,•] for i ≤ k ≤ n − 1. We will keep this

definition of the Uk’s for the rest of the proof (thus Uk is well-defined if and only if Xk is
true). Note the Uk’s are nonnegative integers because arrays of the type Arn,rn−1,...,rk+1,• are
nonnegative.

Mini-Lemma 1: If Arn,...,ri is well-defined then [Arn,...,ri ]− ≤ [Arn,...,ri]−+
∑n

k=i[A
rn,...,rk+1,•,rk−1,...,ri].

Proof: This follows simply because

Arn,...,ri = Arn,...,ri+1,ri − Arn,...,ri+1,•

= Arn,...,ri+2,ri+1,ri − Arn,...,ri+2,•,ri − Arn,...,ri+1,•

= . . .

= Arn,...,ri −
n∑

k=i

Arn,...,rk+1,•,rk−1,...,ri

so

[Arn,...,ri]− ≤ [Arn,...,ri]− +
n∑

k=i

[Arn,...,rk+1,•,rk−1,...,ri]

as claimed.

Mini-Lemma 2: If 3 ≤ i ≤ n and Zi is true then
∑

(rn,...,ri)∈R

[Arn,...,ri] ≥ −a2

∑

(rn,...,ri)∈R

[Arn,...,ri]−

for any subset R of Zan × · · ·× Zai .

Proof: Zi implies
∑n

k=i[A
rn,...,rk+1,•,rk−1,...,ri] < a1, so by Mini-Lemma 1 we have

[Arn,...,ri]− ≤ [Arn,...,ri]− +
n∑

k=i

[Arn,...,rk+1,•,rk−1,...,ri]

≤ [Arn,...,ri]− + a1 − 1

for all (rn, . . . , ri) ∈ Zan × · · · × Zai . Now since Arn,...,ri is a cyclotomic array of dimension
a1 × · · ·× ai−1 and i − 1 ≥ 2 we can apply Lemma 1 to get:

∑

(rn,...,ri)∈R

[Arn,...,ri ] ≥
∑

(rn,...,ri)∈R:

[Arn,...,ri ]−>0

[Arn,...,ri]
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≥
∑

(rn,...,ri)∈R:

[Arn,...,ri ]−>0

((a1 − [Arn,...,ri]−)a2 − a1)

≥
∑

(rn,...,ri)∈R:

[Arn,...,ri ]−>0

((a1 − [Arn,...,ri]− − a1 + 1)a2 − a1)

≥ −a2

∑

(rn,...,ri)∈R:

[Arn,...,ri ]−>0

[Arn,...,ri]−

≥ −a2

∑

(rn,...,ri)∈R

[Arn,...,ri]−

as claimed.

We now prove claims C1-C5, from which the Theorem follows.

Proof of claim C1: The statement Xn is “A• is well-defined”. However [A]− ≤ a1−a1/λn < an

so the statement Xn is true. Because Xn is true the statements Yn and Zn are both equivalent
to “[A•] < a1”. It is thus sufficient to show ([A•] ≥ a1) =⇒ [A] ∈ Z+(a1, . . . , an) in order
to show ((Yn ∧ Zn) ∨ [A] ∈ Z+(a1, . . . , an)). Thus, assume that [A•] ≥ a1. Then

[A] =
∑

rn

[Arn ]

≥
∑

rn:Arn≥0

[Arn] − [A]−

≥ [A•]|{rn : Arn ≥ 0}|− [A]−

≥ a1(an − [A]−) − [A]−

≥ a1(an − a1(1 − 1/λn)) − a1(1 − 1/λn)

≥ a1(an − an(1 − 1/λn)) − a1(1 − 1/λn)

= a1an/λn − a1(1 − 1/λn)

> a1an/λn − a1 − an

which implies by Proposition 4 (since [A] ≡ 0 mod λn) that [A] ∈ Z+(a1, . . . , an), as desired.
This completes the proof of claim C1.

Proof of claim C2: We will prove (Zi ∧ ¬Xi−1) =⇒ [A] ∈ Z+(a1, . . . , an). Note that
Zi =⇒ Xi so Arn,rn−1,...,ri is well-defined for all (rn, . . . , ri) ∈ Zan × · · · × Zai . Since
Arn,rn−1,...,ri,• is well-defined if [Arn,...,ri ]− < ai−1 (as Arn,...,ri is an array of size a1× · · ·×ai−1),
¬Xi−1 implies there exists some (sn, . . . , si) ∈ Zan × · · ·× Zai such that [Asn,...,si]− ≥ ai−1.
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Since ai−1 ≥ a2, Mini-Lemma 2 implies
∑

(rn,...,ri) "=
(sn,...,si)

[Arn,...,ri ] ≥ −ai−1

∑

(rn,...,ri) "=
(sn,...,si)

[Arn,...,ri]− (14)

and by Mini-Lemma 1,

[Asn,...,si ] ≥ −[Asn,...,si]−

≥ −[Asn,...,si]− −
n∑

k=i

[Asn,...,sk+1,•,sk−1,...,si]

≥ −[Asn,...,si]− −
n∑

k=i

Uk. (15)

Let λi = gcd(a1, . . . , ai) for 1 ≤ i ≤ n (λn was already defined like this). Then
∑

rn,...,ri

[Arn,...,ri ] ≡ 0 mod λi−1 since each Arn,...,ri is an a1 × · · ·× ai−1 cyclotomic array. It follows
from (13) and Proposition 8 that there exist nonnegative integers ui, . . . , un with uk ≤ Uk

and ui + · · · + un ≤ λi−1/λn − 1 such that [A] − unan − · · · − uiai ≡ 0 mod λi−1. Since
[Asn,...,si]− ≥ ai−1 ≥ a1 we have by Mini-Lemma 1 that

a1 ≤ [Asn,...,si]− +
n∑

k=i

[Asn,...,sk+1,•,sk−1,...,si]

so
n∑

k=i

Uk ≥
n∑

k=i

[Asn,...,sk+1,•,sk−1,...,si]

≥ a1 − [Asn,...,si]−.

Therefore, using (13), (14) and (15),

[A] −
n∑

k=i

ukak

=
n∑

k=i

(Uk − uk)ak + [Asn,...,si ] +
∑

(rn,...,ri) "=
(sn,...,si)

[Arn,...,ri ]

≥
n∑

k=i

(Uk − uk)ai−1 − [Asn,...,si]− −
n∑

k=i

Uk − ai−1

∑

(rn,...,ri) "=
(sn,...,si)

[Arn,...,ri]−

=
( n∑

k=i

Uk

)
(ai−1 − 1) − [Asn,...,si]− − ai−1

∑

(rn,...,ri) "=
(sn,...,si)

[Arn,...,ri]− −
n∑

k=i

ukai−1

≥ (a1 − [Asn,...,si]−)(ai−1 − 1) − [Asn,...,si]− − ai−1

∑

(rn,...,ri) "=
(sn,...,si)

[Arn,...,ri]− −
n∑

k=i

ukai−1
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= a1(ai−1 − 1) − ai−1[A]− −
n∑

k=i

ukai−1

≥ a1(ai−1 − 1) − ai−1(a1 − a1/λn) − (λi−1/λn − 1)ai−1 (16)

= a1ai−1/λi−1 − a1 + a1(ai−1/λn − ai−1/λi−1) − (λi−1/λn − 1)ai−1 (17)

≥ a1ai−1/λi−1 − a1 + λi−1(ai−1/λn − ai−1/λi−1) − (λi−1/λn − 1)ai−1 (18)

= a1ai−1/λi−1 − a1 (19)

> a1ai−1/λi−1 − a1 − ai−1 (20)

which means [A]−
∑n

k=i ukak ∈ Z+(a1, . . . , ai−1) by Proposition 4 and so [A] ∈ Z+(a1, . . . , an),
as desired. This concludes the proof of claim C2.

Proof of claim C3: We will prove that (Zi ∧ Xi−1 ∧ ¬Yi−1) =⇒ [A] ∈ Z+(a1, . . . , an). Since
Yi−1 =“Xi−1 and [Arn,...,ri,•] < a1 for all (rn, . . . , ri) ∈ Zan × · · ·×Zai”, (Xi−1∧¬Yi−1) implies
there exists (sn, . . . , si) ∈ Zan × · · ·× Zai such that [Asn,...,si,•] ≥ a1.

By the proof of claim C2 we can assume that [Arn,...,ri]− < ai−1 for all (rn, . . . , ri) ∈
Zan × · · · × Zai . If ai−1 = a1 then a1 = a2 = . . . = ai−1 so [Arn,...,ri ] ≡ 0 mod ai−1 for
all (rn, . . . , ri) ∈ Zan × · · ·× Zai . But since [Arn,...,ri ] ≥ −[Arn,...,ri]− > −ai−1 we then have
[Arn,...,ri ] ∈ Z+(ai−1) so [A] ∈ Z+(a1, . . . , an) by (13). We can therefore assume ai−1 > a1.

Mini-Lemma 2 implies that
∑

(rn,...,ri) "=
(sn,...,si)

[Arn,...,ri] ≥ −ai−1

∑

(rn,...,ri) "=
(sn,...,si)

[Arn,...,ri]−. (21)

On the other hand, since ai−1 > a1 we now have

[Asn,...,si] =
∑

ri−1

[Asn,...,si,ri−1 ]

≥
∑

ri−1:Asn,...,si,ri−1≥0

[Asn,...,si,ri−1] − [Asn,...,si ]−

≥ [Asn,...,si,•]|{ri−1 : Asn,...,si,ri−1 ≥ 0}|− [Asn,...,si ]−

≥ a1(ai−1 − [Asn,...,si]−) − [Asn,...,si ]−

≥ a1ai−1 − ai−1[A
sn,...,si ]−

≥ a1ai−1 − ai−1

(
[Asn,...,si]− +

n∑

k=i

[Asn,...,sk+1,•,sk−1,...,si]
)
. (22)

Combining (21) and (22) we obtain

∑

rn,...,ri

[Arn,...,ri] ≥ a1ai−1 − ai−1[A]− − ai−1

n∑

k=i

[Asn,...,sk+1,•,sk−1,...,si]. (23)



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A26 24

Take ui, . . . , un as in the proof of claim C2. By (23) and because Uk =
∑

rn,...,rk+1
[Arn,...,rk+1,•] ≥

[Asn,...,sk+1,•,sk−1,...,si] we get

[A] −
n∑

k=i

ukak

=
n∑

k=i

(Uk − uk)ak +
∑

rn,...,ri

[Arn,...,ri]

≥
n∑

k=i

(Uk − uk)ai−1 + a1ai−1 − ai−1[A]− − ai−1

n∑

k=i

[Asn,...,sk+1,•,sk−1,...,si]

=
n∑

k=i

(Uk − [Asn,...,sk+1,•,sk−1,...,si])ai−1 −
n∑

k=i

ukai−1 + a1ai−1 − ai−1[A]−

≥ −(λi−1/λn − 1)ai−1 + a1ai−1 − ai−1(a1 − a1/λn)

= a1ai−1/λi−1 + a1(ai−1/λn − ai−1/λi−1) − (λi−1/λn − 1)ai−1

≥ a1ai−1/λi−1 + λi−1(ai−1/λn − ai−1/λi−1) − (λi−1/λn − 1)ai−1

= a1ai−1/λi−1

> a1ai−1/λi−1 − a1 − ai−1

so [A]−
∑n

k=i ukak ∈ Z+(a1, . . . , ai−1) by Proposition 4 and [A] ∈ Z+(a1, . . . , an), as desired.
This concludes the proof of claim C3.

Proof of claim C4: We prove (Zi∧Yi−1∧¬Zi−1) =⇒ [A] ∈ Z+(a1, . . . , an). If ¬Zi−1 then there
exists some (sn, . . . , si−1) ∈ Za1 × · · ·× Zai−1 such that

∑n
k=i−1[A

sn,...,sk+1,•,sk−1,...,si−1] ≥ a1.

Let A = {ri−1 :
∑n

k=i−1[A
sn,...,sk+1,•,sk−1,...,si,ri−1 ] ≥ a1} (we know |A| ≥ 1 since si−1 ∈ A).

We have
∑

ri−1 /∈A

[Asn,...,si,ri−1 ]

≥
∑

ri−1 /∈A:

[A
sn,...,si,ri−1 ]−>0

[Asn,...,si,ri−1 ]

≥
∑

ri−1 /∈A:

[A
sn,...,si,ri−1 ]−>0

((a1 − [Asn,...,si,ri−1 ]−)a2 − a1)

≥
∑

ri−1 /∈A:

[A
sn,...,si,ri−1 ]−>0

(
(a1 − [Asn,...,si,ri−1]− −

n∑

k=i−1

[Asn,...,sk+1,•,sk−1,...,si,ri−1])a2 − a1

)

≥ −a2

∑

ri−1 /∈A:

[A
sn,...,si,ri−1 ]−>0

[Asn,...,si,ri−1 ]−
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≥ −a2

∑

ri−1 /∈A

[Asn,...,si,ri−1]−

and
∑

ri−1∈A

[Asn,...,si,ri−1 ]

≥
∑

ri−1∈A

−[Asn,...,si,ri−1 ]−

≥
∑

ri−1∈A

(
− [Asn,...,si,ri−1]− −

n∑

k=i−1

[Asn,...,sk+1,•,sk−1,...,si,ri−1]
)

≥ −
n∑

k=i

[Asn,...,sk+1,•,sk−1,...,si] − [Asn,...,si,•]|A|−
∑

ri−1∈A

[Asn,...,si,ri−1]−.

Therefore

∑

ri−1

[Asn,...,si,ri−1 ] ≥ −
n∑

k=i

[Asn,...,sk+1,•,sk−1,...,si] − [Asn,...,si,•]|A|

−a2[A
sn,...,si]−

so we get

[Asn,...,si] = [Asn,...,si,•]ai−1 +
∑

ri−1

[Asn,...,si,ri−1 ]

≥ [Asn,...,si,•]ai−1 −
n∑

k=i

[Asn,...,sk+1,•,sk−1,...,si] − [Asn,...,si,•]|A| (24)

−a2[A
sn,...,si]−

On the other hand, since we are assuming Zi and since ai−1 ≥ a2, Mini-Lemma 2 implies
that

∑

(rn,...,ri) "=
(sn,...,si)

[Arn,...,ri] ≥ −ai−1

∑

(rn,...,ri) "=
(sn,...,si)

[Arn,...,ri]−. (25)

Combining (24) and (25) gives us

∑

rn,...,ri

[Arn,...,ri] ≥ [Asn,...,si,•]ai−1 −
n∑

k=i

[Asn,...,sk+1,•,sk−1,...,si]

−[Asn,...,si,•]|A|− ai−1[A]−.

Since we know [Asn,...,si,•] < a1 (from Yi−1) we know that

ri−1 ∈ A =⇒
n∑

k=i

[Asn,...,sk+1,•,sk−1,...,si,ri−1 ] ≥ 1,
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therefore

∑

ri−1 &=si−1

n∑

k=i

[Asn,...,sk+1,•,sk−1,...,si,ri−1] ≥ |A|− 1

and

n∑

k=i−1

[Asn,...,sk+1,•] ≥ [Asn,...,si,•] +
n∑

k=i

[Asn,...,sk+1,•,sk−1,...,si]

= [Asn,...,si,•] +
∑

ri−1

n∑

k=i

[Asn,...,sk+1,•,sk−1,...,si,ri−1]

≥ a1 +
∑

ri−1 &=si−1

n∑

k=i

[Asn,...,sk+1,•,sk−1,...,si,ri−1]

≥ a1 + |A|− 1.

Because Uk =
∑

rn,...,rk+1
[Arn,...,rk+1,•] ≥ [Asn,...,sk+1,•] we then obtain

n∑

k=i

Uk + [Asn,...,si,•] ≥ a1 + |A|− 1.

Let ui, . . . , un be defined as in the proofs of claims C2 and C3. We now have that

[A] −
n∑

k=i

ukak

=
n∑

k=i

(Uk − uk)ak +
∑

rn,...,ri

[Arn,...,ri]

≥
n∑

k=i

(Uk − uk)ai−1 + [Asn,...,si,•]ai−1 −
n∑

k=i

[Asn,...,sk+1,•,sk−1,...,si]

−[Asn,...,si,•]|A|− ai−1[A]−

≥
n∑

k=i

Uk(ai−1 − 1) + [Asn,...,si,•](ai−1 − 1) − [Asn,...,si,•](|A|− 1)

−ai−1[A]− −
n∑

k=i

ukai−1

≥ (a1 + |A|− 1)(ai−1 − 1) − [Asn,...,si,•](|A|− 1) − ai−1[A]− −
n∑

k=i

ukai−1

≥ a1(ai−1 − 1) − ai−1[A]− −
n∑

k=i

ukai−1

≥ a1(ai−1 − 1) − ai−1(a1 − a1/λn) − (λi−1/λn − 1)ai−1
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> a1ai−1/λi−1 − a1 − ai−1

(where the last inequality is obtained as in (16)-(20)), so [A]−
∑n

k=i ukak ∈ Z+(a1, . . . , ai−1)
and [A] ∈ Z+(a1, . . . , an), as desired. This concludes the proof of claim C4.

Proof of claim C5: Assume Z3. Then Arn,...,r3 is well-defined for all (rn, . . . , r3) ∈ Zan ×
· · ·×Za3 and

∑n
k=3[A

rn,...,rk+1,•,rk−1,...,r3] < a1 for all (rn, . . . , r3) ∈ Zan × · · ·×Za3 . Note that
Arn,...,r3 is a cyclotomic array of size a1×a2. If Arn,...,r3 ≥ 0 for all (rn, . . . , r3) ∈ Zan×· · ·×Za3

then [Arn,...,r3] ∈ Z+(a1, a2) by Proposition 2 so [A] ∈ Z+(a1, . . . , an) by (13). Therefore we
can assume there is some (sn, . . . , s3) ∈ Zan × · · ·× Za3 such that [Asn,...,s3 ]− > 0.

We have that
∑

(rn,...,r3) "=
(sn,...,s3)

[Arn,...,r3 ] ≥ −a2

∑

(rn,...,r3) "=
(sn,...,s3)

[Arn,...,r3 ]−

and that

[Asn,...,s3 ] ≥ (a1 − [Asn,...,s3 ]−)a2 − a1

≥
(
a1 − [Asn,...,s3]− −

n∑

k=3

[Asn,...,sk+1,•,sk−1,...,s3]
)
a2 − a1

= a1a2 − a1 − a2

n∑

k=3

[Asn,...,sk+1,•,sk−1,...,s3] − a2[A
sn,...,s3]−.

So

∑

rn,...,r3

[Arn,...,r3 ] ≥ a1a2 − a1 − a2

n∑

k=3

[Asn,...,sk+1,•,sk−1,...,s3] − a2[A]−. (26)

Because X3 is true,

[A] = Unan + · · · + U3a3 +
∑

rn,...,r3

[Arn,...,r3 ]

where
∑

rn,...,r3
[Arn,...,r3 ] ≡ 0 mod λ2. By Proposition 8 there exist integers u3, . . . , un such

that (i) 0 ≤ uk ≤ Uk for all 3 ≤ k ≤ n, (ii) u3+· · ·+un ≤ λ2/λn−1, and (iii) [A]−
∑n

k=3 ukak ≡
0 mod λ2. Using (26) we get

[A] −
n∑

k=3

ukak

=
n∑

k=3

(Uk − uk)ak +
∑

rn,...,r3

[Arn,...,r3 ]

≥
n∑

k=3

(Uk − uk)a2 + a1a2 − a1 − a2

n∑

k=3

[Asn,...,sk+1,•,sk−1,...,s3] − a2[A]−
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=
n∑

k=3

(Uk − [Asn,...,sk+1,•,sk−1,...,s3])a2 + a1a2 − a1 − a2[A]− − a2

n∑

k=3

uk

≥ a1a2 − a1 − a2[A]− − a2

n∑

k=3

uk

≥ a1a2 − a1 − a2(a1 − a1/λn) − a2(λ2/λn − 1)

= a1a2/λ2 + a1(a2/λn − a2/λ2) − a1 − a2(λ2/λn − 1)

≥ a1a2/λ2 + λ2(a2/λn − a2/λ2) − a1 − a2(λ2/λn − 1)

= a1a2/λ2 − a1

> a1a2/λ2 − a1 − a2

which shows [A] −
∑n

k=3 ukak ∈ Z+(a1, a2) and thus [A] ∈ Z+(a1, . . . , an), as desired. This
concludes the proof of claim C5 and the proof of Theorem 6.
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