
INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22

COUNTING POLYOMINOES ON TWISTED CYLINDERS

Gill Barequet
Department of Computer Science, Technion, Haifa, Israel 32000

barequet@cs.technion.ac.il

Micha Moffie
Department of Computer Science, Technion, Haifa, Israel 32000

moffie@cs.technion.ac.il

Ares Ribó1

Institut für Informatik, Freie Universität Berlin, Takustraße 9, D-14195 Berlin, Germany
ribo@inf.fu-berlin.de

Günter Rote
Institut für Informatik, Freie Universität Berlin, Takustraße 9, D-14195 Berlin, Germany

rote@inf.fu-berlin.de

Received: 12/22/04, Revised: 2/15/06, Accepted: 7/8/06, Published: 9/19/06

Abstract

Using numerical methods, we analyze the growth in the number of polyominoes on
a twisted cylinder as the number of cells increases. These polyominoes are related to
classical polyominoes (connected subsets of a square grid) that lie in the plane. We thus
obtain improved lower bounds on the growth rate of the number of these polyominoes,
which is also known as Klarner’s constant.

1. Introduction

Polyominoes. A polyomino of size n, also called an n-omino, is a connected set of n
adjacent squares on a regular square lattice (connectivity is through edges only). Fixed
polyominoes are considered distinct if they have different shapes or orientations. The
symbol A(n) denotes the number of fixed polyominoes of size n on the plane. Figure 1(a)
shows the only two fixed dominoes (adjacent pairs of squares). Similarly, Figures 1(b)

1Supported by the Deutsche Forschungsgemeinschaft within the European Graduate Program Com-
binatorics, Geometry and Computation (No. GRK 588/2).

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 2

and 1(c) show the six fixed triominoes and the 19 fixed tetrominoes—polyominoes of
size 3 and 4, respectively. Thus, A(2) = 2, A(3) = 6, A(4) = 19, and so on.

(a) Dominoes (b) Triominoes

(c) Tetrominoes

Figure 1: Fixed dominoes, triominoes, and tetrominoes

No analytic formula for A(n) is known. The only methods for computing A(n) are
based on explicitly or implicitly enumerating all polyominoes.

Counting polyominoes has received a lot of attention in the literature. Barequet et
al. [1] give an overview of the development of counting fixed polyominoes, beginning
in 1962 with R. C. Read [16].

We base our present study on Andrew Conway’s transfer-matrix algorithm [3], which
was subsequently improved by Jensen [7] and further optimized by Knuth [12]. Using
his algorithm, Jensen obtained the values up to A(48). More recently, he used a parallel
version of the algorithm and computed A(n) for n ≤ 56 [8].

It is known that A(n) is exponential in n. Klarner [9] showed that the limit λ :=
limn→∞

n
√

A(n) exists. Golomb [5] labeled λ as Klarner’s constant. It is believed that
A(n) ∼ Cλnnθ for some constants C > 0 and θ ≈ −1, so that the quotients A(n+1)/A(n)
converge, but none of this has been proved. There have been several attempts to bound
λ from below and above, as well as to estimate it, based on knowing A(n) up to cer-
tain values of n. The best-known published lower and upper bounds are 3.927378 [8]
and 4.649551 [11]. However, the claimed lower bound was based on an incorrect assump-
tion, which goes back to the paper of Rands and Welsh [15]. As we point out in Section 8,
the lower bound should have been corrected to 3.87565. Regardless of this matter, not
even a single significant digit of λ is known for sure. The constant λ is estimated to be
around 4.06 [4, 8]; see [10] for more background information on polyominoes.

In this paper, we improve the lower bound on Klarner’s constant to 3.980137 by

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 3

counting polyominoes on a different grid structure, a twisted cylinder.

The Twisted Cylinder. A twisted cylinder of width W is obtained from the integer
grid Z × Z by identifying cell (i, j) with (i + 1, j + W), for all i, j. Geometrically, it can
be imagined to be an infinite tube; see Figure 2.

W = 5

1

3

4

5

6

7

8

2

2

j

i

Figure 2: A twisted cylinder of width 5. The wrap-around connections are indicated; for
example, cells 1 and 2 are adjacent.

The usual cylinder would be obtained by identifying (i, j) with (i, j + W), without
also moving one step in the horizontal direction. The reason for introducing the twist
is that it allows us to build up the cylinder incrementally, one cell at a time, through a
uniform process. This leads to a simpler recursion and algorithm. To build up the usual
“untwisted” cylinder cell by cell, one has to go through a number of different cases until
a complete column is built up.

We implemented an algorithm that iterates the transfer equations, thereby obtaining
a lower bound on the growth rate of the number of polyominoes on the twisted cylinder.
We prove that this is also an improved lower bound on the number of polyominoes in
the plane.

The algorithm has to maintain a large vector of numbers whose entries are indexed
by certain combinatorial objects that are called states. The states have a very clean
combinatorial structure, and they are in bijection with so-called Motzkin paths. We use
this bijection as a space-efficient scheme for addressing the entries of the state vector.
Previous algorithms for counting polyominoes treated only a small fraction of all possible
states. This so-called pruning of states was crucial for reaching larger values of n, but
required the algorithms to encode and store states explicitly, using a hash-table, and
could not have used our scheme.

Contents of the Paper. The paper is organized as follows. In Section 2 we present
the idea of the transfer-matrix algorithm and define the notion of states, and how they
are represented. In Section 3 we describe the recursive operations for enumerating poly-
ominoes on our twisted cylinder grid and present the transfer equations, as well as the

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 4

iteration process. We also provide an algebraic analysis of the growing rate of the number
of polyominoes on the twisted cylinder. In Section 4 we prove a bijection between the
states and Motzkin paths. In Section 5 we describe explicitly how Motzkin paths are
generated, ranked and unranked, and updated. In Section 6 we report the results and
the obtained lower bounds. In Section 7 we discuss alternatives to the twisted cylinder.
In Section 8 we correct the previous lower bound given in [15]. Finally, in the concluding
Section 9, we mention a few open questions. An appendix describes how the results of
the computer calculations were checked by independent computer calculations.

Acknowledgements. We thank Stefan Felsner for discussions about the bijection be-
tween states and Motzkin paths. We thank Cordula Nimz for pointing out that the
decomposition of polyominoes into prime factors by the ∗ operation is not unique, and
hence the recursion (12) would lead to inconsistent results. We thank Mireille Bousquet-
Mélou for inspiring remarks.

The results of this paper have been presented in September 2005 at the European
Conference on Combinatorics, Graph Theory, and Applications (EuroComb 2005) [2].

2. The Transfer-Matrix Algorithm

In this section we briefly describe the idea behind the transfer-matrix method for counting
fixed polyominoes. In computer science terms, this algorithm would be classified as a
dynamic programming algorithm.

The strategy is as follows. The polyominoes are built from left to right, adding one
cell of the twisted cylinder at a time. Conceptually, the twisted cylinder is cut by a
boundary line through the W rows. The boundary cells are the W cells adjacent to the
left of the boundary line. In fact, the boundary cells are the W last added cells at a
given moment of this building process (see Figure 3).

Instead of keeping track of all polyominoes, the procedure keeps track of the numbers
of polyominoes with identical right boundaries. During the process, the configurations
of the right boundaries of the (yet incomplete) polyominoes are called states, as will be
described. A polyomino is expanded cell by cell, from top to bottom. The new cell is
either occupied (i.e., belongs to the new polyomino) or empty (i.e., does not belong to
it). By “expanding” we mean updating both the states and their respective numbers of
polyominoes.

A partial polyomino is the part of the polyomino lying on the left of the boundary line
at some moment. A partial polyomino is not necessarily connected, but each component
must contain a boundary cell.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 5

2.1. Motzkin Paths

A Motzkin path [14] of length n is a path from (0, 0) to (n, 0) in a n × n grid, consisting
of up-steps (1, 1), down-steps (1,−1), and horizontal steps (1, 0), that never goes below
the x-axis.

The number Mn of Motzkin paths of length n is known as the nth Motzkin number.
Motzkin numbers satisfy the recurrence

Mn = Mn−1 +
n−2∑

i=0

(Mi · Mn−i−2), (1)

for n ≥ 2, and M0 = M1 = 1. The first few Motzkin numbers are (Mn)∞n=0 = (1, 1, 2, 4,
9, 21, 51, 127, 323, 835, 2188, . . .). It is obvious that Mn ≤ 3n. A more precise asymptotic
expression for Motzkin numbers,

Mn =
3n

n3/2
·
√

27

4π
· (1 + O(1/n)),

can be deduced from the generating function

∞∑

n=0

Mnxn =
1 − x −

√
(1 − 3x)(1 + x)

2x2
.

We represent the steps (1, 0), (1, 1), (1,−1) of a Motzkin path by the vertical moves
0,1,−1, respectively. We omit the horizontal moves since they are always 1. Thus,
a Motzkin path of length n is represented as a string of n symbols of the alphabet
{1,−1, 0}. Motzkin numbers have many different interpretations [17]. For example,
there is a correspondence between Motzkin paths and drawing chords in an outerplanar
graph.

2.2. Representation of States

A state represents the information about a partial polyomino at a given moment, as far
as it is necessary to determine which cells can be added to make the partial polyomino
a full polyomino.

We encode a state by its signature by first labeling the boundary cells as indicated in
Figure 2. The signature of a partial polyomino is given as a collection of sets of occupied
boundary cells. Each set represents the boundary cells of one connected component;
see Figure 3 for an example. In the notation of a state as a set of sets, we use angle
brackets to avoid an excessive accumulation of braces. We will often use an alternative,
more visual notation that represents each connected component by a different letter and
denotes empty cells by the symbol “−”.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 6

A signature is not an arbitrary collection of disjoint subsets of {1, . . . , W}. First of all,
if two adjacent cells i and i + 1 are occupied, they must belong to the same component.
Moreover, the different components must be non-crossing : For i < j < k < l, it is
impossible that i and k belong to one component and j and l belong to a different
component; these two components would have to cross on the twisted cylinder.

A valid signature (or state) is a signature obeying these two rules. (This includes the
“empty” state in which no boundary cell is occupied.)

The states can also be encoded by Motzkin paths of length W + 1. In Section 4
we prove a bijection between the set of valid signatures and the set of Motzkin paths.
Figure 3 gives an example of both encodings of the same state, as a signature in the form
of a set of sets and as a Motzkin path.

We prefer the term state when we regard a state as an abstract concept, without
regard to its representation.

9

12

16

2

3

4

5

8

10

11

13

14

15

1

7

6

⇐⇒

A− A A − B − C C − A A − − A A

4 5 6 7 8 9 10 11 12 13 14 15 1631 2

Figure 3: Left: A snapshot of the boundary line (solid line) during the transfer-matrix
calculation. This state is encoded by the signature 〈{2, 3, 4, 11, 12, 15, 16}, {6}, {8, 9}〉.
Note that the bottom cell of the second column is adjacent to the top cell of the third
column. The numbers are the labels of the boundary cells. Right: the same state encoded
as the Motzkin path (0, 1, 0, 0, 1, 1,−1, 1, 0,−1,−1, 0, 1, 0,−1, 0,−1).

The encoding by signatures is a very natural representation of the states, but it is
expensive. In our program we use the representation as Motzkin paths, which is much
more efficient. Indeed, we rank the Motzkin paths, i.e., we represent the states by an
integer from 2 to M , where M = MW+1 is the number of Motzkin paths of length W +1.
The ranking and unranking operations are described later in Section 5.1.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 7

There are also other possible ways to encode the states. In his algorithm, Jensen [7]
used signature strings of length W containing the five digits 0–4, which Knuth [12]
replaced by the more intuitive five-character alphabet {0, 1, (,), -}. Conway [3] used
strings of length W with eight digits 0–7.

3. Counting Polyominoes on a Twisted Cylinder

Let ZW (n) be the number of polyominoes of size n on our twisted cylinder of width W .
It is related to the number A(n) of polyominoes in the plane as follows:

Lemma 1. For any W , we have ZW (n) ≤ A(n).

Proof. We construct an injective function from n-ominoes on the cylinder to n-ominoes
on the plane. First, it is clear that an n-omino X in the plane can be mapped to a
polyomino α(X) on the cylinder, by simply wrapping it on the cylinder. This may cause
different cells of X to overlap. Therefore, α(X) may have fewer than n cells.

On the other hand, an n-omino Y on the cylinder can always be unfolded into an
n-omino in the plane, usually in many different ways: Refer to the subgraph G(Y) of the
grid Z2 that is generated by the vertex set Y . (The squares of the grid can be represented
as the vertices of the infinite grid graph Z2.) Select any spanning tree T in G(Y). This
spanning tree can be uniquely unfolded from Z2 into the plane, and it defines an n-omino
β(Y) on the plane. β(Y) will have all adjacencies between cells that were preserved in
T , but some adjacencies of Y may be lost. When rolling β(Y) back onto Z2, there will
be no overlapping cells and we retrieve the original polyomino Y :

α(β(Y)) = Y

It follows that β is an injective mapping.

The mapping β is, in general, far from unique. As soon as G(Y) contains a cycle
that “wraps around” the cylinder (i.e., that is not contractible), there are many different
ways to unroll Y into the plane.

Klarner’s constant, λ, which is the growth rate of A(n), is lower bounded by the
growth rate λW of ZW (n), that is,

λ ≥ λW = lim
n→∞

ZW (n + 1)

ZW (n)
.

We will see below that this limit exists (Lemma 7 in connection with Lemma 2).

We enumerate partial polyominoes with n cells in a given state. The point of the
twisted cylinder grid is that when adding a cell, we always repeat the same 2-step oper-
ation:

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 8

1. Add new cell: Update the state. If the cell is empty, the size of the polyomino
remains the same. If the cell is occupied, the size grows by one unit.

2. Rotate one position: Shift the state, i.e., rotate the cylinder one position so that
cell W becomes invisible, the labels 1 . . .W − 1 are shifted by +1, and the new
added cell is labeled as 1.

See the illustration for W = 3 in Figure 4.

add cell rotate

2

3

1 1

2 2

3

1

Figure 4: Addition of new cell and rotation.

In Section 5.2 we describe how the states, encoded by Motzkin paths, are updated
when adding a cell and rotating.

3.1. System of Equations

3.1.1. Successor states

Let S be the set of all non-empty valid states. For each state s ∈ S, there are two
possible successor states each time a new cell is added and the grid is rotated, depending
on whether the new cell is empty or occupied. Given s, let succ0(s) (resp., succ1(s)) be
the successor state reached after adding a new empty (resp., occupied) cell and rotating.

Example. For W = 4, the four boundary cells are labeled as in Figure 5. Consider
the initial state s = 〈{1, 2}, {4}〉. After adding a new cell and rotating, we get succ0(s) =
〈{2, 3}〉 and succ1(s) = 〈{1, 2, 3}〉.

Note that succ0(s) does not exist if, when adding an empty cell from an initial state s,
some connected component becomes isolated from the boundary. (In this case a connected
polyomino could never be completed.) This happens exactly when the component {W}
appears in s. For example, for W = 3, succ0(〈{3}〉) and succ0(〈{1}, {3}〉) are not valid
states, since in both cases the component containing 3 is forever isolated after the addition
of an empty cell.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 9

add empty cell

s = 〈{1}, {3,4}〉

rotate

rotate

succ1(s) = 〈{1,2,4}〉

succ0(s) = 〈{2}, {4}〉

1

2
3
4

1

2
3

0

1

2
3

0

1

2
3

0

1

2
3

0

1

2
3
4

1

2
3
4

add occupied cell

Figure 5: Example of successor states for W = 4.

3.1.2. Transfer equations for counting polyominoes

Define the vector x(i) of length |S| with components:

x(i)
s := &{partial polyominoes with i occupied cells in state s} (2)

Lemma 2. For each n ∈ N, we have x(n)
〈{W}〉 = ZW (n).

Proof. When the polyomino is completed and the last cell is added, it becomes cell 1.
After adding W −1 empty cells, the last occupied cell is labeled W , and we always reach
the state 〈{W}〉. Hence, x(n)

〈{W}〉 equals the number of polyominoes of size n on the twisted
cylinder.

The following recursion keeps track of all operations:

x(i+1)
s =

∑

s′:s=succ0(s′)

x(i+1)
s′ +

∑

s′:s=succ1(s′)

x(i)
s′ ∀s ∈ S (3)

Note that the vector x(i+1) depends on itself. There is, however, no cyclic dependency
since we can order the states so that succ0(s) appears before s. This is done by grouping
the states into sets G1, G2, . . . , GW , such that

Gk = { s ∈ S : k is the smallest label of an occupied cell in s }

For example, for W = 3 we have G1 = {〈{1}〉, 〈{1, 2}〉, 〈{1, 3}〉, 〈{1, 2, 3}〉, 〈{1}, {3}〉},
G2 = {〈{2}〉, 〈{2, 3}〉}, and G3 = {〈{3}〉}.

Proposition 1. For each state s ∈ Gk, k = 1 . . .W , succ0(s) (if valid) belongs to Gk+1

and succ1(s) belongs to G1.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 10

Proof. For computing succ0(s) we first remove W from s, and, second, we shift each label
l to l + 1 (for l = 1 . . W − 1). As the smallest label is then incremented by one, the
resulting state belongs to Gk+1. Note that the unique state belonging to GW is 〈{W}〉,
and succ0(〈{W}〉) does not exist in this case.

For computing succ1(s) we always add an occupied cell with label 1, so 1 always
appears in succ1(s), and hence, the resulting state belongs to G1.

We can therefore use (2) to compute x(i+1) from x(i) if we process the states in the
order of the groups to which they belong, as GW , GW−1, . . . , G1.

Corollary 1. If the states are ordered in this way, then succ0(s) appears before s.

We draw a layered digraph (layers from 1 to n), with nodes x(i)
s at layer i, for all

s ∈ S and i = 1 . . n, and arcs from each node x(i)
s to the nodes x(i)

succ0(s)
and x(i+1)

succ1(s), for
i = 1 . . n − 1. We call this digraph the recursion graph. For simplicity, we denote by
x(i)

s , at the same time, the node and its label, the number of partial polyominoes with i
cells in state s.

Consider two layers i and i+1. The system of equations (3) is represented by drawing

arcs from each node x(i)
s to its successor nodes, x(i)

succ0(s)
and x(i+1)

succ1(s)
. Figure 6 shows two

successive layers for W = 3. Figure 8 shows the recursion graph for W = 3. It follows
from Corollary 1 that the recursion graph is acyclic.

x(i)
〈{1,2,3}〉x(i)

〈{1},{3}〉x(i)
〈{3}〉 x(i)

〈{1}〉 x(i)
〈{1,3}〉x(i)

〈{1,2}〉x(i)
〈{2,3}〉x(i)

〈{2}〉

x(i+1)
〈{1,2,3}〉x(i+1)

〈{1},{3}〉x(i+1)
〈{1}〉 x(i+1)

〈{1,3}〉x(i+1)
〈{1,2}〉x(i+1)

〈{2,3}〉x(i+1)
〈{2}〉x(i+1)

〈{3}〉

(i)

(i + 1)

Figure 6: Schematic representation of the system (3) for W = 3.

In Figure 7 we show a schematic representation of the general graph, where the nodes
are grouped together according to their corresponding set Gk, and instead of arcs between
the original nodes we draw arcs between groups, using Proposition 1.

3.1.3. Matrix notation

The system of equations (3) can also be written in matrix form. We store the set of
operations in two transfer matrices A and B, where rows correspond to the initial states,

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 11

(i + 1)

GW

GW

G3

G3 G2

G2 G1

G1

(i)

· · ·

· · ·

Figure 7: Schematic representation of the system (3) by groups.

and columns correspond to the successor states. In A, for each row s there is a 1 in
column succ0(s) (if succ0(s) is a valid state). In B, for each row s there is a 1 in column
succ1(s). All the other entries are zero. Our ordering of the states implies that A is lower
triangular with zero diagonal.

Then, system (3) translates into a matrix form as

x(i+1) = x(i+1)A + x(i)B, (4)

where x(i) is regarded as a row vector. We call this the forward iteration. Equation (4)
can also be written as

x(i+1) = x(i)Tfor, (5)

with Tfor = B(1 − A)−1.

3.2. Iterating the Equations

We start the iteration with the initial vector x(0) := 0 and set x(1)
〈{1}〉 := 1. We can

then use (3) to obtain the remaining states of x(1). We can imagine an initial column of
empty cells, with the first occupied cell being the one with label 1, on the second column.
Equivalently, we can begin directly with the initial conditions:

x(1)
〈{w}〉 = 1 for w = 1, . . . , W

x(1)
s = 0 for all other states s ∈ S (6)

We iterate the system (3) so that at each step x(i) becomes the old vector xold, and
x(i+1) is the newly-computed vector xnew. This produces a recursion that, as we see later,
gives the number of polyominoes of a given size.

Lemma 3. ZW (n) equals the number of paths from node x(1)
〈{1}〉 to node x(n)

〈{W}〉 in the
recursion graph.

Proof. Without loss of generality, we assume that all polyominoes begin at the same
cell of the infinite twisted cylinder grid. This is a kind of normalization: we set the first
appearing cell (the upper cell of the first column) of each polyomino to the same position.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 12

(n)(2) · · · (n − 1)(1)

x(n)
〈{W}〉

x(1)
〈{1}〉

Figure 8: Recursion graph, W = 3

Starting with the initial conditions (6), we proceed with the recursion, adding one
cell at each step and rotating. At each layer (i), the number of distinct paths starting

at x(1)
〈{1}〉 and arriving to a node x(i)

s is the accumulation of all the arcs of the forward
iteration. It represents the number of partial polyominoes with i cells in state s.

By Lemma 2, the process for completing a polyomino of size n ends at node x(n)
〈{W}〉.

Since each addition of a cell, empty or occupied, is represented by an arc on the recursion
graph, the number of distinct paths from x(1)

〈{1}〉 to x(n)
〈{W}〉 represents the ZW (n) different

ways of constructing a polyomino of size n.

Thus, we enumerate all polyominoes by iterating the equations, which amounts to
following all paths starting at x(1)

〈{1}〉 and ending at x(n)
〈{W}〉.

3.2.1. Backward recursion

In our program we use an alternative recursion that is, as we discuss later, preferable
from a practical point of view. We iterate the following system of equations:

y(i−1)
s = y(i−1)

succ0(s) + y(i)
succ1(s) ∀s ∈ S (7)

If succ0(s) does not exist, the corresponding value is simply omitted. In other words,
we walk backwards on the recursion graph. This translates into a matrix form as

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 13

y(i−1) = Ay(i−1) + By(i),

which can be written as
y(i−1) = Tbacky

(i)

with Tback = (I − A)−1B.

As before, the vector y(i−1) depends on itself, but there is no cyclic dependency, due
to Corollary 1.

Consider the initial vector y(0). We set

y(0) := 0 and y(−1)
〈{W}〉 := 1, (8)

and use (7) to obtain the remaining states of y(−1).

Starting with the initial conditions (8), we iterate the system (7) so that at each step
y(−i) becomes the old vector yold and y(−i−1) is the newly-computed vector ynew. We
thus obtain the vectors y(0),y(−1),y(−2), . . . ,y(−i),y(−i−1),

As can be seen from the recursion graph,

y(−i)
s = &{paths from node x(n−i+1)

s to node x(n)
〈{W}〉}. (9)

Lemma 4. Starting with the initial conditions (6) and (8), we have

y(−n)
〈{1}〉 = ZW (n) = x(n)

〈{W}〉.

Proof. By (9), y(−n)
〈{1}〉 corresponds to the number of paths from node x(1)

〈{1}〉 to node x(n)
〈{W}〉,

which by Lemma 3 is the number of polyominoes of size n on a twisted cylinder of width
W . The second equation is given by Lemma 2.

Lemma 5. The matrices defining the forward and backward iterations have the same
eigenvalues.

Proof. The matrices Tfor = B(1−A)−1 and Tback = (I−A)−1B have the same eigenvalues
because they are similar: Tback = (I − A)−1Tfor(I − A).

Independently of this proof, we see that the forward and the backward iterations
must have the same dominant eigenvalues since both iterations define the number of
polyominoes:

λW = lim
n→∞

ZW (n + 1)

ZW (n)
= lim

n→∞

x(n+1)
〈{W}〉

x(n)
〈{W}〉

= lim
n→∞

y(−n−1)
〈{1}〉

y(−n)
〈{1}〉

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 14

3.3. The Growth Rate λW

In this section we explain how we bound the growth rate λW . First, we need to prove
that there is a unique eigenvalue of largest absolute value. For this, we apply the Perron-
Frobenius Theorem to our transfer matrix.

For stating the Perron-Frobenius Theorem, we need a couple of definitions. A non-
negative matrix T is irreducible if for each entry i, j, there exists a k ≥ 1 such that the
(i, j) entry of T k is strictly positive. A matrix T is irreducible if and only if its underlying
graph is strongly connected.

A nonnegative matrix T is primitive if there exists an integer k ≥ 1 such that all
entries of T k are strictly positive. A sufficient condition for a nonnegative matrix to be
primitive is to be an irreducible matrix with at least one positive main diagonal entry.

The Perron-Frobenius Theorem is stated as follows, see [6].

Theorem 1. Let T be a primitive nonnegative matrix. Then there is a unique eigen-
value with largest absolute value. This eigenvalue λ is positive, and it has an associated
eigenvector which is positive. This vector is the only nonnegative eigenvector.

Moreover, if we start the iteration x(i+1) = x(i)T with any nonnegative nonzero vector
x(0), the iterated vectors, after normalizing their length to x(i)/‖x(i)‖, converge to this
eigenvector.

The matrix can be written as Tfor = B(1−A)−1 = B(1 + A + A2 + A3 + · · ·). A is a
triangular matrix with zeros on the diagonal, hence it is nilpotent and the above series
expansion is finite. Since all the entries of A and B are nonnegative, it follows that this
is also true for the entries of Tfor.

Note that succ1({1, . . . , W}) = {1, . . . , W}. Hence, the diagonal entry of B corre-
sponding to the state {1, . . . , W} is 1 (all other diagonal entries of B are zero). Since
both A and B are nonnegative, the diagonal entry of Tfor corresponding to the state
{1, . . . , W} is positive.

However, in our case the graph is not strongly connected because some valid states
cannot be reached. It will turn out that these states have no predecessor states, and the
remaining states, which we will call reachable, form a strongly connected graph. Hence,
we can apply the Perron-Frobenius Theorem to this subset of states. The result will then
carry over to the original iteration: in the forward recursion, the unreachable states will
always have value 0; and in the backward recursion, their value will have no influence on
successive iterations.

Let us now analyze the states in detail. Consider, for example, the state 〈{1, 3}, {5}〉
for W = 5. Some cell which is adjacent to the boundary cell 1 has to be occupied
since 1 is connected to 3. This occupied cell cannot be cell 2 since it is not present in

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 15

the signature. There is one remaining cell, which is adjacent to 1, but this cell is also
adjacent to 5. It follows that 1 and 5 must belong to the same component. Therefore,
this state corresponds to no partial polyomino, and it is not the successor of any other
state. In fact, this type of example is the only case where a state is not reachable. We
call a signature (or state) unreachable if

1. cell 1 is occupied, but it does not form a singleton component of its own;

2. cell 2 is not occupied; and

3. cell W is occupied, but it does not lie in the same component as cell 1.

Otherwise, we call a state reachable. Unreachable states exist only for W ≥ 5.

Lemma 6. 1. Every non-empty reachable state can be reached from every other state,
by a path that starts with a succ1 operation.

2. No successor of any state is an unreachable state.

Proof. We prove that from every valid state we can reach the state 〈{1, . . . , W}〉 by a
sequence of successor operations, and vice versa. If we start from any state and apply a
sequence of W succ1-operations, we arrive at state 〈{1, . . . , W}〉.

To see that some reachable state s can be reached from 〈{1, . . . , W}〉, we construct
a partial polyomino corresponding to this state. We start with the boundary cells that
are specified by the given signature. The problem is to extend these cells to the left to a
partial polyomino with the given connected components. From the definition of reachable
states it follows that adding an arbitrary number of cells to the left of existing cells does
not change the connectivity between existing connected components.

The process is now similar to that for polyominoes in the plane; we do not need the
wrap-around connections between row 1 and row W . We leave cells that are singleton
components unconnected. We add cells to the left of all occupied cells that are not
singleton components. After growing three layers of new cells, pieces that should form
components and that have no other components nested inside (except singleton compo-
nents) can be connected together. The remaining pieces can be further grown to the left
and connected one by one. Finally, we grow one of the outermost components by adding
a large block of occupied cells, such that several columns are completely occupied. See
Figure 9.

In constructing this partial polyomino cell by cell, we pass from state 〈{1, . . . , W}〉
to the current state s. Since the succeeding operations correctly model the growth of
partial polyominoes, we get a path from 〈{1, . . . , W}〉 to state s in the recursion graph.

The second part of the lemma is easy to see. Since an unreachable state s contains
cell 1, it can only be a succ1-successor. Since 1 is not a singleton component, the previous

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 16

−

A
A
−
B
−

−
−

−

−

−
−−

−

−

B

B

A

A

A

C

D

−

Figure 9: Construction for reaching state −AA−B−B−−C−B−A−−A−D−A− from
state 〈{1, . . . , W}〉, or AA . . . A.

state ŝ must have contained cell W (before the cyclic renumbering), as well as cell W −1
(which is renumbered to W in s). W and W − 1 must belong to the same component
in ŝ; hence, they will be in the same component as the new cell 1 in s, which is a
contradiction.

Let us clarify the relation between the recursion graph, which consists of successive
layers, and the graph Gfor that represents the structure of Tfor, which has just one vertex
for every state.

We have Tfor = B(1 − A)−1 = B(1 + A + A2 + A3 + · · ·). An entry in the matrix
(1+A+A2+A3+· · ·) corresponds to a sequence of zero or more edges that are represented
by the adjacency matrix A, i.e., a sequence of succ0 operations. Therefore, Tfor has a
positive entry in the row corresponding to state s and the column corresponding to state
t (and Gfor has an edge from s to t) if and only if t can be reached from s by a single
succ1 operation followed by zero or more succ0 operations.

Thus, a path P from state s to state t in Gfor corresponds to a path P ′ from s on
some layer of the recursion graph to a vertex t on some other layer of the recursion graph.
This path starts with a succ1 edge, but is otherwise completely arbitrary.

Conversely, each path in the recursion graph that starts with a succ1 edge is reflected
by some path in Gfor. This leads to the following statement.

Lemma 7. Tfor has a unique eigenvalue λW of largest absolute value. This eigenvalue is

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 17

positive, and has multiplicity one and a nonnegative corresponding eigenvector.

Starting the forward recursion with any nonnegative nonzero vector will yield a se-
quence of vectors that, after normalization, converges to this eigenvector.

Proof. We first look at the submatrix T̄for of Tfor that consists only of rows and columns
for reachable states.

By Lemma 6 and the above considerations, the graph of this matrix is strongly con-
nected, and it is irreducible. The matrix Tfor has at least one positive diagonal entry. This
is also true for the submatrix T̄for, since this mentioned entry corresponds to a reachable
state. Hence, T̄for is primitive.

By the Perron-Frobenius Theorem, the statement of the lemma holds for this reduced
matrix. The sequence of iterated vectors x̄ converges (after normalization) to the Perron-
Frobenius eigenvector, the unique nonnegative eigenvector, which corresponds to the
largest eigenvalue.

If we extend the submatrix to the full matrix, the second part of Lemma 6 implies
that the components that correspond to unreachable states in x will be zero after the
first iteration, no matter what the starting vector is. This means that the additional,
unreachable components have no further influence on the iteration. Moreover, if the
initial vector is nonzero, the next version of it will have a nonzero component for a
reachable state, which ensures that the Perron-Frobenius Theorem can be applied from
this point on, and convergence happens as for the reduced vector x̄.

Compared to the reduced matrix T̄for, the additional columns of Tfor, which correspond
to unreachable states, are all zero. It follows that Tfor has all eigenvalues of T̄for, plus an
additional set of zero eigenvalues. Thus, the statement about the unique eigenvector of
largest absolute value holds for Tfor, just as for T̄for.

By Lemma 5, λW is the unique eigenvalue of largest absolute value of Tback as well.

Lemma 8. λW is the unique eigenvalue of Tback of largest absolute value. This eigenvalue
is positive, and has multiplicity one and a positive corresponding eigenvector.

Starting the backward recursion with any nonnegative vector with at least one nonzero
entry on a reachable state will yield a sequence of vectors which, after normalization,
converges to this eigenvector.

Proof. The first sentence follows from Lemma 7 by Lemma 5. We consider the iterations
with the reduced matrix T̄back and a reduced vector ȳ for the reachable states, as in
Lemma 7. If follows that this iteration converges to the Perron-Frobenius eigenvector,
which is positive.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 18

If we compare this iteration with the original recursion (7), we see that the components
of y(i) and y(i−1) that correspond to unreachable states have no influence on the recursion
because they do not appear on the right-hand side. It follows that the subvector of
reachable states in y(i) has exactly the same sequence of iterated versions as ȳ(i).

The unreachable states in y(i−1) can be calculated directly from ȳ(i−1) and ȳ(i) by (7).
It follows, by taking the limit, that the unreachable states in the eigenvector can be
calculated from the eigenvector of T̄back using (7), and therefore the whole eigenvector is
positive.

Lemmas 7 and 8 imply that

ZW (n) ≤ c(λW)n,

for some constant c. This is another way to express that λW is the growth rate of
ZW (n). The following lemma (which is actually a key lemma in one possible proof of the
Perron-Frobenius Theorem) shows how to compute bounds for λW .

Lemma 9. Let yold be any vector with positive entries and let ynew = Tbackyold. Let
λlow and λhigh be, respectively, the minimum and maximum values of ynew

s /yold
s over all

components s. Then, λlow ≤ λW ≤ λhigh.

Proof. From the definition of λlow and λhigh, we have

λlowyold ≤ ynew ≤ λhighy
old.

Let y∗ be the eigenvalue corresponding to the eigenvalue λW :

Tbacky
∗ = λWy∗

By scaling y∗, we can achieve y∗ ≤ yold and y∗
s = yold

s for some state s ∈ S. Then we
have

λWy∗ = Tbacky
∗ ≤ Tbacky

old = ynew ≤ λhighy
old.

This is true in particular for the s component: λWy∗
s ≤ λhighyold

s . Moreover, since we
assumed y∗

s = yold
s , this implies λW ≤ λhigh.

Analogously, we can achieve y∗ ≥ yold and y∗
s = yold

s for some state s ∈ S. In this
case we have λWy∗ ≥ λlowyold, which implies λW ≥ λlow.

Thus, λlow ≤ λW ≤ λ is a lower bound on Klarner’s constant as well.

Our program iterates the equations until λlow and λhigh are close enough.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 19

4. Bijection between Signatures and Motzkin Paths

Consider a (partial) polyomino on a twisted cylinder of width W and unrestricted length.
Figure 10 shows all states for 1 ≤ W ≤ 4.

A A A A A
_ _

(a) W = 1: 1 state (b) W = 2: 3 states

A A A A A

A A A B A A A A A

_ _ _ _ _ _ _

_ _ _

(c) W = 3: 8 states

_

_

A A A A A

A A A A A A A

A A A A A A

A A A A A A A A A

A

A

A

_ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _

_ _

A

B A

B BA A B

A A B BAA
__

_

(d) W = 4: 20 states

Figure 10: All states for 1 ≤ W ≤ 4.

A few points about Motzkin paths are in order here. A Motzkin path of length W +1
is an array p = (p[0], . . . , p[W]), where each component p[i] is one of the steps 0, 1,−1.
The levels of a path are, as the name suggests, its different y-coordinates. We can also
assign a level to each node of the path, by

level [i + 1] := level [i] + p[i] i = 0 . . W

with level [0] = 0.

In the following theorem we give the relation between the number of signature strings
and Motzkin numbers.

Theorem 2. There is a bijection between valid states of length W and Motzkin paths of
length W + 1. Hence, the number of nonempty valid states is MW+1 − 1.

Proof. We explicitly describe the conversions (in both directions) between Motzkin paths
and signatures as sets of sets. This is a bijective correspondence between both encodings

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 20

of the states. The “empty” signature {} will correspond to the straight x-parallel path
(0, 0, . . . , 0), and must be subtracted. Therefore the number of states is MW+1 − 1 and
not MW+1.

We convert a signature string to a Motzkin path as follows: Consider the edges
between boundary cells. Edges between occupied cells of the same connected component
or between empty cells are mapped to the horizontal step 0. For a block of consecutive,
occupied cells of the same connected component, we distinguish between four cases:

• The left edge of the first block is mapped to 1.

• The left edge of all remaining blocks is mapped to −1.

• The right edge of the last block is mapped to −1.

• The right edge of all remaining blocks is mapped to 1.

When a new component starts, the path will rise to a new level (+1). All cells of
the component will lie on this level. When the component is interrupted (i.e., a block,
which is not the last block of the component, ends), the path rises to a higher level
(+1), essentially pushing the current block on a stack, to be continued later. When the
component resumes, the path will come down to the correct level (−1). At the very end
of the component, the path will be lowered to the level that it had before the component
was started (−1). For empty cells, the path lies on an even level, whereas occupied cells
lie on odd levels. A connected component, which is nested within k other components,
lies on level 1 + 2k; see Figure 11 for an example.

A− A A − B − C C − A A − − A A

4 5 6 7 8 9 10 11 12 13 14 15 1631 2

Figure 11: The Motzkin path (0, 1, 0, 0, 1, 1,−1, 1, 0,−1,−1, 0, 1, 0,−1, 0,−1), with W =
16. The connected components {6} and {8, 9} lie on level 3, nested within the component
{2, 3, 4, 11, 12, 15, 16} (on level 1). Cells 1, 5, 7, 10, 13, 14 are empty since they lie on
levels 0 and 2.

The process can be better understood by the following simple algorithm that converts
a Motzkin path to a signature. It maintains a stack of partially completed components in
an array current set [1], current set [3], current set [5], (The even entries of this array
are not used.) The current element is always added to the topmost set on the stack.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 21

Algorithm ConvertPathToSetofSets(p)
Input. A Motzkin path p[0 . . W]
Output. The corresponding signature
level := 0
signature := {}
for i = 0 to W do

if p[i] = 1
level := level + 1
if level is odd (* Start a new set *)

current set [level] := {}
else if p[i] = −1

if level is odd (* Current set is complete. Store it *)
signature := signature ∪ {current set [level]}

level := level − 1
if level is odd

Add i to current set [level]
return signature

5. Encoding States as Motzkin Paths

As defined before, M = MW+1 denotes the number of Motzkin paths of length W + 1.
After discarding the empty signature, we have M − 1 states.

5.1. Motzkin Path Generation

In order to store x(i) in an array indexed by the states, we use an efficient data structure
that allows us to generate all Motzkin paths of a given length m = W +1 in lexicographic
order, as well to rank and unrank Motzkin paths.

Listing all Motzkin paths in lexicographic order establishes a bijection between all
Motzkin paths and the integers between 1 and M . The operation of ranking refers to the
direct computation of the corresponding integer for a given Motzkin path, and unranking
means the inverse operation. Both processes can be carried out in O(m) time. The
data structure and the algorithms for ranking and unranking are quite standard; see for
example [13, Section 3.4.1].

Construct a diagram such as the one in Figure 12, with m + 1 nodes on the base and
0m

2 1 rows, representing the levels. Assign ones to all nodes of the upper-right diagonal.
Running over all nodes from right to left, each node is assigned the sum of the values of
its adjacent nodes to the right. This number is the number of paths that start in this
node and reach the rightmost node. At the end, the leftmost node will receive the value

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 22

M , the number of Motzkin paths of length m. This preprocessing takes O(m2) time.

2 1149

12 5 2 1

3 1

21

Figure 12: Generating Motzkin paths of length 5, M5 = 21.

The bijection from the set of integers from 1 to M to the set of Motzkin paths of
length m is established in the following way. Refer again to Figure 12, for an example
with Motzkin paths of length m = 5. We proceed from left to right. Begin at the leftmost
node. There are 21 Motzkin paths of length 5; the first nine start with a horizontal step
(paths 1st till 9th), and the other 12 start with an up-step (paths 10th till 21st). If
the first step is 0, the second node of the path is the one assigned the number 9 on the
diagram. One can see that of these nine paths, four go straight (paths 1st till 4th) and
five go up (paths 5th till 9th). If the first step is 1, the second node of the path is the one
assigned the number 12 on the diagram. Of these 12 paths, four go down (paths 10th
till 13th), five go straight (paths 14th till 18th) and the last three go up (paths 19th till
21st). This procedure continues until the upper-right diagonal is reached. At this point
the rest of the path goes always down ending at the rightmost node.

The following proposition shows that we obtain the paths in the desired order, hence
no extra sorting is needed.

Proposition 2. The Motzkin paths are generated in lexicographic order, satisfying the
conditions of Corollary 1.

Proof. Given a Motzkin path, the first nonzero step indicates the smallest label of an
occupied cell—the group in which the state belongs. Thus, a path p precedes a path p′

in our ordering if the first nonzero step in p appears later than the first nonzero step
in p′.

Our numbering of paths also satisfies the following property: at each node, we assign
the paths continuing with step −1, the lower numbers, those continuing with step 1, the
upper numbers, and those continuing with step 0, the middle numbers. In particular, at
each node on the base, we assign the paths continuing with step 1 the upper numbers
and those continuing with step 0 the lower numbers. Accordingly, a path is assigned a
lower number as long as the first nonzero step appears later.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 23

5.2. Motzkin Path Updating

Here we explain how the Motzkin paths are updated after performing the operations of
adding a new cell and rotating.

First, we describe the updating for an initial state s encoded as sets of connected
components. (This is also the representation used in the Maple program in Appendix B,
at the beginning of the procedure check.) The rotation (shift) is always done by removing
W , shifting each label l to l + 1 for l = 1 . . W − 1, and labeling the new cell as 1. For
every case we provide an example with W = 3.

1. Add Empty Cell and Shift (Compute succ0(s))

• If W does not appear in s, just shift. Example: succ0(〈{2}〉) = 〈{3}〉.
• If W appears in s, but is not alone in its component, delete the element W

and shift. Example: succ0(〈{1, 3}〉) = 〈{2}〉.
• If W appears in s, alone in its component, i.e., {W}, then succ0(s) is not

valid since the cell W is always disconnected when an empty cell is added.
Example: No succ0(〈{1}, {3}〉).

2. Add Occupied Cell and Shift (Compute succ1(s))

• If W and 1 are in the same component, just shift. Example: succ1(〈{1, 3}〉) =
〈{1, 2}〉.

• If W and 1 appear in different components, unite these two components and
shift. Example: succ1(〈{1}, {3}〉) = 〈{1, 2}〉.

• If 1 appears in s but W does not, add the element W to the component
containing 1 and shift. Example: succ1(〈{1, 2}〉) = 〈{1, 2, 3}〉.

• If W appears in s and 1 does not, just shift. Example: succ1(〈{2, 3}〉) =
〈{1, 3}〉.

• If 1 and W do not appear in s, add a new component {W} to s and shift.
Example: succ1(〈{2}〉) = 〈{1}, {3}〉.

Now we translate these operations into the Motzkin-path representation. Let p =
(p[0] . . .p[W]) be a Motzkin path of length W + 1 representing a state s. Below we
describe the routines for computing the two possible successor states.

Given p, the shifting is performed differently depending on whether the last step
p[W] is 0 or −1. If p[W] = 0, then the cell W is empty. The shifting is performed by
cutting the last step and gluing it at the beginning of the path (i.e., shifting one position
to the right). Consequently, the resulting path is (0,p[0 . . W − 1]). On the other hand,
if p[W] = −1, then the cell W is occupied, and the process is more complicated.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 24

WBA C

Figure 13: Example of the points A, B, and C.

The following algorithms for computing successors rearrange and change parts of the
given Motzkin paths, depending on the first and last two steps on the input path. The
algorithm refers to three positions A, B, and C in the input path, see Figure 13. A is
the leftmost position A > 0 such that level [A] = 0. If cell 1 is occupied, then A − 1 is
the largest element in the component containing 1. If A = W + 1, then cells 1 and W lie
in the same component. In a few cases, the algorithm makes a distinction depending on
whether or not A equals W + 1.

B is the rightmost position (for B ≤ W) such that level [B] = 0. If cell W is occupied,
then B+1 is the smallest cell in the component containing W . If A < W +1, then A ≤ B.
Finally, C is defined as the rightmost position (for C ≤ W − 1) such that level [C] = 1.
C is used when cell W is occupied but does not form a singleton component. In this case
C is the largest cell in the component containing W , and C > B.

In the interesting cases, we show how p is initially composed of different subsequences
between the points A, B, or C, and how the output is composed of the same pieces, to
make the similarities and the differences between the input and the output clearly visible.
In most cases (except where the output contains only one “piece,” and except in the case
(0, . . . ,−1,−1) of AddEmptyCell), these pieces form Motzkin paths in their own right:
the total sum of all entries is 0, and the paths never go below 0. (They may be empty.)
In the ordering of the cases, the rightmost element of p is considered to be the most
important sorting criterion.

Algorithm AddEmptyCell
Input. A Motzkin path p = p[0 . . W] representing a state s
Output. Updated Motzkin path representing succ0(s)

Depending on the pattern of p, perform one of the following operations:
(. . . , 0): (∗ W does not appear in s ∗)

return (0, p[0 . . W − 1])
(. . . , 0,−1): (∗ W and W − 1 appear in s ∗)

return (0, p[0 . . W − 2],−1)
(. . . ,−1,−1): (∗ p = (p[0 . . C − 1], 1, p[C + 1 . . W − 2],−1,−1) ∗)

return (0, p[0 . . B − 1],−1, p[B + 1 . . W − 2], 0)
(. . . , 1,−1): (∗ W forms a singleton component ∗)

return null

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 25

Algorithm AddOccupiedCell
Input. A Motzkin path p = p[0 . . W] representing s
Output. Updated Motzkin path representing succ1(s)

Depending on the pattern of p, perform one of the following operations:
(0, . . . , 0): (∗ 1 and W do not appear ∗)

return (1,−1, p[1 . . W − 1])
(1, . . . , 0): (∗ 1 appears and W does not appear ∗)

return (1, 0, p[1 . . W − 1])
(0, . . . , 1,−1): (∗ 1 does not appear and W is a singleton ∗)

return (1,−1, p[1 . . W − 2], 0)
(1, . . . , 1,−1): (∗ 1 appears and W is a singleton ∗)

return (1, 0, p[1 . . W − 2], 0)
(0, . . . , 0,−1): (∗ 1 does not appear and W is not a singleton ∗)

(∗ p = (0, p[1 . . B − 1], 1, p[B + 1 . . W − 2], 0,−1) ∗)
return (1, 1, p[1 . . B − 1],−1, p[B + 1 . . W − 2],−1)

(1, . . . , 0,−1): (∗ 1 and W appear, and W is not a singleton ∗)
if A = W + 1 (∗ 1 and W are connected ∗)
then return (1, 0, p[0 . . W − 2],−1)
else (∗ p = (1, p[1 . . A − 2],−1, p[A . . B − 1], 1,

p[B + 1 . . W − 2], 0,−1) ∗)
return (1, 0, p[1 . . A − 2], 1, p[A . . B − 1],−1,

p[B + 1 . . W − 2],−1)
(0, . . . ,−1,−1): (∗ 1 does not appear and W is not a singleton ∗)

(∗ p = (0, p[1 . . B − 1], 1, p[B + 1 . . C − 1], 1,
p[C + 1 . . W − 2],−1,−1) ∗)

return (1, 1, p[1 . . B − 1],−1, p[B + 1 . . C − 1],−1,
p[C + 1 . . W − 2], 0)

(1, . . . ,−1,−1): (∗ 1 and W appear and W is not a singleton ∗)
if A = W + 1 (∗ 1 and W are connected ∗)
then (∗ p = (1, p[1 . . C − 1], 1, p[C + 1 . . W − 2],−1,−1) ∗)

return (1, 0, p[1 . . C − 1],−1, p[C + 1 . . W − 2], 0)
else (∗ 1 and W are not connected ∗)

(∗ p = (1, p[1 . . A − 2],−1, p[A . . B − 1], 1,
p[B + 1 . . C − 1], 1, p[C + 1 . . W − 2],−1,−1) ∗)

return (1, 0, p[1 . . A − 2], 1, p[A . . B − 1],−1,
p[B + 1 . . C − 1],−1, p[C + 1 . . W − 2], 0)

In our program, we precompute the successors succ0(s) and succ1(s) once for each
state s = 2 . . .M (the first Motzkin path is the horizontal one, which is not valid) and
store them in two arrays succ0 and succ1.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 26

6. Results

We report our results in Table 1. We iterate the equations until λhigh < 1.000001 λlow

(we check it every ten iterations). Already for W = 13, we get a better lower bound
on Klarner’s constant than the best previous lower bound of 3.874623 (Section 8). At
W = 16 we beat the best previously (incorrectly) claimed lower bound of 3.927378. The
values of λlow are truncated after six digits and the values of λhigh are rounded up. Thus,
the entries of the table are conservative bounds.

The entries for W = 1 and W = 2 are exact; in fact, there is obviously one polyomino
of each size for W = 1, and there are precisely 2n n-ominoes for W = 2. Being eigenvalues
of integer matrices, the true values λW are algebraic numbers: λ3 is the only real root of
the polynomial λ3 − 2λ2 − λ − 2, and λ4 is already of degree 7.

W Number of iterations λlow λhigh

1 1 1
2 2 2
3 20 2.658967 2.658968
4 20 3.060900 3.060902
5 30 3.314099 3.314101
6 40 3.480942 3.480944
7 40 3.596053 3.596056
8 50 3.678748 3.678750
9 60 3.740219 3.740222

10 70 3.787241 3.787244
11 80 3.824085 3.824089
12 90 3.853547 3.853551
13 110 3.877518 3.877521
14 120 3.897315 3.897319
15 130 3.913878 3.913883
16 140 3.927895 3.927899
17 160 3.939877 3.939882
18 170 3.950210 3.950215
19 190 3.959194 3.959198
20 200 3.967059 3.967064
21 220 3.973992 3.973996
22 240 3.980137 3.980142

Table 1: The bounds on λW

So the best lower bound that we obtained is λ > 3.980137, for W = 22. We
independently checked the results of the computation using Maple, as described in
Appendix A. This has been done for W ≤ 20 and led to a “certified” bound of
λ ≥ λ20 > 348080/87743 > 3.96704.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 27

We performed the calculations on a workstation with 32 gigabytes of memory. We
could not compute λlow for W = 23 and more, since the storage requirement is too
large. The number M of Motzkin paths of length W + 1 is roughly proportional to
3W+1/(W + 1)3/2. We store four arrays of size M : two vectors succ0 and succ1 of 32-bit
unsigned integers, which are computed in an initialization phase, and the old and the new
versions of the eigenvector, ynew and yold, which are single-precision floating-point vectors.
For W = 23, the number of Motzkin paths of length 24 is M = 3,192,727,797 ≈ 231.57.
With our current code, this would require about 48 gigabytes (5.1×1010 bytes) of memory.

Some obvious optimizations are possible. We do not need to store all M components
of yold—only those in the first group G1. By Proposition 1, we only need the states
belonging to the group G1 for computing ynew. This does not make a large difference
since G1 is quite big. Asymptotically, G1 accounts for 2/3 of all states. (The states not
in G1 correspond to Motzkin paths of length W .)

We can also eliminate the unreachable states, at the expense of making the ranking
and unranking procedures more complicated. For W = 23, this would save about 11 %
of the used memory; asymptotically, for larger and larger n, one can prove that the
unreachable states make a fraction of 4/27 ≈ 15 %, by interpreting the conditions for
reachability as restrictions on the corresponding Motzkin paths.

The largest and smallest entries of the iteration vector y differ by a factor of more
than 1011, for the largest width W . Thus, it is not straightforward to replace the floating-
point representation of these numbers by a more compact representation. One might also
try to eliminate the storage of the succ arrays completely, computing the required values
on-the-fly, as one iterates over all states.

With these improvements and some additional programming tricks, we could try to
optimize the memory requirement. Nevertheless, we do not believe that we could go
beyond W = 24. This would not allow us to push the lower bound above the barrier of 4,
even with an optimistic extrapolation of the figures from Table 1. Probably one needs to
go to W = 27 to reach a bound larger than 4 using our approach.

The running time grows approximately by a factor of 3 when increasing W by one
unit. The running time for the largest example (W = 22) was about 6 hours.

We implemented the algorithm in the programming language C. The code can be
found on the world-wide web at

http://www.inf.fu-berlin.de/~rote/Software/polyominos/ .

Backward Iteration versus Forward Iteration. One reason for choosing the back-
ward iteration (7) over the forward one (3) is that it is very simple to program as a loop
with three lines of code. Another reason is that this scheme should run faster because it

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 28

interacts beneficially with computer hardware, for the following reasons.

The elements of the vector ynew are generated in sequential order, and only once.
Access to the arrays succ0 and succ1 is read-only and purely sequential. This has a bene-
ficial effect on memory caches and virtual memory. Non-sequential access is restricted to
the one or two successor positions in the array yold. There is some locality of reference
here, too: adjacent Motzkin paths tend to have close 0-successors and 1-successors in
the lexicographic order. At least the access pattern conforms to the group structure of
Proposition 1.

Contrast this with a forward iteration. The simplest way to program it would require
the array xnew to be cleared at the beginning of every iteration. It would make a loop
over all states s that would typically involve statements such as

xnew[succ1[s]] += xold[s],

which involves reading an old value and rewriting a different value in a random-access
pattern.

However, the above considerations are only speculations, which may depend on details
of the computer architecture and of the operating system, and which are not substantiated
by computer experiments. In fact, we tried to run our program for W = 23, using
virtual memory, but it thrashed hopelessly, even though about half of the total memory
requirement of 48 gigabytes was accessed read-only in a purely sequential manner and the
other half would have fit comfortably into physical memory. If we had let the program
run to completion, it would have taken about half a year.

7. Alternative Approaches

Following Read [16], who pioneered the transfer-matrix approach in this context, Zeil-
berger [18] discusses the transfer-matrix approach for polyominoes in a horizontal strip.
He also considers a broader class: the cells of each vertical strip have vertical extent at
most W (i.e., distance at most W − 1 from each other) (“locally skinny” polyominoes
[18, Section 8]). The basic transfer-matrix approach adds one whole vertical column at
a time. This permits a very uniform treatment of the transfer matrix, and it allows to
derive the generating function of the numbers of polyominoes. However, a state has up
to 2W − 1 possible successors, and therefore this approach becomes infeasible very soon.
It is better to add cells one by one, as proposed in Conway [3].

Let us first discuss polyominoes in a strip of width W (“globally skinny” polyominoes).
When adding individual cells, the total number of states is multiplied by W , when
compared to the twisted cylinder, since the position i of the kink in the dividing line
must also be remembered. (Only the top i cells in the last column were added so far.) It

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 29

is true that not all states are handled simultaneously: only two successive values i and
i + 1 are needed at any one time. Still, the successor operation is defined differently for
every i. In this respect, the twisted cylinder is more convenient. Moreover, the number
of n-ominoes in a strip of width W can exceed the number of n-ominoes on the twisted
cylinder of the same width at most by a factor of W : every n-omino on the twisted
cylinder of width W can be unfolded in at most W different ways to a plane polyomino
of vertical width ≤ W , in the sense of a mapping β as in Lemma 1. Thus, from the
point of view of establishing a lower bound on Klarner’s constant, a strip on the plane
brings no advantage over the twisted cylinder of the same width. Indeed, for 2 ≤ W ≤ 6,
we could check that the strip of width W has a smaller growth rate λ than the twisted
cylinder.

For locally skinny polyominoes, the reverse relation holds: experimentally, for W ≤ 6,
they have a larger growth rate than the twisted cylinders of the same width. (The growth
rate is quite close to the growth rate for twisted cylinders of width W + 1). In fact, one
can even save about one third of the states, since the position can be normalized by
requiring that the bottom-most cell is always occupied (cf. the remarks in Section 6
about the size of G1). However, as above, adding a whole column at a time is infeasible.
Adding one cell at a time, on the other hand, makes the successor computations much
more complicated.

For comparison, we have also looked at untwisted cylinders, adapting the Maple
programs of [18]. For 3 ≤ W ≤ 6, their growth rate is bigger than for a strip of width W .
(For W = 1 and W = 2, the growth rates are equal.) Still, they are slightly lower than
for twisted cylinders. Intuitively, this makes sense, since the polyominoes have “more
space” on the twisted cylinder, having to go by a vector (1, W) before hitting themselves,
as opposed to (0, W) for the “normal” cylinder.

8. Previous Lower Bounds on Klarner’s Constant

The best previously published lower bounds on Klarner’s constant were based on a tech-
nique of Rands and Welsh [15]. They defined an operation a ∗ b which takes two poly-
ominoes a and b of m and n cells, respectively, and constructs a new polyomino with
m + n − 1 cells by identifying the lowest cell in the leftmost column of b with the the
topmost cell in the rightmost column of a. For example,

. ∗ . = . ,

where a dot marks the identified cells. Let us call a polyomino c ∗-indecomposable if it
cannot be written as a composition c = a ∗ b of two other polyominoes in a non-trivial
way, i.e., with a and b each containing at least two cells. (In [15], this was called ∗-
inconstructible.) It is clear that every polyomino c which is not ∗-indecomposable can

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 30

be written as a non-trivial composition

c = δ ∗ b (10)

of a ∗-indecomposable polyomino δ with another polyomino b. Denoting the sets of all
polyominoes and of all ∗-indecomposable polyominoes of size i by Ai and ∆∗

i , respectively,
one obtains

An = (∆∗
2 ∗ An−1) ∪ (∆∗

3 ∗ An−2) ∪ · · · ∪ (∆∗
n−1 ∗ A2) ∪ ∆∗

n, (11)

for n ≥ 2, where we have extended the ∗ operation to sets of polyominoes. However,
the union on the right side of (11) is not disjoint, because the decomposition in (10) is
not unique: = . ∗ . = . ∗ . , and both and are ∗-indecomposable. Rands
and Welsh [15] erroneously assumed that the union is disjoint and derived from this the
recursion

an = δ∗2an−1 + δ∗3an−2 + · · · + δ∗n−1a2 + δ∗na1 (12)

for the respective numbers an and δ∗n of polyominoes. The first few numbers are δ∗2 = 2,
δ∗3 = 2, and δ∗4 = 4:

∆∗
2 = { , } , ∆∗

3 = { , } , ∆∗
4 =

{
, , ,

}
(13)

If (12) were true, this would lead to a1 = 1, a2 = 2, a3 = 6, and a4 = 20, which is too
high because the true number of polyominoes with 4 cells is 19.2 Even if the reader does
not want to check that the list of ∗-indecomposable polyominoes in (13) is complete, one
can still conclude that the value of a4 is too high, and (12) cannot hold.

The paper [15] also mentions another composition of polyominoes, which goes back
to Klarner [9]. The operation a × b for two polyominoes a and b is defined similarly as
a ∗ b, except that the lowest cell in the leftmost column of b is now put adjacent to the
topmost cell in the rightmost column of a, separated by a vertical edge. The resulting
polyomino has m + n cells:

. × . = . .

Now, for this operation, unique factorization holds: every polyomino c which is not ×-
indecomposable can be written in a unique way as a non-trivial composition c = δ × b of
a ×-indecomposable polyomino δ with another polyomino b. (In this case, a non-trivial
product a× b means that both a and b are non-empty.) Thus, one obtains the recursion

an = δ1an−1 + δ2an−2 + · · · + δn−1a1 + δn, (14)

2This is actually how the mistake was discovered in a class on algorithms for counting and enumeration
taught by G. Rote, where the calculation of an with the help of (12) was posed as an exercise.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 31

where δi denotes the number of ×-indecomposable polyominoes of size i. There are
δ1 = 1, δ2 = 1, δ3 = 3, δ4 = 8, and δ5 = 24 polyominoes with up to 5 cells which are
indecomposable:

∆1 = { }, ∆2 = { } , ∆3 =
{

, ,
}

, ∆4 =
{

, , , , , , ,
}

The idea of Rands and Welsh to derive a lower bound on the growth rate of an is as
follows: If the values a1, . . . , aN are known up to some size N , one can use (14) to
compute δ1, . . . , δN . If one replaces the unknown numbers δN+1, δN+2, . . . by the trivial
lower bound of 0, (14) turns into a recursion for numbers ân which are a lower bound on
an.

ân =
N∑

i=1

δiân−i, for n > N

This is a linear recursion of order N with constant coefficients δ1, . . . , δN , and hence its
growth rate can be determined as the root of its characteristic equation

xN − δ1x
N−1 − δ2x

N−2 − · · ·− δN−1x − δN = 0. (15)

The unique positive root x is a lower bound on Klarner’s constant. Applying this tech-
nique to the numbers ai for i up to N = 56 [8] yields a lower bound of λ ≥ 3.87462343 . . .,
which is, however, weaker than the bound 3.927378. . . (published in [8]) that would follow
in an analogous way from (12).

We finally mention an easy way to strengthen this technique, although with the
present knowledge about the values of an, it still gives much weaker bounds on Klarner’s
constant than our method of counting polyominoes on the twisted cylinder. One can
check that any number of cells can be added above or below existing cells in an inde-
composable polyomino without destroying the property of indecomposability. Thus, the
number of indecomposable polyominoes increases with size. For example, an indecom-
posable polyomino a with n cells can be turned into an indecomposable polyomino a′

with n + 1 cells by adding the cell above the topmost cell in the rightmost column of a.
Every polyomino a′ can be obtained at most once in this way. It follows that δi+1 ≥ δi.

Now, if one replaces the unknown numbers δN+1, δN+2, . . . in (14) by the lower bound
δN instead of 0, one gets a better lower bound on an. The characteristic equation (15),
after dividing by xN , turns into

1 = δ1x
−1 + δ2x

−2 + · · ·+ δN−1x
−N+1 + δNx−N + δNx−N−1 + δNx−N−2 + · · ·

= δ1x
−1 + δ2x

−2 + · · ·+ δN−1x
−N+1 + δNx−N · 1

1 − 1/x
,

whose root gives the stronger bound λ ≥ 3.87565527.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 32

9. Open Questions

The number of polyominoes with a fixed number of cells on a twisted cylinder increases
as we enlarge the width W . This can be shown by an injective mapping as in Lemma 1.
It follows that the limiting growth factors behave similarly, i.e., λW+1 ≥ λW , as can be
seen in Table 1. We do not know whether limW→∞ λW → λ, although this looks like
a natural assumption. It might be interesting to compare the behavior with on other
cylinders, like a doubly-twisted cylinder, where cells whose difference vector is (2, W) are
identified. Every translation vector (i, j) defines another cylindrical structure.

References

[1] G. Barequet and M. Moffie, The complexity of Jensen’s algorithm for count-
ing polyominoes, Proc. 1st Workshop on Analytic Algorithmics and Combinatorics
(ANALCO), New Orleans, ed. L. Arge, G. F. Italiano, and R. Sedgewick, SIAM,
Philadelphia 2004, pp. 161–169, full version to appear in J. of Discrete Algorithms.

[2] G. Barequet, M. Moffie, A. Ribó, and G. Rote, Counting polyominoes on
twisted cylinders, Discr. Math. and Theoret. Comp. Sci., proc. AE (2005), 369–374.

[3] A. Conway, Enumerating 2D percolation series by the finite-lattice method: theory
J. Physics, A: Mathematical and General, 28 (1995), 335–349.

[4] A. R. Conway and A. J. Guttmann, On two-dimensional percolation, J.
Physics, A: Mathematical and General, 28 (1995), 891–904.

[5] S. W. Golomb, Polyominoes, 2nd ed., Princeton University Press, 1994.

[6] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press,
1985.

[7] I. Jensen, Enumerations of lattice animals and trees, J. of Statistical Physics,
102 (2001), 865–881.

[8] I. Jensen, Counting polyominoes: A parallel implementation for cluster computing,
in: Computational Science — Proc. ICCS 2003, Part III, ed. P. M. A. Sloot et al.,
Lecture Notes in Computer Science, Vol. 2659, Springer-Verlag, 2003, pp. 203–212.

[9] D. A. Klarner, Cell growth problems, Canad. J. Math., 19 (1967), 851–863.

[10] D. A. Klarner, Polyominoes, Handbook of Discrete and Computational Geometry,
ed. J. E. Goodman and J. O’Rourke, CRC Press (1997), Chapter 12, pp. 225–240.

[11] D. A. Klarner and R. L. Rivest, A procedure for improving the upper bound
for the number of n-ominoes, Canad. J. Math., 25 (1973), 585–602.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 33

[12] D. E. Knuth, Programs POLYNUM and POLYSLAVE,
http://sunburn.stanford.edu/~knuth/programs.html#polyominoes

[13] D. L. Kreher and D. R. Stinson, Combinatorial Algorithms, Generation, Enu-
meration and Search (CAGES), CRC Press, 1998.

[14] T. Motzkin, Relations between hypersurface cross ratios, and a combinatorial
formula for partitions of a polygon, for permanent preponderance, and for non-
associative products, Bull. Amer. Math. Soc., 54 (1948), 352–360.

[15] B. M. I. Rands and D. J. A. Welsh, Animals, trees and renewal sequences,
IMA J. Appl. Math., 27 (1981), 1–17; Corrigendum, 28 (1982), 107.

[16] R. C. Read, Contributions to the cell growth problem, Canad. J. Math., 14 (1962),
1–20.

[17] R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Studies in Ad-
vanced Mathematics, 1999.

[18] D. Zeilberger, Symbol-crunching with the transfer-matrix method in order to
count skinny physical creatures, INTEGERS—Electronic J. Combin. Number The-
ory, 0 (2000), Article #A09, 34 pp.

A. Certification of the Results

Since the bounds were calculated by a computer program requiring an unusually large
memory model, and programmers and compilers cannot always be trusted, we tried to
confirm the results independently, using Maple as a programming language. We did not
rerun the whole computation, but we used the output of the C program described in
Section 6 after the final iteration. The program writes the last iteration vector y(−i)

that it has computed into a file. The Maple program reads this vector and uses it as
an estimate yold for the Perron-Frobenius eigenvector with ynew = Tbackyold ≈ λWyold.
Instead of the standard backward iteration

ynew
s = ynew

succ0(s) + yold
succ1(s)

(see (7)), we write
λWyold

s ≈ λWyold
succ0(s) + yold

succ1(s).

Hereafter, as usual, an expression such as ynew
succ0(s) or yold

succ0(s) is understood as being 0 if
succ0(s) does not exist. We now find a value λlow with

λlowyold
s ≤ λlowyold

succ0(s) + yold
succ1(s), (16)

for all states s. In matrix notation, this is written as λlowyold ≤ λlowAyold + Byold or
λlow(I − A)yold ≤ Byold. We can multiply this with the nonnegative matrix (I − A)−1

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 34

and obtain
λlowyold ≤ (I − A)−1Byold = Tbacky

old.

By Lemma 9 we can now conclude that λlow ≤ λW . The maximum possible value of λlow

is simply determined by looking at every state s and solving (16) for λlow. We have to
take the minimum of

yold
succ1(s)

yold
s − yold

succ0(s)

(17)

over all states s. Similarly, by reversing the inequality in (16) and taking the maximum
of the expressions (17), one can find an upper bound λhigh on λW . In general, these
bounds turn out to be a little weaker than the bounds that are calculated from yold and
ynew by Lemma 9.

In implementing this, we tried to avoid the use of excessive memory. The C program
writes the vector y in such a form that allows the Maple program to simply scan the file
sequentially. The input file for W = 4 is partially shown in Figure 14(a).

read “procfile.maple”:
init(4):
setx ({{1}}, 17554423808, 1):
setx ({{4}}, 5735051264, 0):
setx ({{4}}, 5735051264, 1):
setx ({{1}, {4}}, 7791677952, 1):
setx ({{3}}, 8280601600, 0):
setx ({{4}}, 5735051264, 1):
setx ({{1, 4}}, 17554423808, 1):
setx ({{3, 4}}, 11470102528, 0):
. . .
finish():
terminate():
setx := checkx :

finish():
init(4):
read “procfile.maple”:
setx := checkx :
setx({{1, 2, 3, 4}}, 28618452992, 0):
setx({{1, 2, 3, 4}}, 28618452992, 1):
setx({{1, 2, 3, 4}}, 28618452992, 1):
setx({{1, 2, 3}}, 28618452992, 0):
setx({{1, 2, 3}}, 28618452992, 1):
setx({{1, 2, 3}}, 28618452992, 1):
setx({{1, 2, 3}}, 28618452992, 1):
setx({{1, 2, 4}}, 23849553920, 0):
. . .
terminate():

(a) (b)

Figure 14: (a) The check file for W = 4. (b) The sorted version of this file.

The program begins by reading function definitions from the file procfile.maple,
which is listed in Appendix B, and performs some initializations in the procedure init.
The main work is done in the procedure calls setx (s, y,flag). This statement tells the
program that the component for state s in the vector yold equals y. A state is represented
by its signature, as a set of sets. A flag value of 1 indicates that the program should
just remember this value. A flag of 0 in a procedure call with state s indicates that the
program should use this value and the previously-stored values of yold to evaluate (17)
for this state, and update λlow and λhigh if appropriate. At the end, the procedure finish
prints out the final values of λlow and λhigh.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 35

The C program writes the values for succ0(s) (if it exists) and succ1(s), with a flag
of 1, immediately before writing a line for s with a flag of 0. After processing a line with
a flag of 0, Maple can, therefore, forget all values that it has stored. Accordingly, as
can be seen in the example of Figure 14(a), some states occur several times. The Maple
program calculates succ0(s) and succ1(s) on its own, and it generates an error message
if the required values were not stored in the preceding calls to setx.

We also performed a slightly more paranoid check to ensure that no state was omitted,
and the program did not inadvertently use two different values for the same state. More
precisely, we checked that all states that are present in the file with a flag of 1 are also
present in the file with a flag of 0, with identical values y. The format of the input file
is designed in such a way that one just has to sort the lines alphabetically and read the
sorted file into Maple to carry out this check. Figure 14(b) shows the sorted version of
the file of Figure 14(a).3 All calls to setx that refer to the same state are now grouped
together. There must first be a call with flag 0, where the value is memorized, followed
by an arbitrary number of calls with the same state and with flag 1, where the program
just checks if the given values coincide. The meaning of the procedure setx is changed at
the beginning by the assignment setx := checkx. Note that finish and init appear before
procfile.maple is read; thus, the first two lines have no effect. In the first phase we
have already checked that all successors of all states that are present in the file with a
flag of 0 are also present in the file with a flag of 1. As a consequence, it is ensured that
at least all reachable states have been processed in the first phase (provided that at least
one state was processed). This is enough to establish correctness of the result.4

For W = 20, the size of the check file was about 30 gigabytes. Each pass over the
file with Maple took about 20 hours, and sorting took almost five hours. (We mention
these running times only to give a rough indication. We ran our program on different
computers of different speeds.) It would also be feasible to check larger values of W but
we did not think it was worthwhile. The procedures finish and terminate printed the
following output, after reading the unsorted check file.

348080 10836799

------, --------, [3.967040106, 3.967082162], 3967040105*10^-9,

87743 2731680

3967082162*10^-9

142547558 configurations were checked.

3We leave the question of why the first two states in alphabetic order, {1, 2, 3, 4} and {1, 2, 3}, have
the same value, to the reader to ponder.

4We did not check if a state appears more than once with a flag of 0, possibly even with different
values. It is not difficult to work out why this does not harm the reliability of the result.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 36

B. The Maple Program

This is the contents of the file procfile.maple, which contains the Maple procedure
definitions and the initialization of two variables nerrors and nchecks.

check := proc(state)
local setcontaininglast, setcontainingfirst, rest , combinefirstandlast, succ0 , succ1 , ratio;
global n, x, maxratio, minratio, nerrors, nchecks;

nchecks := nchecks + 1 ;
setcontaininglast, rest := selectremove(has, state, n) ;

split state into the part containing n (if it exists) and the rest
if setcontaininglast = {{n}} then succ0 := 0
elif setcontaininglast = {} then succ0 := map(shift1 , state)
else succ0 := map(shift1 , rest union {setcontaininglast [1]minus {n}})
end if;
setcontainingfirst, rest := selectremove(has , rest , 1) ;
combinefirstandlast :=

map(op, setcontaininglast) union map(op, setcontainingfirst);
succ1 := map(shift1 , rest union {(combinefirstandlast union {0}) minus {n}}) ;
if not [state] in [indices(x)] then

nerrors := nerrors + 1 ; error “Value %1 not initialized.”, state
end if;
if not [succ1] in [indices(x)] then

nerrors := nerrors + 1 ;
error “Value %1 (succ1) not initialized for %2.”, succ1 , state

end if;
if succ0 3= 0 and not [succ0] in [indices(x)] then

nerrors := nerrors + 1 ;
error “Value %1 (succ0) not initialized for %2.”, succ0 , state

end if;
if succ0 = 0 then # xnew [state] := xold [succ1]

ratio := x[succ1]/x[state]
else # xnew [state] := xold [succ1] + xnew [succ0]

ratio := x[succ1]/(x[state] − x[succ0])
end if ;
minratio := min(minratio, ratio) ;
maxratio := max(maxratio, ratio)

end proc ;

shift1 := proc(part) map(x → x + 1, part) end proc ;

setx := proc(state , value, flag)
global x;

x[state] := value ; if flag = 0 then check(state) ; x := table() end if
end proc ;

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A22 37

checkx := proc(state , value, flag)
global rememberstate, remembervalue, nerrors, nchecks;

ifflag = 0 then
nchecks := nchecks + 1 ; rememberstate := state ; remembervalue := value

else
if rememberstate 3= state then

nerrors := nerrors + 1 ;
error “incorrect state %1, should be %2”, state, rememberstate

end if;
if remembervalue 3= value then

nerrors := nerrors + 1 ;
error “incorrect value %2 for state %1, should be %3”,

state , value , remembervalue
end if

end if
end proc ;

init := proc(w)
global n, x, maxratio, minratio, nerrors, nchecks;

n := w ; x := table() ; minratio := ∞ ; maxratio := 0 ; nerrors := −1 ; nchecks := 0
end proc ;

finish := proc()
local scale;
globalminratio, maxratio, min1 , max1 , nchecks;

scale := 109 ;
min1 := floor(minratio ∗ scale) ;
max1 := ceil(maxratio ∗ scale) ;
print(minratio, maxratio, evalf([minratio, maxratio]), cat(min1 , “*10ˆ-9”),

cat(max1 , “*10ˆ-9”))
end proc ;

terminate := proc()
global nerrors, nchecks;

printf(“ %d configurations were checked.\n”, nchecks);
if nerrors = 0 then printf(“ OK.\n”)
elif 0 < nerrors then printf(“There were %d errors.\n”, nerrors)
end if

end proc ;

nerrors := 0; # initialization
nchecks := 0;

