CONGRUENCES WITH FACTORIALS MODULO P

Yong-Gao Chen ${ }^{1}$
Department of Mathematics, Nanjing Normal University, Nanjing 210097, P. R. China
Li-Xia Dai ${ }^{2}$
Department of Mathematics, Nanjing Normal University, Nanjing 210097, P. R. China
lilidainjnu@163.com

Received: 3/20/06, Revised: 7/18/06, Accepted: 8/7/06, Published: 8/28/06

Abstract

It is proved that the number of $a \in\{1, \cdots, p-1\}$ which can be represented as a product of two factorials is at least $\frac{3}{4} p+O\left(p^{1 / 2}(\log p)^{2}\right)$. This improves the result given by Garaev et.al. [Trans. Amer. Math. Soc., 356 (2004)5089-5102]. Beyond this, we pose several conjectures.

1. Introduction

Throughout this paper, p is an odd prime. In [6,F11], it is conjectured that about p / e of the residue classes $a(\bmod p)$ are missed by the sequence $n!$. If this were so, the sequence n ! modulo p should assume about $(1-1 / e) p$ distinct values. Some results of this spirit have appeared in [1]. The above conjecture immediately implies that if p is large enough, then every residue class a modulo p can be represented as a product of two factorials. Unfortunately, this conjecture appears to be very hard. Various additive and multiplicative congruences with factorials have been considered in $[2,3,4,5,7,8]$.

We denote by $F_{l}(a, p-1)$ the number of solutions to the congruence

$$
\prod_{i=1}^{l} n_{i}!\equiv a \quad(\bmod p), 1 \leq n_{1}, \cdots, n_{l} \leq p-1
$$

where $a \in\{1,2, \ldots, p-1\}$. Let $V_{l}(p-1)$ be the number of $a \in\{1,2, \ldots, p-1\}$ for which $F_{l}(a, p-1)>0$, that is,

$$
V_{l}(p-1)=\sharp\left\{\prod_{i=1}^{l} n_{i}!\quad(\bmod p) \mid 1 \leq n_{1}, \cdots, n_{l} \leq p-1\right\} .
$$

[^0]Garaev et.al. [3] proved that

$$
V_{2}(p-1) \geq \frac{5}{8} p+O\left(p^{1 / 2}(\log p)^{2}\right)
$$

In this paper we prove the following result.

Theorem.

$$
V_{2}(p-1) \geq \frac{3}{4} p+O\left(p^{1 / 2}(\log p)^{2}\right)
$$

We pose the following conjectures.
Conjecture 1. For any odd prime p, any integer $a \in\{1,2, \cdots, p-1\}$ can be represented as a product of two factorials except for $p=11$ and $a=7$.

Conjecture 2. If a is a factorial, $a \neq 0$, then there are infinitely many primes p for which there are no integers n with $a \equiv n!(\bmod p)$.

Conjecture 3. Let a be an integer. If for any prime p there is an integer n with $a \equiv n$! $(\bmod p)$, then $a=-1, a=0$, or a is a factorial.

2. Proof of the Theorem

Lemma(Zhang [9, 10]). Let $N(p)$ denote the number of all pairs (a, b) with $a, b \in$ $\{1,2, \cdots, p-1\}$ for which a and b are of opposite parity and $a b \equiv 1(\bmod p)$. Then

$$
N(p)=\frac{1}{2} p+O\left(p^{1 / 2}(\log p)^{2}\right) .
$$

Proof of Theorem. Define

$$
\begin{aligned}
& I_{1}=\{(a, b)|a b \equiv 1 \quad(\bmod p), 2| a, 2 \nmid b, a, b=1,2, \cdots, p-1\} \\
& I_{2}=\{(a, b)|a b \equiv 1 \quad(\bmod p), 2 \nmid a, 2| b, a, b=1,2, \cdots, p-1\} \\
& I_{3}=\{(a, b)|a b \equiv 1 \quad(\bmod p), 2| a, 2 \mid b, a, b=1,2, \cdots, p-1\} \\
& I_{4}=\{(a, b) \mid a b \equiv 1 \quad(\bmod p), 2 \nmid a, 2 \nmid b, a, b=1,2, \cdots, p-1\} .
\end{aligned}
$$

It is obvious that

$$
\begin{align*}
\left|I_{2}\right|+\left|I_{4}\right| & =\left|I_{1}\right|+\left|I_{4}\right|=\frac{p-1}{2} \tag{1}\\
\left|I_{1}\right|+\left|I_{3}\right| & =\left|I_{1}\right|+\left|I_{4}\right|=\frac{p-1}{2} . \tag{2}
\end{align*}
$$

Hence $\left|I_{1}\right|=\left|I_{2}\right|,\left|I_{3}\right|=\left|I_{4}\right|$. Thus, by the lemma we have

$$
\begin{equation*}
\left|I_{1}\right|=\left|I_{2}\right|=\frac{1}{2} N(p)=\frac{1}{4} p+O\left(p^{1 / 2}(\log p)^{2}\right) . \tag{3}
\end{equation*}
$$

By (1), (2), and (3) we obtain

$$
\begin{equation*}
\left|I_{3}\right|=\left|I_{4}\right|=\frac{1}{4} p+O\left(p^{1 / 2}(\log p)^{2}\right) \tag{4}
\end{equation*}
$$

Let $a, b \in\{1,2, \cdots, p-1\}$ with $a b \equiv 1(\bmod p)$. Wilson's Theorem implies that (the similar arguments appear in $[1,2,3]$)

$$
-1 \equiv(p-1)!\equiv(-1)^{a-1}(a-1)!(p-a)!\quad(\bmod p)
$$

and

$$
-1 \equiv(p-1)!\equiv(-1)^{b} b!(p-b-1)!\quad(\bmod p)
$$

Hence,

$$
\begin{gathered}
a \equiv(-1)^{a} a!(p-a)!\quad(\bmod p), \text { and } \\
a \equiv(-1)^{b+1} a \cdot b!(p-b-1)!\equiv(-1)^{b+1}(b-1)!(p-b-1)!\quad(\bmod p)
\end{gathered}
$$

Thus, if a is even or if b is odd, then a can be represented as a product of two factorials. This implies that if $(a, b) \in I_{1} \cup I_{3} \cup I_{4}$, then $a \in V_{2}(p-1)$.

Therefore, by (3) and (4) we have

$$
V_{2}(p-1) \geq\left|I_{1}\right|+\left|I_{3}\right|+\left|I_{4}\right| \geq \frac{3 p}{4}+O\left(p^{1 / 2}(\log p)^{2}\right)
$$

This completes the proof of the theorem.

References

[1] C. Cobeli, M. Vâjâitu and A. Zaharescu, The sequence $n!(\bmod p)$. J. Ramanujan Math. Soc. 15(2000), 135-154.
[2] P. Erdős and C. Stewart, On the greatest and least prime factors of $n!+1$. J. London Math. Soc. 13(1976), 513-519.
[3] M. Z. Garaev, F. Luca, I. E. Shparlinski, Character sums and congruences with n!. Trans. Amer. Math. Soc. 356 (2004), 5089-5102.
[4] M. Z. Garaev, F. Luca, I. E. Shparlinski, Waring problem with factorials. Bull. Austral. Math. Soc. 71 (2005), 259-264.
[5] M. Z. Garaev, F. Luca, I. E. Shparlinski, Sums and congruences with factorials. J. Reine Angew. Math. 584 (2005), 29-44.
[6] R. K. Guy, Unsolved Problems in Number Theory. 2nd ed. Springer, New York, 1994.
[7] F. Luca and P. Stănică, Products of factorials modulo p. Colloq. Math. 96 (2003), 191-205.
[8] C. Stewart, On the greatest and least prime factors of $n!+1$ II. Publ. Math. Debrecen 65 (2004), 461-480.
[9] W. P. Zhang, On a problem of D. H. Lehmer and its generalization. Composito Math. 86 (1993), 307-316.
[10] W. P. Zhang, On a problem of D. H. Lehmer and its generalization II. Composito Math. 91 (1994), 47-56.

[^0]: ${ }^{1}$ Both authors supported by the National Natural Science Foundation of China, Grant No. 10471064.
 ${ }^{2}$ Corresponding author

