ON MOD p LOGARITHMS $\log _{\mathrm{a}} \mathrm{b}$ AND $\log _{b} a$

Marcin Mazur
Department of Mathematics, Binghamton University, P.O. Box 6000, Binghamton, NY 13892-6000, USA
mazur@math.binghamton.edu

Received: 5/18/06, Accepted: 6/23/06, Published: 8/25/06

In 1997 A. Schinzel proposed the following problem.

Problem. Show that there is no constant c such that the equivalence

$$
2^{n} \equiv 3(\bmod p) \Longleftrightarrow 3^{n} \equiv 2(\bmod p)
$$

holds for all prime numbers $p>c$ and all positive integers n.
Schinzel's problem was solved by G. Banaszak [1], who showed that there are infinitely many prime numbers p such that $2^{n} \equiv 3(\bmod p)$ and $3^{n} \not \equiv 2(\bmod p)$ for some integer n, and also there are infinitely many prime numbers p such that $2^{n} \not \equiv 3(\bmod p)$ and $3^{n} \equiv 2(\bmod p)$ for some n.

In this short note we prove two general results which imply analogous statements for many pairs of integers a, b instead of the pair 2,3 .

For a positive integer a and a set P of prime numbers we define the P-part of a to be the unique divisor d of a such that all prime divisors of d belong to P and no prime divisor of a / d belongs to P.

Theorem 1. Let $a>1, b>1$ be distinct integers. Define d to be the D-part of b, where D is the set of prime divisors of $\operatorname{gcd}(a, b)$. Let e be the P-part of $b-1$, where P is the set of those prime divisors of $b-1$ which do not divide a. Suppose that $a^{2} \neq b+e d$. Then there are infinitely many primes p such that

$$
a^{n} \equiv b(\bmod p) \quad \text { and } \quad b^{n} \not \equiv a(\bmod p)
$$

for some positive integer n.

Proof. Let S be a finite set of prime numbers disjoint from D and containing all prime divisors of $a b-1$ and all prime divisors of $b-1$ which do not divide a. Suppose that S has the property that if q is a prime not in S and $q \mid\left(a^{n}-b\right)$ for some n then $q \mid\left(b^{n}-a\right)$. Set $m=e \prod_{q \in S}(q-1)$. By the Dirichlet's theorem on primes in arithmetic progression, there exist infinitely many primes p such that $m \mid p+1$. Choose any such prime p which is sufficiently large $\left(p>a^{2}+b+e d\right.$ suffices). Then $d \mid\left(a^{p+1}-b\right)$ and no prime in D divides $\left(a^{p+1}-b\right) / d$. Also if q^{t} is the highest power of a prime q such that $q^{t} \mid e$ and $t>0$ then $(q-1) q^{t} \mid(p+1)$ and therefore $q^{t+1} \mid\left(a^{p+1}-1\right)$. It follows that $q^{t} \mid\left(a^{p+1}-b\right)$ and $q^{t+1} \nmid\left(a^{p+1}-b\right)$. Thus $e \mid\left(a^{p+1}-b\right)$ and no prime divisor of e divides $\left(a^{p+1}-b\right) / e$. Since $\operatorname{gcd}(e, d)=1$, we have $\left(a^{p+1}-b\right) / d e$ is an integer.

Let q be a prime divisor of $\left(a^{p+1}-b\right) / e d$. Then

1. $\underline{q \nmid a b}$. This is clear, since $q \notin D$.
2. $q \notin S$. Indeed, if $q \in S$ then $q-1 \mid p+1$ and therefore $q \mid a^{p+1}-1$. Thus $q \mid(b-1)$ and therefore $q \mid e$. But no prime divisor if e divides $\left(a^{p+1}-b\right) / d e$.
3. $\underline{q \mid\left(b^{p+1}-a\right)}$. This follows from our assumption about S and (2).
4. $q \mid(a b)^{p}-1$. Indeed, multiplying the congruences

$$
a^{p+1} \equiv b(\bmod q), \quad b^{p+1} \equiv a(\bmod q)
$$

we get $(a b)^{p+1} \equiv a b(\bmod q)$ and our claim follows now from (1).
5. $q \equiv 1(\bmod p)$. Indeed let s be the order of $a b$ modulo q. Then $s \mid q-1$ and $s \mid p$. If $s=1$ then $q \mid(a b-1)$ so $q \in S$, a contradiction. Thus $s>1$ and therefore $s=p$.

We proved that all prime divisors of $\left(a^{p+1}-b\right) / e d$ are congruent to 1 modulo p. Thus $\left(a^{p+1}-b\right) / e d \equiv 1(\bmod p)$, i.e. $\left(a^{p+1}-b\right) \equiv e d(\bmod p)$. On the other hand, $\left(a^{p+1}-b\right) \equiv$ $a^{2}-b(\bmod p)$, so $a^{2} \equiv b+e d(\bmod p)$. Since both a^{2} and $e d$ are smaller than p we have $a^{2}=b+e d$, a contradiction. This shows that a set S satisfying our assumptions cannot exist, i.e. Theorem 1 holds.

Example. If $a=3$ and $b=2$ then $d=1=e$ and $a^{2}=9 \neq 3=b+e d$. Thus our theorem can be applied in this case. However, if $a=2, b=3$ then $e=1=d$ and $a^{2}=4=b+e d$ so Theorem 1 cannot be applied.

We need a slightly different approach in order to extend Theorem 1 to the case $a=2$, $b=3$. We keep the notation set in the statement of Theorem 1 .

Theorem 2. Let $r \nmid e$ be a fixed prime number. Suppose that there is a power $m=r^{i}$ of r such that $a^{m+1}-b$ has a prime divisor q_{0} prime to b such that the order of b modulo q_{0} is not a power of r. Then there are infinitely many primes p such that

$$
a^{n} \equiv b(\bmod p) \quad \text { and } \quad b^{n} \not \equiv a(\bmod p)
$$

for some positive integer n.

Proof. Let S be a finite set of prime numbers disjoint from D and containing all prime divisors of $(a b)^{m}-1$ and all prime divisors of $b-1$ which do not divide a. Suppose that S has the property that if q is a prime not in S and $q \mid\left(a^{n}-b\right)$ for some n then $q \mid\left(b^{n}-a\right)$. Fix a positive integer N such that r^{N} does not divide any of the numbers $q-1$ with $q \in S$ (so the r-part of $q-1$ divides r^{N}). For a prime divisor q of $\left(b^{r^{N}}-1\right)$ which does not divide a define $q^{e(q)}$ as the highest power of q dividing $\left(b^{r^{N}}-1\right.$) (note that $q \neq r$). There are infinitely many primes p such that $m p+1$ is divisible by the following integers:

1. $q^{e(q)}$ for every prime divisor q of $\left(b^{r^{N}}-1\right)$ which does not divide a;
2. the prime to r part of $q-1$ for every prime $q \in S$.

Choose any such prime p which is sufficiently large ($p>a^{m+1}+d b^{r^{N}}$ suffices). Suppose that $q \in S$ and $q^{f} \mid a^{m p+1}-b$ for some $f>0$. By our choice of p and N we have $(q-1) \mid r^{N}(m p+1)$ and $q \nmid a$. Thus $q \mid a^{r^{N}(m p+1)}-1$. It follows that $q \mid\left(b^{r^{N}}-1\right)$. By (1) we have $q^{e(q)} \mid(m p+1)$, which implies that $(q-1) q^{e(q)} \mid r^{N}(m p+1)$ and $q^{e(q)+1} \mid a^{r^{N}(m p+1)}-1$. We conclude that $f \leq e(q)$. Indeed, otherwise we would have $q^{e(q)+1}\left|a^{m p+1}-b\right| a^{r^{N}(m p+1)}-b^{r^{N}}$, hence $q^{e(q)+1} \mid\left(b^{r^{N}}-1\right)$ contrary to the definition of $e(q)$. Consequently, the S-part A of $a^{m p+1}-b$ divides ($b^{r^{N}}-1$). Now, as in the proof of Theorem 1, if q is a prime divisor of $\left(a^{m p+1}-b\right) / d$ which is not in S then $q \mid(a b)^{m p}-1$. Since $q \notin S,(a b)^{m}-1$ is not divisible by q. In other words, the order of $a b$ modulo q divides $m p$ but not m. It follows that this order must be divisible by p so $p \mid q-1$. This proves that $\left(a^{m p+1}-b\right) / d A \equiv 1(\bmod p)$, i.e. $\left(a^{m p+1}-b\right) \equiv d A(\bmod p)$. On the other hand, $\left(a^{m p+1}-b\right) \equiv a^{m+1}-b(\bmod p)$. Since p is large, we conclude that $a^{m+1}-b=d A$. It follows that $q_{0} \mid A$, which contradicts our choice of q_{0} (recall that $A \mid\left(b^{r^{N}}-1\right)$). This shows that the set S does not exist and Theorem 2 holds.

Example. If $a=2$ and $b=3$ we may take $r=2$. Let $i=2$ so $a^{m+1}-b=29=q_{0}$. The order of 3 modulo 29 is not a power of 2 . In fact $28=4 \cdot 7$ and $3^{4}-1$ is not divisible by 29 . So our theorem applies.

It seems plausible that the assumptions of Theorem 2 are always satisfied for some choice of a prime r, but we do not have a proof of this statement.

References

[1] G. Banaszak, Mod p logarithms $\log _{2} 3$ and $\log _{3} 2$ differ for infinitely many primes, Ann. Math. Silesianae 12 (1998), 141-148.

