ON MOD p LOGARITHMS log_ab AND log_ba

Marcin Mazur

Department of Mathematics, Binghamton University, P.O. Box 6000, Binghamton, NY 13892-6000, USA mazur@math.binghamton.edu

Received: 5/18/06, Accepted: 6/23/06, Published: 8/25/06

In 1997 A. Schinzel proposed the following problem.

Problem. Show that there is no constant c such that the equivalence

$$2^n \equiv 3 \pmod{p} \iff 3^n \equiv 2 \pmod{p}$$

holds for all prime numbers p > c and all positive integers n.

Schinzel's problem was solved by G. Banaszak [1], who showed that there are infinitely many prime numbers p such that $2^n \equiv 3 \pmod{p}$ and $3^n \not\equiv 2 \pmod{p}$ for some integer n, and also there are infinitely many prime numbers p such that $2^n \not\equiv 3 \pmod{p}$ and $3^n \equiv 2 \pmod{p}$ for some n.

In this short note we prove two general results which imply analogous statements for many pairs of integers a, b instead of the pair 2, 3.

For a positive integer a and a set P of prime numbers we define the P-part of a to be the unique divisor d of a such that all prime divisors of d belong to P and no prime divisor of a/d belongs to P.

Theorem 1. Let a > 1, b > 1 be distinct integers. Define d to be the D-part of b, where D is the set of prime divisors of gcd(a,b). Let e be the P-part of b-1, where P is the set of those prime divisors of b-1 which do not divide a. Suppose that $a^2 \neq b + ed$. Then there are infinitely many primes p such that

$$a^n \equiv b \pmod{p}$$
 and $b^n \not\equiv a \pmod{p}$

for some positive integer n.

Proof. Let S be a finite set of prime numbers disjoint from D and containing all prime divisors of ab - 1 and all prime divisors of b - 1 which do not divide a. Suppose that S has the property that if q is a prime not in S and $q|(a^n - b)$ for some n then $q|(b^n - a)$. Set $m = e \prod_{q \in S} (q - 1)$. By the Dirichlet's theorem on primes in arithmetic progression, there exist infinitely many primes p such that m|p+1. Choose any such prime p which is sufficiently large $(p > a^2 + b + ed$ suffices). Then $d|(a^{p+1} - b)$ and no prime in D divides $(a^{p+1} - b)/d$. Also if q^t is the highest power of a prime q such that $q^t|e$ and t > 0 then $(q-1)q^t|(p+1)$ and therefore $q^{t+1}|(a^{p+1} - 1)$. It follows that $q^t|(a^{p+1} - b)$ and $q^{t+1} \nmid (a^{p+1} - b)$. Thus $e|(a^{p+1} - b)/de$ is an integer.

Let q be a prime divisor of $(a^{p+1}-b)/ed$. Then

- 1. $q \nmid ab$. This is clear, since $q \notin D$.
- 2. $\underline{q \notin S}$. Indeed, if $q \in S$ then q 1|p + 1 and therefore $q|a^{p+1} 1$. Thus q|(b-1) and therefore q|e. But no prime divisor if e divides $(a^{p+1} b)/de$.
- 3. $q|(b^{p+1}-a)$. This follows from our assumption about S and (2).
- 4. $q|(ab)^p 1$. Indeed, multiplying the congruences

$$a^{p+1} \equiv b \pmod{q}$$
, $b^{p+1} \equiv a \pmod{q}$

we get $(ab)^{p+1} \equiv ab \pmod{q}$ and our claim follows now from (1).

5. $\underline{q \equiv 1 \pmod{p}}$. Indeed let s be the order of ab modulo q. Then s|q-1 and s|p. If s = 1 then q|(ab-1) so $q \in S$, a contradiction. Thus s > 1 and therefore s = p.

We proved that all prime divisors of $(a^{p+1} - b)/ed$ are congruent to 1 modulo p. Thus $(a^{p+1} - b)/ed \equiv 1 \pmod{p}$, i.e. $(a^{p+1} - b) \equiv ed \pmod{p}$. On the other hand, $(a^{p+1} - b) \equiv a^2 - b \pmod{p}$, so $a^2 \equiv b + ed \pmod{p}$. Since both a^2 and ed are smaller than p we have $a^2 = b + ed$, a contradiction. This shows that a set S satisfying our assumptions cannot exist, i.e. Theorem 1 holds. \Box .

Example. If a = 3 and b = 2 then d = 1 = e and $a^2 = 9 \neq 3 = b + ed$. Thus our theorem can be applied in this case. However, if a = 2, b = 3 then e = 1 = d and $a^2 = 4 = b + ed$ so Theorem 1 cannot be applied.

We need a slightly different approach in order to extend Theorem 1 to the case a = 2, b = 3. We keep the notation set in the statement of Theorem 1.

Theorem 2. Let $r \nmid e$ be a fixed prime number. Suppose that there is a power $m = r^i$ of r such that $a^{m+1} - b$ has a prime divisor q_0 prime to b such that the order of b modulo q_0 is not a power of r. Then there are infinitely many primes p such that

$$a^n \equiv b \pmod{p}$$
 and $b^n \not\equiv a \pmod{p}$

for some positive integer n.

Proof. Let S be a finite set of prime numbers disjoint from D and containing all prime divisors of $(ab)^m - 1$ and all prime divisors of b - 1 which do not divide a. Suppose that S has the property that if q is a prime not in S and $q|(a^n - b)$ for some n then $q|(b^n - a)$. Fix a positive integer N such that r^N does not divide any of the numbers q - 1 with $q \in S$ (so the r-part of q - 1 divides r^N). For a prime divisor q of $(b^{r^N} - 1)$ which does not divide a define $q^{e(q)}$ as the highest power of q dividing $(b^{r^N} - 1)$ (note that $q \neq r$). There are infinitely many primes p such that mp + 1 is divisible by the following integers:

- 1. $q^{e(q)}$ for every prime divisor q of $(b^{r^N} 1)$ which does not divide a;
- 2. the prime to r part of q-1 for every prime $q \in S$.

Choose any such prime p which is sufficiently large $(p > a^{m+1} + db^{r^N}$ suffices). Suppose that $q \in S$ and $q^f | a^{mp+1} - b$ for some f > 0. By our choice of p and N we have $(q-1)|r^N(mp+1)$ and $q \nmid a$. Thus $q | a^{r^N(mp+1)} - 1$. It follows that $q | (b^{r^N} - 1)$. By (1) we have $q^{e(q)} | (mp+1)$, which implies that $(q-1)q^{e(q)}|r^N(mp+1)$ and $q^{e(q)+1}|a^{r^N(mp+1)} - 1$. We conclude that $f \leq e(q)$. Indeed, otherwise we would have $q^{e(q)+1}|a^{mp+1} - b|a^{r^N(mp+1)} - b^{r^N}$, hence $q^{e(q)+1}|(b^{r^N} - 1)$ contrary to the definition of e(q). Consequently, the S-part A of $a^{mp+1} - b$ divides $(b^{r^N} - 1)$. Now, as in the proof of Theorem 1, if q is a prime divisor of $(a^{mp+1} - b)/d$ which is not in S then $q|(ab)^{mp} - 1$. Since $q \notin S$, $(ab)^m - 1$ is not divisible by q. In other words, the order of ab modulo q divides mp but not m. It follows that this order must be divisible by p so p|q-1. This proves that $(a^{mp+1} - b)/dA \equiv 1 \pmod{p}$, i.e. $(a^{mp+1} - b) \equiv dA \pmod{p}$. On the other hand, $(a^{mp+1} - b) \equiv a^{m+1} - b \pmod{p}$. Since p is large, we conclude that $a^{m+1} - b = dA$. It follows that $q_0|A$, which contradicts our choice of q_0 (recall that $A|(b^{r^N} - 1))$). This shows that the set S does not exist and Theorem 2 holds. \Box

Example. If a = 2 and b = 3 we may take r = 2. Let i = 2 so $a^{m+1} - b = 29 = q_0$. The order of 3 modulo 29 is not a power of 2. In fact $28 = 4 \cdot 7$ and $3^4 - 1$ is not divisible by 29. So our theorem applies.

It seems plausible that the assumptions of Theorem 2 are always satisfied for some choice of a prime r, but we do not have a proof of this statement.

References

[1] G. Banaszak, Mod p logarithms $\log_2 3$ and $\log_3 2$ differ for infinitely many primes, Ann. Math. Silesianae 12 (1998), 141-148.