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In 1997 A. Schinzel proposed the following problem.

Problem. Show that there is no constant c such that the equivalence

2n ≡ 3 (mod p) ⇐⇒ 3n ≡ 2 (mod p)

holds for all prime numbers p > c and all positive integers n.

Schinzel’s problem was solved by G. Banaszak [1], who showed that there are infinitely
many prime numbers p such that 2n ≡ 3 (mod p) and 3n $≡ 2 (mod p) for some integer
n, and also there are infinitely many prime numbers p such that 2n $≡ 3 (mod p) and
3n ≡ 2 (mod p) for some n.

In this short note we prove two general results which imply analogous statements for
many pairs of integers a, b instead of the pair 2, 3.

For a positive integer a and a set P of prime numbers we define the P -part of a to be
the unique divisor d of a such that all prime divisors of d belong to P and no prime divisor
of a/d belongs to P .

Theorem 1. Let a > 1, b > 1 be distinct integers. Define d to be the D-part of b, where D
is the set of prime divisors of gcd(a, b). Let e be the P -part of b − 1, where P is the set of
those prime divisors of b − 1 which do not divide a. Suppose that a2 $= b + ed. Then there
are infinitely many primes p such that

an ≡ b (mod p) and bn $≡ a (mod p)

for some positive integer n.
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Proof. Let S be a finite set of prime numbers disjoint from D and containing all prime
divisors of ab − 1 and all prime divisors of b − 1 which do not divide a. Suppose that S has
the property that if q is a prime not in S and q|(an − b) for some n then q|(bn − a). Set
m = e

∏
q∈S(q − 1). By the Dirichlet’s theorem on primes in arithmetic progression, there

exist infinitely many primes p such that m|p+1. Choose any such prime p which is sufficiently
large (p > a2 + b + ed suffices). Then d|(ap+1 − b) and no prime in D divides (ap+1 − b)/d.
Also if qt is the highest power of a prime q such that qt|e and t > 0 then (q−1)qt|(p+1) and
therefore qt+1|(ap+1 − 1). It follows that qt|(ap+1 − b) and qt+1 ! (ap+1 − b). Thus e|(ap+1 − b)
and no prime divisor of e divides (ap+1 − b)/e. Since gcd(e, d) = 1, we have (ap+1 − b)/de is
an integer.

Let q be a prime divisor of (ap+1 − b)/ed. Then

1. q ! ab. This is clear, since q $∈ D.

2. q $∈ S. Indeed, if q ∈ S then q − 1|p + 1 and therefore q|ap+1 − 1. Thus q|(b − 1) and
therefore q|e. But no prime divisor if e divides (ap+1 − b)/de.

3. q|(bp+1 − a). This follows from our assumption about S and (2).

4. q|(ab)p − 1. Indeed, multiplying the congruences

ap+1 ≡ b (mod q) , bp+1 ≡ a (mod q)

we get (ab)p+1 ≡ ab (mod q) and our claim follows now from (1).

5. q ≡ 1 (mod p) . Indeed let s be the order of ab modulo q. Then s|q − 1 and s|p. If
s = 1 then q|(ab − 1) so q ∈ S, a contradiction. Thus s > 1 and therefore s = p.

We proved that all prime divisors of (ap+1 − b)/ed are congruent to 1 modulo p. Thus
(ap+1 − b)/ed ≡ 1 (mod p) , i.e. (ap+1 − b) ≡ ed (mod p) . On the other hand, (ap+1 − b) ≡
a2 − b (mod p) , so a2 ≡ b + ed (mod p) . Since both a2 and ed are smaller than p we have
a2 = b + ed, a contradiction. This shows that a set S satisfying our assumptions cannot
exist, i.e. Theorem 1 holds. !.

Example. If a = 3 and b = 2 then d = 1 = e and a2 = 9 $= 3 = b + ed. Thus our theorem
can be applied in this case. However, if a = 2, b = 3 then e = 1 = d and a2 = 4 = b + ed so
Theorem 1 cannot be applied.

We need a slightly different approach in order to extend Theorem 1 to the case a = 2,
b = 3. We keep the notation set in the statement of Theorem 1.

Theorem 2. Let r ! e be a fixed prime number. Suppose that there is a power m = ri of r
such that am+1 − b has a prime divisor q0 prime to b such that the order of b modulo q0 is
not a power of r. Then there are infinitely many primes p such that

an ≡ b (mod p) and bn $≡ a (mod p)
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for some positive integer n.

Proof. Let S be a finite set of prime numbers disjoint from D and containing all prime
divisors of (ab)m − 1 and all prime divisors of b − 1 which do not divide a. Suppose that S
has the property that if q is a prime not in S and q|(an − b) for some n then q|(bn −a). Fix a
positive integer N such that rN does not divide any of the numbers q− 1 with q ∈ S (so the
r-part of q − 1 divides rN). For a prime divisor q of (brN − 1) which does not divide a define
qe(q) as the highest power of q dividing (brN −1) (note that q $= r). There are infinitely many
primes p such that mp + 1 is divisible by the following integers:

1. qe(q) for every prime divisor q of (brN − 1) which does not divide a;

2. the prime to r part of q − 1 for every prime q ∈ S.

Choose any such prime p which is sufficiently large (p > am+1 + dbrN
suffices). Suppose that

q ∈ S and qf |amp+1− b for some f > 0. By our choice of p and N we have (q−1)|rN(mp+1)
and q ! a. Thus q|arN (mp+1)−1. It follows that q|(brN−1). By (1) we have qe(q)|(mp+1), which
implies that (q − 1)qe(q)|rN(mp + 1) and qe(q)+1|arN (mp+1) − 1. We conclude that f ≤ e(q).
Indeed, otherwise we would have qe(q)+1|amp+1 − b|arN (mp+1) − brN

, hence qe(q)+1|(brN − 1)
contrary to the definition of e(q). Consequently, the S-part A of amp+1 − b divides (brN − 1).
Now, as in the proof of Theorem 1, if q is a prime divisor of (amp+1 − b)/d which is not in S
then q|(ab)mp−1. Since q $∈ S, (ab)m−1 is not divisible by q. In other words, the order of ab
modulo q divides mp but not m. It follows that this order must be divisible by p so p|q − 1.
This proves that (amp+1−b)/dA ≡ 1 (mod p) , i.e. (amp+1−b) ≡ dA (mod p) . On the other
hand, (amp+1 − b) ≡ am+1 − b (mod p) . Since p is large, we conclude that am+1 − b = dA.
It follows that q0|A, which contradicts our choice of q0 (recall that A|(brN − 1)). This shows
that the set S does not exist and Theorem 2 holds. !

Example. If a = 2 and b = 3 we may take r = 2. Let i = 2 so am+1 − b = 29 = q0. The
order of 3 modulo 29 is not a power of 2. In fact 28 = 4 · 7 and 34 − 1 is not divisible by 29.
So our theorem applies.

It seems plausible that the assumptions of Theorem 2 are always satisfied for some choice
of a prime r, but we do not have a proof of this statement.
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