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Abstract

For a given arithmetic function h(x), we consider the function g(n; h) =
∏n

j=1 h((j, n)),
where (j, n) is the greatest common divisor of j and n. We give evaluations in terms of
prime powers, Dirichlet series, and asymptotics involving g(n; h). The Dirichlet series lead
to several identities involving the Riemann Zeta function. One such result is the following:

For real numbers α and β, we have
∑∞

n=1

∑n
j=1(j,n)αn−s

∑∞
n=1

∑n
j=1(j,n)βn−s = ζ(s−α)

ζ(s−β) for Re(s) > max{2,α+1, β+1}.
We finish by discussing bounds along with asymptotics for the special case g(n) = g(n; e)
where e(x) := x.

Mathematical Subject Classifications: 11A05, 11A25, 11M06, 11N37, 11Y60, 11Y11

1. Introduction

For an arithmetic function, h(x), we define the General gcd -Product Function as follows:

g(n; h) :=
n∏

j=1

h((j, n)),

where (j, n) := gcd(j, n) is the greatest common divisor of j and n. We also define

g(n) :=
n∏

j=1

(j, n).

Defining e(x) := x, note that g(n) = g(n; e). In this study, we investigate various properties
of these functions.

Evaluations and asymptotics for the expression
∑n

j=1(j, n) are discussed by Broughan [2].
A general development for sums of the form

∑n
i,j=1 h((i, j)) is given in several publications
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by Cohen [3], [4], [5]. Since log[g(n; exp ◦ h)] =
∑n

j=1 h((j, n)), many of our results will

generalize the previous studies. For clarification, (exp ◦ h)(x) = eh(x).

We begin by briefly mentioning two applications related to these functions. For a positive
integer n, the number of distinct solutions modulo n to the congruence xn−1 ≡ 1 (mod n) is
given by the formula

∏
p|n(p−1, n−1), where the product is over all distinct primes dividing

n (a proof of this formula is given by Baillie and Wagstaff [1]). Formulas like this one are
commonly used in the study of probabilistic primality testing. For instance, this author [6]
gave a probabilistic primality test which never fails for Carmichael numbers by studying
formulas involving products of the form

∏
p|n[(p±1, n±1)−2]. These formulas do not easily

submit to a general study. Thus, we hope the general theory of the simpler function g(n; h)
will shed some light on the growth and behavior of other formulas involving gcd products.

Another application arises in the study of lattice points on lines in the plane. Given
two integer lattice points P (a, b) and Q(c, d), the number of lattice points on the segment
connecting P and Q is given by (a− c, b− d) + 1. Given several different line segments, the
formula for the number of ways to choose one lattice point from each segment will involve
products of gcd values. In such instances, information about the function g(n) can be useful.

The current study includes:

1. Evaluations, identities, and properties of g(n; h).

2. Dirichlet series and asymptotics for log[g(n; h)].

3. Bounds and asymptotics for the special case g(n).

2. Evaluations, Identities and Properties

In the following discussion we assume that h(x) is an arithmetic function. When we want
h(x) to have more properties, like the multiplicative property, we will be explicit. First we
consider the values of g(n; h) at prime powers. Observe, if p is a prime, then

g(p; h) =
p∏

j=1

h((j, p)) = h(p)h(1)p−1.

Theorem 1. If p is a prime and a is a positive integer, then

g(pa; h) =
h(pa)

h(pa−1)
g(pa−1; h)p.
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Proof.

g(pa; h) =
∏pa

j=1 h((j, pa))

=
∏pa−1

j=1 h((j, pa))
∏2pa−1

j=pa−1+1 h((j, pa)) . . .
∏pa

j=(p−1)pa−1+1 h((j, pa))

= h(pa)
h(pa−1)

∏pa−1

j=1 h((j, pa−1))
∏pa−1

j=1 h((j, pa−1)) . . .
∏pa−1

j=1 h((j, pa−1))

= h(pa)
h(pa−1)g(pa−1; h)p.

We can now give the evaluation at prime powers by induction.

Theorem 2. If p is a prime and a is a positive integer, then

g(pa; h) = h(pa)
a−1∏

j=0

h(pj)(p−1)pa−j−1
.

Proof. When a = 1, we get the appropriate value h(p)h(1)p−1.

Assume the result is true for k. Then

g(pk+1; h) = h(pk+1)
h(pk) g(pk; h)p

= h(pk+1)
h(pk)

(
h(pk)

∏k−1
j=0 h(pj)(p−1)pk−j−1

)p

= h(pk+1)h(pk)p−1
∏k−1

j=0 h(pj)(p−1)pk−j

= h(pk+1)
∏k

j=0 h(pj)(p−1)pk−j

= h(pk+1)
∏k

j=0 h(pj)(p−1)p(k+1)−j−1
.

The result holds by induction.

This is not a miraculous result, but note that it holds for h(x) in general. For example,

∏172

j=1

√√
(j, 172) + (j, 172)

=
√√

172 + 172
√√

17 + 17
17−1√

1 + 1
(17−1)17

=
√

306(
√

17 + 17)828∗17

= 2136
√

306
(√

17 + 17
)8

.
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In the theory of arithmetic functions, the typical next step is to prove that the function
is multiplicative. However, g(n; h) and g(n) are not multiplicative in general. Even so, we
can prove the following relationship for relatively prime integers.

Theorem 3. If h(x) is multiplicative and m and n are integers with (m, n) = 1, then

g(mn; h) = [g(m; h)]n[g(n; h)]m.

Proof. For (m, n) = 1 and j any positive integer, observe that h((j, mn)) = h((j, n)(j, m)) =
h((j, n))h((j, m)). Then

g(mn; h) =
∏mn

j=1 h((j, mn))

=
[∏mn

j=1 h((j, m))
] [∏mn

j=1 h((j, n))
]

=
[∏m

j=1 h((j, m))
]n [∏n

j=1 h((j, n))
]m

= [g(m; h)]n[g(n; h)]m.

Now define
f(n; h) := g(n; h)1/n.

We can immediately give analogous results for f . Notice that this definition of f(n; h) was
chosen to yield the multiplicative property when h(x) is multiplicative.

Theorem 4. If h(x) is multiplicative, then the function f(n; h) = g(n; h)1/n satisfies the
following properties:

1. If p is a prime and a is a positive integer, then

f(pa; h) = h(pa)p−a
a−1∏

j=0

h(pj)(p−1)p−j−1
.

2. If m and n are positive integers with (m, n) = 1, then

f(mn; h) = f(m; h)f(n; h) (f is multiplicative).

Proof. The first statement is a direct application of Theorem 2 and the definition of f . For
the second statement, using Theorem 3, observe that

f(mn; h) = g(mn; h)1/(mn) = [g(m; h)n]1/(mn)[g(n; h)m]1/(mn)

= f(m; h)f(n; h).
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Finally, we have the general evaluations of g(n; h) and f(n; h) based on the prime fac-
torization of an integer n when h(x) is multiplicative.

Corollary 1. (Evaluations of f(n; h) and g(n; h).) If n =
∏k

i=1 pai
i is the prime factorization

of n and h(x) is multiplicative, then

f(n; h) =
k∏

i=1

[
h(pai

i )p
−ai
i

ai−1∏

j=0

h(pj
i )

(pi−1)p−j−1
i

]
and

g(n; h) =

(
k∏

i=1

[
h(pai

i )p
−ai
i

ai−1∏

j=0

h(pj
i )

(pi−1)p−j−1
i

])n

.

Taking h(x) := x, we get all the same results for g(n) and f(n) as corollaries.

Corollary 2. The functions f(n) and g(n), where f(n) = g(n)1/n, satisfy the following
properties:

1. If p is a prime and a is a positive integer, then

g(pa) = p
pa−1
p−1 and f(pa) = p

1−p−a

p−1 .

2. If m and n are positive integers with (m, n) = 1, then

f(mn) = f(m)f(n) (f is multiplicative).

Proof. Letting h(x) = e(x) := x in Theorem 4, we get

g(pa) = g(pa; e) = pa
∏a−1

j=0(p
j)(p−1)pa−j−1

= pap(p−1)pa−1 ∑a−1
j=0 j( 1

p)
j

= pap
(p−1)pa−1 (a−1)/pa−a/pa−1+1

p(1−1/p)2

= pap
(p−1)a−1−ap+pa

(p−1)2

= pa+a−1−ap+pa

p−1 = p
pa−1
p−1 .

The result for f(pa) is now immediate.

Corollary 3. (Evaluations of f(n) and g(n).) If n =
∏k

i=1 pai
i is the prime factorization of

n, then

f(n) =
k∏

i=1

p
1−p

−ai
i

pi−1

i and g(n) =

[
k∏

i=1

p
1−p

−ai
i

pi−1

i

]n

.
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3. Identities involving φ(n)

Here we will give identities that relate g(n; h) to the function φ(n). Not only are these
identities interesting in their own right, but they will be essential to our derivation of Dirichlet
series.

For a positive integer k, the Euler φ-function, φ(k), is defined to be the number of integers
j with 1 ≤ j ≤ n such that (j, k) = 1. For a divisor e of n, we have (j, n) = e if and only
if e|j and ( j

e ,
n
e ) = 1. Thus, the number of integers j with 1 ≤ j ≤ n such that (j, n) = e,

is given by the formula φ(n/e). Using this basic observation we can evaluate the function
g(n; h) in terms of φ(d), where d ranges over the divisors of n, as follows:

g(n; h) =
∏n

j=1 h((j, n)) =
∏

e|n h(e)φ(n/e) =
∏

d|n h(n/d)φ(d) .

Taking the logarithm of these equations yields the identity below.

Theorem 5. If n is a positive integer, then

log[g(n; h)] =
∑

e|n

φ(n/e) log[h(e)] =
∑

d|n

φ(d) log[h(n/d)].

For h(x) := x, we can conclude a little more.

Theorem 6. If n is a positive integer, then g(n) = nn
∏

d|n
1

dφ(d) .

Proof. Using the relationship from Theorem 5 and the property
∑

d|n φ(d) = n, we have

g(n) =
∏

d|n

(n

d

)φ(d)

= n
∑

d|n φ(d)
∏

d|n

1

dφ(d)
= nn

∏

d|n

1

dφ(d)
.

4. Dirichlet Series

Define the Dirichlet series for log[g(n; h)] by

G(s; h) =
∞∑

n=1

log[g(n; h)]

ns
=

∞∑

n=1

∑n
j=1 log[h((j, n))]

ns

for s ∈ Ah, where Ah ⊆ C is the set of values for which the sum converges depending on h.
Now we give the evaluation of G(s; h) in terms of the Reimann zeta function and the series∑∞

n=1
log[h(n)]

ns .
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Before we proceed, we give a brief discussion of convergence of the series
∑∞

n=1
log[h(n)]

ns .
For a given function, h(x), we define the set Sh and the constant ch by

Sh = {α ∈ R| log[h(n)] = O(nα) as n → ∞} and ch = max{2, 1 + inf Sh},

where ‘inf’ denotes the greatest lower bound. We restrict our attention to those functions
h(x) such that Sh is non-empty. The 2 in the maximum part of the definition of ch is required
so that ζ(s−1)

ζ(s) converges as a sum (this expression is important in the following theorems).

Theorem 7. The Dirichlet series for G(s; h) converges for Re(s) > ch and is given by

(
ζ(s − 1)

ζ(s)

) ( ∞∑

n=1

log[h(n)]

ns

)
,

where ζ(s) is the Riemann zeta function.

Proof. From Theorem 5,

log[g(n; h)] =
∑

d|n

φ(d) log[h(n/d)] = (φ ∗ (log ◦ h))(n),

where the product ∗ is the Dirichlet convolution.

Hence, given the required convergence, we have

G(s; h) =
∑∞

n=1
log[g(n;h)]

ns

=
(∑∞

n=1
φ(n)
ns

) (∑∞
n=1

log[h(n)]
ns

)

=
(

ζ(s−1)
ζ(s)

) (∑∞
n=1

log[h(n)]
ns

)
.

Observe that definition of ch is necessary to ensure convergence for the sum
∑∞

n=1
φ(n)
ns =

ζ(s−1)
ζ(s) and the sum

∑∞
n=1

log[h(n)]
ns .

For the following discussion, we define the class of functions h(α)(x) = xα. Considering
the two special cases G(s; h(α)) and G(s; exp ◦ h), respectively, we immediately conclude

∞∑

n=1

∑n
j=1 log[(j, n)α]

ns
= −αζ(s − 1)ζ ′(s)

ζ(s)
for s > 2 and (1)

∞∑

n=1

∑n
j=1 h((j, n))

ns
=

ζ(s − 1)

ζ(s)

( ∞∑

n=1

h(n)

ns

)
for s > cexp(h(x)). (2)
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Using (1) and (2), we can obtain a multitude of intriguing identities. We collect several
such results in the following corollary.

Corollary 4. The following relationships hold for all α, β ∈ R:

(i)
∞∑

n=1

∑n
j=1(j, n)α

ns
=

ζ(s − 1)ζ(s − α)

ζ(s)
for Re(s) > max{2,α + 1}.

(ii)

∑∞
n=1

∑n
j=1 h((j,n))

ns

∑∞
n=1

h(n)
ns

=
ζ(s − 1)

ζ(s)
for Re(s) > cexp(h(x)).

(iii)

∑∞
n=1

∑n
j=1 h1((j,n))

ns

∑∞
n=1

∑n
j=1 h2((j,n))

ns

=

∑∞
n=1

h1(n)
ns

∑∞
n=1

h2(n)
ns

for Re(s) > max{cexp(h1(x)), cexp(h2(x))}.

(iv)

∑∞
n=1

∑n
j=1(j,n)α

ns

∑∞
n=1

∑n
j=1(j,n)β

ns

=
ζ(s − α)

ζ(s − β)
for Re(s) > max{2,α + 1, β + 1}.

(v)
∞∑

n=1

∑n
j=1 φ((j, n))

ns
=

ζ2(s − 1)

ζ2(s)
for Re(s) > 2.

Proof. Identity (i) is equation (2) with h(α)(x) = xα. Identity (ii) is a restatement of Theorem
7. Setting up two equations of the form in equation (2) with h1(x) and h2(x), and then
dividing the equations, yields identity (iii). Identity (iv) is a special case of (iii), with
h1(x) = xα and h2(x) = xβ. Finally, letting h1(x) = φ(x) in equation (2) and using the
well-known identity

∑∞
n=1

φ(n)
ns = ζ(s−1)

ζ(s) , we get identity (v).

Note that identities (ii) and (iv) suggest possible ways to evaluate the zeta function. For

example, if we could choose a function h(x) in such a way that
∑∞

n=1

∑n
j=1 h((j,n))

ns
∑∞

n=1
h(n)
ns

could be

evaluated in closed form, then we would have an evaluation for ζ(s−1)
ζ(s) . That is, we would

have a way to inductively evaluate the ζ(s) function at integer values. Such a solutions could
give evaluations for ζ(3), ζ(5), etc.

Since we have closed form evaluations for ζ(2k) when k is a positive integer, we can give
evaluations for certain ratios of the form in identity (iv). For example, with s = 8, α = 2,
and β = 4 we have:

∑∞
n=1

∑n
j=1(j,n)2

n8

∑∞
n=1

∑n
j=1(j,n)4

n8

=
ζ(6)

ζ(4)
=

2π2

21
.

We can use the results of Theorem 7 and Corollary 4 to give identities involving infinite
series of zeta function values.
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Theorem 8. If h(x) is a function such that log(h(x)) admits an infinite series representation

log[h(x)] =
∑∞

k=1 ak

(
1
x

)k
that converges uniformly for x ≥ 1 and for Re(s) > ch, we have

∞∑

n=1

∑n
j=1 log[h((j, n))]

ns
=

(
ζ(s − 1)

ζ(s)

) ( ∞∑

k=1

akζ(s + k)

)
.

Proof. Using the infinite series expansions, we have

∞∑

n=1

∑n
j=1 log[h((j, n))]

ns
=

(
ζ(s − 1)

ζ(s)

) ( ∞∑

n=1

log[h(n)]

ns

)

=

(
ζ(s − 1)

ζ(s)

) ( ∞∑

n=1

∑∞
k=1 ak

(
1
n

)k

ns

)
=

(
ζ(s − 1)

ζ(s)

) ( ∞∑

k=1

ak

∞∑

n=1

1

ns+k

)

=

(
ζ(s − 1)

ζ(s)

) ( ∞∑

k=1

akζ(s + k)

)
.

Corollary 5. If Re(s) > 2, then

−
∞∑

n=1

∑n
j=1 log[1 − 1

2(j,n) ]

ns
=

(
ζ(s − 1)

ζ(s)

) ( ∞∑

k=1

ζ(s + k)

2kk

)
.

Proof. Apply Theorem 8 with h(x) = 1
1− 1

2x

, so that log[h(x)] = − log(1− 1
2x) =

∑∞
k=1

1
k

(
1
2x

)k
=

∑∞
k=1

1
2kk

(
1
x

)k
for x > 1/2, and ak = 1

2kk .

Now we give asymptotic formulas for
∑

n≤x log[g(n; h)]. For the following development,
we only consider the case h(n) = O(nα) for n sufficiently large and α a fixed non-negative
real number. Including a larger class of functions would considerably increase the length of
this study. We first need a standard estimate from analytic number theory. Tenenbaum [7]
gives the following estimate in his book:

Φ0(x) :=
∑

n≤x

φ(n) =
x2

2ζ(2)
+ O(x log(x)).

We also need the following lemma.

Lemma 1. If x and y are real numbers such that x ≥ y > 1, then

log

(
x

y

)
<

log(x)

log(y)
.
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Proof. Fix x > 1 and consider the function ax(y) = log(x)
log(y) − log(x

y ) on the domain (1, x].
Taking the derivative with respect to y gives

a′
x(y) = − log(x)

y log2(y)
− 1

y
= −1

y

[
1

log2(y)
+ 1

]
.

Thus, ax(y) is monotonically decreasing on the domain. If y = x, then the ax(x) = log(x)
log(x) −

log(x
x) = 1. Hence ax(y) ≥ 1 for all y ∈ (1, x]. Since x was arbitrary, the result holds.

Theorem 9. If h(x) satisfies the relationship h(n) = O(nα) for n sufficiently large and α
a fixed non-negative real number, then the following asymptotic relationship holds

∑

n≤x

log[g(n; h)] =
Hh

2ζ(2)
x2 + O(x log2(x)) for x sufficiently large,

where Hh =
∑∞

k=1
log[h(k)]

k2 .

Proof. From the well-known bound, we have Φ0(x) ≤ x2

2ζ(2) + cx log(x) for some positive
constant c and x sufficiently large.

Therefore, using Theorem 6 and Lemma 1, we have

∑
n≤x log[g(n; h)] =

∑
n≤x

∑
d|n log[h(d)]φ(n/d)

≤
∑

d≤x log[h(d)]Φ0(x/d)

≤
∑

d≤x log[h(d)]
[

x2/d2

2ζ(2)

]
+

∑
d≤x log[h(d)][cx/d log(x/d)]

≤ [ x2

2ζ(2)

∑
d≤x

log[h(d)]
d2 ] + cx log(x)

∑
d≤x

log[h(d)]
d log(d)

≤ [ x2

2ζ(2)

∑
d≤x

log[h(d)]
d2 ] + O(x log(x)

∑
d≤x

α log(d)
d log(d) )

= Hh
2ζ(2)x

2 + O(x log2(x)) .

Corollary 6. If h(x) satisfies the relationship h(n) = O(nα) for n sufficiently large and α
a fixed non-negative real number, then the following asymptotic relationship holds

∏

n≤x

g(n; h) = O(xx log(x))e
Hh

2ζ(2)x2

for x sufficiently large,

where Hh =
∑∞

k=1
log[h(k)]

k2 .
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5. The Special Case g(n)

In this section, we focus only on the expression g(n) =
∏n

j=1(j, n) and its multiplicative

counterpart f(n) = g(n)1/n. First, we give some bounds.

For positive integers x1, x2, . . ., xn, we have the well-known arithmetic-geometric mean
inequality (x1x2 · · ·xn)1/n ≤ x1+x2+···+xn

n . In terms of our function f , we have f(n) =
(∏n

j=1(j, n)
)1/n

≤
∑n

j=1(j,n)

n .

Theorem 10. The function f satisfies the inequalities

max(n1/υ(n), nτ(n)/(2n)) ≤ f(n) ≤ 27

(
log(n)

ω(n)

)ω(n)

,

where n is any positive integer, ω(n) is the number of distinct prime divisors of n, τ(n) is
the number of divisors of n, and υ(n) is the largest prime power divisor of n.

Proof. The upper bound is a direct application of the arithmetic-geometric mean and The-
orem 3.1 of Broughan [2]. For the first part of the lower bound, we first note that 1−p−a

p−1 =
pa−1

pa(p−1) > 1
pa (pa−1 + pa−2 + · · · + p + 1) ≥ a

pa . Thus, we have

f(n) =
∏

pa||n

p
1−p−a

p−1 ≥
∏

pa||n

pa/pa ≥
∏

pa||n

pa/υ(n) = n1/υ(n).

For the second part of the lower bound, note
(∏

d|n d
)2

=
(∏

d|n d
) (∏

e|n e
)

=
(∏

d|n d
) (∏

d|n
n
d

)

=
∏

d|n dn
d =

∏
d|n n = nτ(n).

So we have

f(n) =

(
n∏

j=1

(j, n)

)1/n

≥




∏

d|n

d




1/n

= nτ(n)/(2n).

Corollary 7. The function g satisfies the inequalities

n ≤ max(nn/υ(n), nτ(n)/2) ≤ g(n) ≤ 27

(
log(n)

ω(n)

)nω(n)

,

with g(n) = n if and only if n is a prime. Therefore, for all ε > 0, we have

log[g(n)] = O(n1+ε) for n sufficiently large.
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Proof. This corollary directly follows from previous theorems. Note that if n is composite,
then

∏n
j=1(j, n) > n since (n, n) = n and (j, n) > 1 for at least one j value less than n.

The Dirichlet series for log[g(n)] is given as a corollary of Theorem 7 with h(x) := x. So
we define G(s) =

∑∞
n=1

log[g(n)]
ns . Note that

∑∞
n=1

log[f(n)]
ns = G(s + 1).

Corollary 8. The Dirichlet series for G(s) converges absolutely for Re(s) > 2 and is given
by the formula

−ζ(s − 1)ζ ′(s)

ζ(s)
.

Proof. Taking h(x) := x in Theorem 7 yields G(s; h) = ζ(s−1)
ζ(s) Hh, where Hh =

∑∞
n=1

log(n)
ns =

−ζ ′(s).

The asymptotic development is similar to the general case
∑

n≤x log[g(n)]. However,
we can do a little more in the case of log[f(n)]. Along with the estimate for Φ0(x) :=∑

n≤x φ(n) = x2

2ζ(2) + O(x log(x)), we will also need the estimate Φ1(x) :=
∑

n≤x
φ(n)

n =
x

ζ(2) + O(log(x)).

Theorem 11. The following asymptotic relationships hold

∑
n≤x log[g(n)] = − ζ′(2)

2ζ(2)x
2 + O(x log2(x)) for x sufficiently large, and

∑
n≤x log[f(n)] = − ζ′(2)

ζ(2) x + O(log2(x)) for x sufficiently large.

Proof. Using Theorem 9, we have Hx =
∑∞

k=1
log(k)

k2 = −ζ ′(2). For f(n) = g(n)1/n, we note

that log[f(n)] = 1
n

∑
d|n φ(n/d) log(d) =

∑
d|n

φ(n/d)
n/d

log(d)
d .

Therefore, for x sufficiently large and some constant c, the known bounds give

∑
n≤x log[f(n)] =

∑
n≤x

∑
d|n

log(d)
d

φ(n/d)
n/d

≤
∑

d≤x
log(d)

d

[
x/d
ζ(2)

]
+

∑
d≤x

log(d)
d [c log(x/d)]

≤ [ x
ζ(2)

∑
d≤x

log(d)
d2 ] + c log(x)

∑
d≤x

1
d

= [ x
ζ(2)

∑
d≤x

log(d)
d2 ] + O(log2(x)) .
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Corollary 9. The following asymptotic relationships hold

∏
n≤x g(n) = O(xx log(x))e−

ζ′(2)
2ζ(2)x2

for x sufficiently large, and

∏
n≤x f(n) = O(xlog(x))e−

ζ′(2)
ζ(2) x for x sufficiently large.

6. Conclusion

We hope that the function g(n; h) will be a useful tool in the study of lattice points and
solutions to equations in finite fields. The author was intrigued by the fact that the ratio
∑∞

n=1
h((j,n))

ns
∑∞

n=1
h(n)
ns

is always the same as the ratio ζ(s−1)
ζ(s) . Hopefully this identity, along with the

others of this study, will be useful in the theory of the Riemann zeta function.

The function g(n; h) seems to be worthy of study, not only because of its connections with
known concepts in number theory, but also for the elegance of the formulas and identities in
which it appears.
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