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Abstract

In a classic paper, Evans, Pulham, and Sheehan computed the number of complete graphs of
size 4 for a special class of graphs called Paley Graphs. Here we consider analogous questions
for generalized Paley-type graphs.

1. Introduction

The Ramsey number R(m) is the smallest positive integer such that any graph G with R(m)
or more vertices contains a complete subgraph of size m or its complement Gc contains a
complete subgraph of size m. The only values of m for which R(m) is known are m ≤ 4. We
consider a natural extension of computing and estimating R(m). For a graph G, let km(G)
denote the number of complete graphs of size m contained in G. Let

Tm(n) := min(km(G) + km(Gc)) (1)

as G ranges over all graphs with n vertices. Note that R(m) is the smallest n for which
Tm(n) > 0. In [Erd62], Erdős conjectured that

lim
n→∞

Tm(n)

nm
=

1

2(m
2 )−1m!

. (2)

However, this is not quite correct. In [Tho97], Thomason showed that for m = 4, this limit
is no more than 1/(33 · 4!), rather than 1/(32 · 4!) as the conjecture predicts.

For a prime p ≡ 1 (mod 4), let G(p) denote the Paley graph with p vertices, indexed 0
through p − 1. A Paley graph contains an edge x ↔ y if and only if φ(x − y) = 1, where

φ(·) denotes the Legendre symbol
(

·
p

)
. This notation assumes that the prime p will be clear
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from context. For example, the Paley graph G(5) is a pentagon. The Legendre symbol is
multiplicative and φ(−1) = 1 if p ≡ 1 (mod 4). Therefore, φ(y − x) = φ(x − y). This
equation implies that our definition is symmetric in x and y, so the edges are well defined.

For primes p ≡ 3 (mod 4), φ(−1) = −1, so φ(x− y) = −φ(y − x). In this case we define
a generalized directed Paley graph. Note that since φ(−1) = −1 for every x and y, there is
exactly one directed edge, creating a type of graph called a tournament.

Paley graphs have many interesting properties. They are both self-complementary and
self-similar. Also, for the function km(G) + km(Gc) on graphs with p vertices, Paley graphs
are minimal in certain ways. For example, the Ramsey number R(4) = 18; the Paley graph
G(17) is the only graph (up to isomorphism) with 17 vertices such that k4(G) + k4(Gc) = 0.

This inspired Evans, Pulham, and Sheehan [EPS81] to compute the exact value of
k4(G(p)) + k4(G(p)c) using character sums. For m > 4, the character sums are difficult
to determine explicitly. We prove an asymptotic result for all m.

Theorem 1. For primes p ≡ 1 (mod 4) and positive integers m

lim
p→∞

km

(
G(p)

)

pm
=

1

2(m
2 )m!

.

Doubling this value to account for the complete graphs in its isomorphic complement, we
see that the conjecture of Erdős, while false for general graphs, is true for the Paley graphs.
Moreover, the conjectured bound is exactly achieved by these graphs.

For all primes p and integers |t| > 1 we define two other types of generalized Paley graphs,
Gt(p) and G′

t(p). The graph Gt(p) has an edge x ↔ y if and only if both φ(x − ty) = 1
and φ(y − tx) = 1. The graph G′

t(p) has an edge x ↔ y if and only if at least one of these
statements is true, that is φ(x − ty) = 1 or φ(y − tx) = 1. Note that Gt(p) is a subgraph of
G′

t(p).

We now define two related generalized Paley graphs.
Definition 1. For a prime p and integer t, let Gt(p) denote the graph with p vertices,
indexed 0 through p − 1, which contains an edge x ↔ y if and only if φ(x − ty) = 1 and
φ(y− tx) = 1. Similarly, let G′

t(p) denote the graph with p vertices, indexed 0 through p−1,
which contains an edge x ↔ y if either φ(x− ty) = 1 or φ(y − tx) = 1, and contains no edge
x ↔ y if neither of these statements hold true.

We prove a similar result for these generalized graphs.

Theorem 2. Let m be a positive integer and t be an integer such that t %≡ −1, 0, 1 (mod p).
Then, for primes p, and we have

lim
p→∞

km

(
Gt(p)

)
+ km

(
Gt(p)c

)

pm
=

1

m!

((
1

4

)(m
2 )

+

(
3

4

)(m
2 )

)
.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A18 3

Similarly,

lim
p→∞

km

(
G′

t(p)
)

+ km

(
G′

t(p)c
)

pm
=

1

m!

((
1

4

)(m
2 )

+

(
3

4

)(m
2 )

)
.

Remark. After this work was completed, it was brought to the author’s attention that a
paper of Graham, Chung, and Wilson, [CGW88], implies these limits because Paley graphs
are examples of quasi-random graphs. However, we stress that the proofs in this paper are
direct, and lead to stronger error terms in estimates. In other words, a careful analysis of
these proofs leads to strong bounds for the errors between the limiting values and the actual
values.

A key result in the work of Evans, Pulham and Sheehan is a formula that exactly computes
the number of complete graphs of size 4 in a Paley graph, namely, they obtain

k4

(
G(p)

)
=

p − 1

1536

(
p
(
(p − 9)2 − 4x2

))
(3)

where x is an even integer such that p = x2 + y2. It is known that for p ≡ 1 (mod 4), that x
not only exists, but is unique (up to sign). Their proof essentially follows from an evaluation
of the hypergeometric sum

3F2(t) =
φ(−1)

p2

∑

x∈Z/pZ

∑

y∈Z/pZ
φ(x)φ(y)φ(1 − x)φ(1 − y)φ(x − ty) (4)

when t = 1. One should note that while it can be shown that this is equivalent to the
definition of 3F2(t), it is not a priori the definition. Similarly, we will require the sum

2F1(t) =
φ(−1)

p

∑

x∈Z/pZ
φ(x)φ(1 − x)φ(1 − tx). (5)

In this paper we compute a graph theoretic result similar to that of Evans, Pulham, and
Sheehan which would normally be intractable without the help of the special t evaluations
of these character sums.

Theorem 3. Let p be a prime, and let t be a non-zero element of Z/pZ whose multiplicative
order is greater than 3. Let Ht(p) represent the directed graph where x → y is an edge if
and only if φ(x) = φ(x − ty) = 1, and let Ct(p) denote the number of 3-cycles in Ht(p)
(x → y → z → x). Then

Ct(p) =
p − 1
192

[
90 − 3pφ(t) + 12φ(t + t2) + p2 − 14p + 48φ(−t) + 27φ(t) + 62φ(1 − t)

+ 6φ(1 − t3) + 12φ(t − t3) + 12φ(1 − t2) + 12φ(−1) + 12φ(1 + t) + 24φ(t2 − t)
+ 6φ(t − t4) + 12φ(t − t2) + 3φ(t4 − t)p − 6pφ(1 − t) − 3φ(−t)p + p2

3F2(t3)

− 6p(1 + φ(1 − t))2F1(t2) − 3p(1 + φ(t))2F1(t3)
]
.
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Although this formula is difficult to grasp at first glance, we note that it simplifies dra-
matically for several special t. For example, we obtain formulas much like (3) in the following
cases:

Corollary 1. If t = −2, and p is a prime congruent to 5 or 7 (mod 24), then

Ct(p) =

{
p−1
192 (p2 − 6p + 4x2 + 1) if p ≡ 5 (mod 24), x2 + y2 = p, and x odd,
p−1
192 (p2 − 6p + 25) if p ≡ 7 (mod 24).

Corollary 2. If t = −1
2 , and p is a prime congruent to 7 or 13 (mod 24), then

Ct(p) =

{
p−1
192 (p2 − 6p + 25) if p ≡ 7 (mod 24),
p−1
192 (p2 + 2p − 4x2 + 1) if p ≡ 13 (mod 24), x2 + y2 = p, and x odd.

In Section 2 we state the tools that will be necessary in Section 3, where we will prove
the main theorems.

2. Preliminaries

We will need the following facts for our proofs. The deepest result we require is due to Weil.

Weil’s Theorem. ([BEW98], pg. 183) If p is a prime, and f(x) ∈ Z[x] is a polynomial
with degree n which is not congruent modulo p to cg2(x) for any integer c and polynomial
g(x) with integer coefficients, then

∣∣∣∣∣∣

∑

x∈Z/pZ
φ
(
f(x)

)
∣∣∣∣∣∣
< (n − 1)

√
p.

Remark. ¿From this point onward, we omit the summation indices with the understanding
that all sums are over Z/pZ unless indicated otherwise.

For small n, explicit evaluations of these sums are simple. Clearly, if n = 0,
∑

x

φ(c) = φ(c)p. (6)

Note that as x runs over all the elements of Z/pZ, so does ax + b if a %≡ 0 (mod p). Using
this fact, we can also compute the value for n = 1. Let q denote a non-zero, non-residue of
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Z/pZ. Then
∑

x

φ(ax + b) =
∑

y=ax+b

φ(y)

=
∑

z=q−1y

φ(qz)

= φ(q)
∑

z

φ(z)

= −
∑

y

φ(y)

= −
∑

x

φ(ax + b),

so
∑

x

φ(ax + b) = 0. (7)

Finally, we prove a formula for the case n = 2.

Proposition 1. For any prime p and polynomial f(x) = ax2 + bx + c with roots r and s is
Z/pZ,

∑

x

φ(ax2 + bx + c) =

{
(p − 1)φ(a) if r ≡ s (mod p)

−φ(a) if r %≡ s (mod p).

Proof.
∑

x

φ(ax2 + bx + c) =
∑

x

φ
(
a(x − r)(x − s)

)

= φ(a)
∑

x

φ(x)φ
(
x − (s − r)

)
.

Let t = s− r. Note that when t ≡ 0 (mod p), it is clear that
∑

x

φ(x)2 = p−1. When, t %≡ 0

(mod p),
∑

x

φ(x)φ(x − t) =
∑

tx

φ(tx)φ(t(x − 1)) =
∑

x

φ(x)φ(x − 1),

so the summation is equivalent to the summation when t ≡ 1 (mod p). Thus, this is equiv-
alent for all p − 1 non-zero values of t. Note that

∑

t

∑

x

φ
(
x(x − t)

)
=

∑

x

φ(x)
∑

t

φ(x − t)

=
∑

x

φ(x)
∑

u=x−t

φ(u)

=
∑

x

φ(x) · 0

= 0.
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However, we can also show that
∑

t

∑

x

φ
(
x(x − t)

)
=

∑

x

φ(x)2 + (p − 1)
∑

x

φ(x)φ(x − t)

= (p − 1)

(
1 +

∑

x

φ(x)φ(x − t)

)
.

Equating these two expressions, we obtain

φ(a)
∑

x

φ(x)φ(x − t) = −φ(a).

For n ≥ 3 there does not appear to be a general evaluation. However, with additional
machinery, certain evaluations are possible. A character χ is a multiplicative function that
maps the elements of (Z/pZ)∗ to the complex roots of unity. Let χ̄ denote the conjugate
character of χ, that is, χ̄(x) = 1/χ(x). By convention, we say that χ(0) = 0. The Legendre
symbol is a simple example of a character. Another simple character is ε, the trivial character,
for which ε(x) = 1 unless x ≡ 0 (mod p).

A Jacobi sum, for characters χ and ψ is

J(χ,ψ) :=
∑

x

χ(x)ψ(1 − x). (8)

Additionally, we define the normalized Jacobi sum for characters A and B
(

A

B

)
:=

B(−1)

p
J(A, B̄). (9)

Then, we define

n+1Fn

(
A0, A1, ...An

B1, ...Bn
|t
)

:=
p

p − 1

∑

χ

(
A0χ

χ

)(
A1χ

B1χ

)
· · ·

(
Anχ

Bnχ

)
χ(t), (10)

where the sum is over all χ with modulus p. Additionally, we define

n+1Fn(t) := n+1Fn

(
φ, φ, ...φ

ε, ...ε
|t
)

. (11)

Although these functions are expressed in terms of Jacobi sums, it is known that the defini-
tions in the introduction, (5) and (4), are equivalent (see [Ono04]). These objects allow us
to find a general formula in terms of 2F1 when n = 3.

Proposition 2. For any prime p and third-degree polynomial with leading coefficient a and
distinct roots q, r, s ∈ Z/pZ, we have

∑

x

φ
(
a(x − q)(x − r)(x − s)

)
= φ(−a)φ(q − s)2F1

(
r − s

q − s

)
p.
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Proof. The proof of this is straightforward:

∑

x

φ
(
a(x − q)(x − r)(x − s)

)
= φ(a)

∑

x

φ
(
x(q − s − x)(r − s − x)

)

= φ(a)φ(q − s)
∑

(q−s)x

φ(x)φ(1 − x)φ

(
1 − r − s

q − s
x

)

= φ(−a)φ(q − s)2F1

(
r − s

q − s

)
p.

3. Proof of the Theorems

Using Weil’s Theorem from the previous section, we will prove Theorem 1.

Proof of Theorem 1. The following is a proof by induction. For m = 1, k1(G(p)) = p, so the
theorem holds. Assume the theorem holds for m−1. For each prime p ≡ 1 (mod 4) we want
to write km(G(p)) as a character sum. To count the number of complete m-subgraphs, we
look at each possible set of m distinct points, and check to see if it is a complete subgraph.
Since xy is an edge if and only if φ(x − y) = 1, then assuming x %= y the equation 1+φ(x−y)

2

conveniently returns 1 if x ↔ y is an edge, and 0 otherwise. Thus, if we take the product of
this equation over all pairs selected from our m points, it will return 1 if we have a complete
subgraph, and 0 otherwise. We need only sum this product over all possible sets of m distinct
points to get km(G(p)). Therefore

km

(
G(p)

)
=

∑

a1<···<am

(
∏

0<i<j≤m

1 + φ(ai − aj)

2

)
.

We will now manipulate this equation to make it easier to evaluate. First we can isolate the
am terms into their own summation. Second, we can replace the condition that am is greater
than am−1 and simply require it to be distinct from each of the other ai. Note that this will
count each set of m vertices m times, once for each possible final term, so we must divide
by m. Then, we can separate out the terms of the product not involving am, and pull out a
21−m term. The result of all these manipulations is

km

(
G(p)

)
=

∑

a1<...<am−1

[(
∏

0<i<j<m

1 + φ(ai − aj)

2

) (
1

2m−1m

∑

am '=ai

m−1∏

k=1

(
1 + φ(am − ak)

))]
.
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Note that the beginning of this equation resembles km−1(G(p)). If we bound

∑

am '=ai

m−1∏

k=1

(
1 + φ(am − ak)

)

in terms of p and m, then we can pull it outside of the summation. Specifically, if we show
that

p − 2mm(
√

p + 2) ≤
∑

am '=ai

m−1∏

k=1

(
1 + φ(am − ak)

)
≤ p + 2mm(

√
p + 1), (12)

then

p − 2mm(
√

p + 2)

2m−1m
km−1

(
G(p)

)
≤ km

(
G(p)

)
≤

p + 2mm(
√

p + 1)

2m−1m
km−1

(
G(p)

)
,

and by the inductive hypothesis we know that

lim
p→∞

(
p − 2mm(

√
p + 2)

)
km−1

(
G(p)

)

pm2m−1m
= lim

p→∞

p − 2mm(
√

p + 2)

2m−1mp
·
km−1

(
G(p)

)

pm−1

=
1

2(m
2 )m!

.

The right hand bound evaluates to the same limit, and so

lim
p→∞

km

(
G(p)

)

pm
=

1

2(m
2 )m!

,

which proves our result.

All that remains is to prove the bound for (12). We start by multiplying out each product,
getting 2m−1 terms. The first term is 1, which we sum over the p − (m − 1) possible values
of am.

Now, consider an arbitrary term from the remaining 2m−1 terms. It is a product of
Legendre symbols of the form φ(am − ai). Since the Legendre symbol is multiplicative,
we can form a single Legendre symbol, that is, write the term as φ(f(am)) where f is a
polynomial with coefficients in Z/pZ. We know the roots of f are among the different ai

values, that f contains at least one such root, and, since all the ai are distinct, f has no
repeated roots. This means that it is not congruent (mod p) to cg(x)2 for any integer c and
polynomial g with integer coefficients. Moreover, f has degree at most m − 1 so by Weil’s
theorem, we have

−(m − 2)
√

p ≤
∑

am∈Z/pZ
φ
(
f(am)

)
≤ (m − 2)

√
p.
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Note that this sum, however, includes m − 1 terms which are not in the sum we wish to
evaluate, namely a1, . . . , am−1. Each of these terms is between −1 and 1, so removing them
changes the sum by at most m − 1. Therefore,

−m(
√

p + 1) ≤ −(m − 1)(
√

p + 1) ≤
∑

am '=ai

φ
(
f(am)

)
≤ (m − 1)(

√
p + 1) ≤ m(

√
p + 1).

This bound holds for each of the 2m−1 − 1 terms involving Legendre symbols, so

p − m + 1 − 2m−1m(
√

p + 1) ≤
∑

am '=ai

m−1∏

k=1

(
1 + φ(am − ak)

)
≤ p − m + 1 + 2m−1m(

√
p + 1),

which implies (12).

The proof of Theorem 2 is similar to the proof of Theorem 1. This time we examine
km(Gt(p)) as a character sum and use Weil’s Theorem to estimate it.

Proof of Theorem 2. We first prove that

lim
p→∞

km

(
Gt(p)

)

pm
=

1

m!

(
1

4

)(m
2 )

. (13)

First consider x and y such that x %≡ y, ty, t−1y, t2y, t−2y (mod p). There is an edge
between x and y in Gt(p) if and only if φ(x − ty) = φ(y − tx) = 1. Thus,

(1 + φ(x − ty))

2

(1 + φ(y − tx))

2
=

{
1 if x ↔ y is an edge,

0 otherwise.
(14)

As such, we define

hm(p) :=
∑

a1<...<am
ai '≡taj ,t2aj




∏

0<i,j≤m
i'=j

1 + φ(ai − taj)

2



 . (15)

This counts the number of complete subgraphs in Gt(p) that do not contain any edges where
x ≡ t−2y, t−1y, t1y, t2y (mod p). However, each x ∈ Z/pZ has at most 4 such edges, so there
are at most 2p of these edges total since each edge is counted twice. Each such edge is a
member of

(
p−2
m−2

)
subgraphs of size m, and so we are missing at most 2p

(
p−2
m−2

)
complete

subgraphs of size m. Thus

hm(p) ≤ km

(
Gt(p)

)
≤ hm(p) + 2p

(
p − 2

m − 2

)
.
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We divide this equation by pm and take the limit as p tends to infinity. The 2p
(

p−2
m−2

)
term

has degree pm−1, so it vanishes, making the left hand side and right hand side limits equal.
Therefore

lim
p→∞

km

(
Gt(p)

)

pm
= lim

p→∞

hm(p)

pm
,

and all that remains is to evaluate (15). In particular, we will show that

lim
p→∞

hm(p)

pm
=

1

4(m
2 )m!

.

This will be proved by induction. If m = 1, it is clearly true. Otherwise, assume the
claim is true for m − 1. Performing the same manipulations as in the proof of Theorem 1,
we get

hm(p) =
∑

a1<...<am

ai !≡taj ,t2aj








∏

0<i,j<m
i !=j

1 + φ(ai − taj)
2





×




1

4m−1m

∑

am !≡teai
−2≤e≤2

m−1∏

k=1

(
1 + φ(am − tak)

)(
1 + φ(ak − tam)

)






 .

So, if we show that
∣∣∣∣∣∣∣

∑

am '≡teai
−2≤e≤2

m−1∏

k=1

(
1 + φ(am − tak)

)(
1 + φ(ak − tam)

)
− p

∣∣∣∣∣∣∣
≤ 4m−1(2m

√
p + 5m), (16)

then

p − 4m−1(2m
√

p + 5m)

4m−1m
hm−1(p) ≤ hm(p) ≤

p + 4m−1(2m
√

p + 5m)

4m−1m
hm−1(p).

Applying the inductive hypothesis, we obtain

lim
p→∞

(
p − 4m−1(2m

√
p + 5m)

)
hm−1(p)

4m−1mpm
= lim

p→∞

p − 4m−1(2m
√

p + 5m)

4m−1mp
· hm−1(p)

pm−1

=
1

4(m
2 )m!

.

The right hand side limit evaluates to the same value and thus

lim
p→∞

hm(p)

pm
=

1

4(m
2 )m!

. (17)
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All that remains is to prove the bounds for (16). We multiply out the product, getting
4m−1 terms. The first term is simply 1. There are at most p choices for am, and at least
p − 5m, so summing it over all of them returns a value between p − 5m and p.

Now, consider an arbitrary term out of the remaining 4m−1 − 1 terms. It is a product
of Legendre symbols of the form φ(am − tai) and φ(ai − tam). Since the Legendre symbol
is multiplicative, we can form a single Legendre symbol, that is, write the term as φ(f(am))
where f is a polynomial with coefficients in Z/pZ. We know f has at least one root, and
we know that each of the roots of f is either of the form tai or t−1ai for some i. Also, since
t %= ±1, tai %= t−1ai, so if f had a repeated root r, we could write r = tai = t−1aj. However,
this implies that aj = t2ai and our summation requires that we choose ai and aj such that
this is false. Thus, f has no repeated roots, and this means that it is not congruent modulo
p to cg(x)2 for any integer c and polynomial g with integer coefficients. Moreover, f has
degree at most 2m − 2, so by Weil’s theorem we have

∣∣∣∣∣
∑

am

φ
(
f(am)

)∣∣∣∣∣ ≤ (2m − 3)
√

p.

Note that the above sum includes at most 5m terms that the summations in (16) excludes.
Each of these terms is between −1 and 1, so removing them changes the sum by at most
5m. Therefore,

∣∣∣∣∣∣∣

∑

am '≡teai
−2≤e≤2

φ
(
f(am)

)
∣∣∣∣∣∣∣
≤ 2m

√
p + 5m.

This bound holds for each of the 4m−1 − 1 terms involving Legendre symbols, so (16) holds.

The other three calculations of lim
p→∞

km(·)/pm are analogous. For x and y where x %≡
t−2y, t−1y, y, ty, t2y, we replace (14) with

3 − φ(x − ty) − φ(y − tx) − φ(x − ty)φ(y − tx)

4
for Gt(p)c;

3 + φ(x − ty) + φ(y − tx) − φ(x − ty)φ(y − tx)

4
for G′

t(p);

(1 − φ(x − ty))

2

(1 − φ(y − tx))

2
for G′

t(p)c.

The calculations follow as above.

We now prove Theorem 3, the result expressing Ct(p) in terms of hypergeometric func-
tions.

Proof of Theorem 3. The first step is to once again write our expression for Ct(p) as a char-
acter sum. No cycle can contain 0 because φ(0) = 0, and so 0 has no outgoing edges. So we
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look at each set of three distinct, non-zero points x, y, and z, and check for a cycle. Also,
we may assume that x %≡ ty, y %≡ tz, and z %≡ tx, because if one of these is true, there is no
cycle. Note that any such group of x, y, z the expression

(
1 + φ (x)

)(
1 + φ (y)

)(
1 + φ (z)

)(
1 + φ (x − ty)

)(
1 + φ (y − tz)

)(
1 + φ (z − tx)

)

returns 26 if x, y, and z form a cycle, and 0 otherwise. If we sum this over each possible set,
we count each cycle three times. Thus

3 · 26 · Ct(p) =
∑

z '≡0

∑

y '≡0,z,
tz

∑

x '≡0,y,
z,ty,t−1z

((
1 + φ (x)

)(
1 + φ (y)

)(
1 + φ (z)

)

×
(
1 + φ (x − ty)

)(
1 + φ (y − zt)

)(
1 + φ (z − tx)

))
.

Since z %≡ 0, xz runs over Z/pZ as x does, and yz runs over Z/pZ as y does, so we
can replace x by xz and y by yz. We can pull the (1 + φ(z)) term to the very front of the
summation. Note that φ(z) %= 0, and when φ(z) = −1 and 1 + φ(z) = 0, the whole inner
term is multiplied by 0, so its accuracy is irrelevant. Thus, assuming that φ(z) = 1 is always
true within the inner summations does not change the value of the expression as a whole.
Using this fact, we can entirely rid the inner summation of z and write

3 · 26 · Ct(p) = c
∑

z '≡0

(
1 + φ (z)

)
= (p − 1)c.

where

c =
∑

y '≡0,1,
t

∑

x'≡0,1,
t−1,y,ty

(
1 + φ (x)

)(
1 + φ (y)

)(
1 + φ (y − t)

)(
1 + φ (1 − tx)

)(
1 + φ (x − ty)

)
.
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The 5 values x does not take on are all distinct unless y = t−1 or y = t−2. Thus

c =
∑

y !≡0,1,
t,t−1,t−2

∑

x

(
1 + φ (x)

)(
1 + φ (y)

)(
1 + φ (y − t)

)(
1 + φ (1 − tx)

)(
1 + φ (x − ty)

)

+
∑

x!≡0,1
t−1

(
1 + φ (x)

)(
1 + φ (t)

)(
1 + φ (1 − tx)

)(
1 + φ

(
t − t3

) )(
1 + φ (x − 1)

)

+
∑

x!≡0,1
t−1,t−2

2
(
1 + φ (x)

)(
1 + φ (1 − tx)

)(
1 + φ

(
1 − t3

) )(
1 + φ

(
x − t−1

) )

−
∑

y !≡0,t−2

t−1,1,t

2
(
1 + φ (y)

)(
1 + φ (y − t)

)(
1 + φ (−ty)

)

−
∑

y !≡0,t−2

t−1,1,t

2
(
1 + φ (y)

)(
1 + φ (y − t)

)(
1 + φ (1 − t)

)(
1 + φ (1 − ty)

)

−
∑

y !≡0,t−2

t−1,1,t

(
1 + φ (y)

)(
1 + φ (y − t)

)(
1 + φ (t)

)(
1 + φ

(
t−1 − ty

) )

−
∑

y !≡0,t−2

t−1,1,t

(
1 + φ (y)

)2(
1 + φ (y − t)

)(
1 + φ (1 − ty)

)(
1 + φ (y − ty)

)

−
∑

y !≡0,t−2

t−1,1,t

(
1 + φ (y)

)(
1 + φ (y − t)

)(
1 + φ (ty)

)(
1 + φ

(
1 − t2y

) )

= S0 + S1 + S2 − S3 − S4 − S5 − S6 − S7,

where Si corresponds to the term in the ith row. Note that since the order of t is greater
than three, t %≡ 1, t−1, t−2 so there is no double counting.

Now we wish to evaluate these 8 terms. Key to the simplification will be the following
trick: if we have an expression of the form (1 + φ(α)) · (. . . ), where we know α %≡ 0, then
we may assume throughout the (. . . ) that φ(α) = 1, because either this will be true, or
the entire expression will be multiplied by 0 so it is irrelevant. We will also make use of
equations (6) and (7), as well as propositions and outlined in the preliminaries. With
these tools it is not difficult to reduce the expressions to closed forms in terms of 2F1 and

3F2 values. From this point on, all equations have been verified as accurate for small primes
(less than 200) by direct computer calculations in order to prevent arithmetic errors during
the manipulations.

For S0, we pull the two terms involving just y out of the inner summation, and evaluate
it. Then we switch the order of summation and solve the inner one. Thus
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S0 =
∑

y !≡0,1,
t,t−1,t−2

∑

x

(
1 + φ (x)

)(
1 + φ (y)

)(
1 + φ (y − t)

)(
1 + φ (1 − tx)

)(
1 + φ (x − ty)

)

=
∑

y !≡0,t−2

t−1,1,t

(
1 + φ (y)

)(
1 + φ (y − t)

)(
p − 1 − 2φ(−t) +

∑

x

φ(x)φ(1 − tx)φ(x − ty)
)

=
(
p − 1 − 2φ(−t)

)(
p − 8 − 2φ(t) − 2φ(1 − t) − 2φ(1 − t3) − φ(−t) − φ(t − t3) − φ(1 − t2)

)

+ p2
3F2(t3) + 3 + φ(t4 − t)p + φ(−t) + 2φ(−1) + 2φ(t3 − 1)

− p
(
1 + φ (t)

)(
1 + φ

(
1 − t2

) )
2F1(t) − 2p

(
1 + φ (1 − t)

)
2F1(t2)

− p
(
1 + φ (t)

)
2F1(t3).

To evaluate S1, we pull the terms independent of x to the front of the summation. Then
since the expression is multiplied by 1 + φ(t), we may use the trick mentioned above to
assume that φ(t) = 1 throughout the rest of the expression. Next, we take the summation
over all x and subtract out the specific cases 0, 1, and t−1. Then we multiply out the inside
of the summation and evaluate it term by term. This shows that

S1 =
(
1 + φ (t)

)(
1 + φ

(
t − t3

) ) ∑

x!≡0
t−1,1

(
1 + φ (x)

)(
1 + φ (1 − tx)

)(
1 + φ (x − 1)

)

=
(
1 + φ (t)

)(
1 + φ

(
1 − t2

) )(
p + p2F1(t) − 2φ(−1) − 4φ(1 − t) − 2φ(−t) − 7

)
.

The value of S2 is computed by noting that after pulling out a φ(−t) from the third term
of the summand, it is similar to the second term and so we can pull a (1+φ(−t)) to the front
using the trick above, and evaluate it in a fashion similar to S1. The resulting expression
can be simplified further using the trick mentioned above. Hence

S2 = 2
(
1 + φ

(
1 − t3

) ) ∑

x!≡0,t−2

t−1,1

(
1 + φ (x)

)(
1 + φ (1 − tx)

)(
1 + φ(−t)φ(1 − tx)

)

= 2
(
1 + φ

(
1 − t3

) )(
1 + φ (−t)

) ∑

x!≡0,t−2

t−1,1

(
1 + φ (x)

)(
1 + φ (1 − tx)

)

= 2
(
1 + φ

(
1 − t3

) )(
1 + φ (−t)

)(
p − 8 − 4φ(1 − t) − φ(−1)

)
.

We can use a similar trick in the evaluation of S3. This shows that

S3 =
∑

y !≡0,t−2

t−1,1,t

2
(
1 + φ (y)

)(
1 + φ (y − t)

)(
1 + φ (−ty)

)

= 2
(
1 + φ (−t)

)(
p − 9 − 2φ(−1) − 2φ(1 − t3) − 2φ(1 − t) − φ(t2 − 1) − φ(1 − t2)

)
.
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The evaluation of S4 involves the same manipulations as in S1. These result in

S4 = 2
(
1 + φ (1 − t)

) ∑

y !≡0,t−2

t−1,1,t

(
1 + φ (y)

)(
1 + φ (y − t)

)(
1 + φ (1 − ty)

)

= 2
(
1 + φ (1 − t)

) (
p + p2F1(t2) − 15 − 6φ(−t) − 2φ(t) − 2φ(1 + t + t2)

−2φ(−t − t2 − t3) − 2φ(1 + t) − 2φ(t + t2)
)
.

Likewise, we obtain

S5 =
(
1 + φ (t)

) ∑

y !≡0,t−2

t−1,1,t

(
1 + φ (y)

)(
1 + φ (y − t)

)(
1 + φ

(
1 − t2y

) )

=
(
1 + φ (t)

) (
p + p2F1(t3) − 11 − 4φ(−1) − 4φ(1 − t3)

− 4φ(1 − t) − 4φ(1 + t) − 4φ(1 − t2)
)
.

To evaluate S6, we simply pull terms to the front and notice a similarity to a previous term.
We have

S6 =
∑

y !≡0,t−2

t−1,1,t

(
1 + φ (y)

)(
1 + φ (y − t)

)(
1 + φ (y)

)(
1 + φ (1 − ty)

)(
1 + φ(y)φ(1 − t)

)

= 2
(
1 + φ (1 − t)

) ∑

y !≡0,t−2

t−1,1,t

(
1 + φ (y)

)(
1 + φ (y − t)

)(
1 + φ (1 − ty)

)

= S4.

Similarly, we have

S7 =
(
1 + φ (t)

) ∑

y !≡0,t−2

t−1,1,t

(
1 + φ (y)

)(
1 + φ (y − t)

)(
1 + φ

(
1 − t2y

) )

= S5.

Adding this all up, we get

Ct(p) =
(p − 1)

192

[
90 − 3pφ(t) + 12φ(t + t2) + p2 − 14p + 48φ(−t) + 27φ(t) + 62φ(1 − t)

+ 6φ(1 − t3) + 12φ(t − t3) + 12φ(1 − t2) + 12φ(−1) + 12φ(1 + t) + 24φ(t2 − t)
+ 6φ(t − t4) + 12φ(t − t2) + 3φ(t4 − t)p − 6pφ(1 − t) − 3φ(−t)p + p2

3F2(t3)

− 6p(1 + φ(1 − t))2F1(t2) − 3p(1 + φ(t))2F1(t3)
]
,

and this is the desired formula.

Proof of Corollaries 1 and 2. We begin by stating two well known facts about quadratic
residues. First, φ(2) is 1 when p ≡ 1 or 7 (mod 8) and −1 when p ≡ 3 or 5 (mod 8).
Second, φ(3) is 1 when p = 1 or 11 (mod 12) and is −1 when p ≡ 5 or 7 (mod 12). With
these it is simple to show that if p ≡ 5 or 7 (mod 24) and t = −2 or p ≡ 7 or 13 (mod 24)
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and t = −1/2, then φ(t) = φ(1 − t) = −1. When these two facts hold, Theorem 3 simplifies
to

Ct(p) =
p − 1
192

[
p2 + p2

3F2(t3) − 5p + 3pφ(−1)
(
1 + φ

(
1 + t + t2

))
+ 13 − 12φ(−1)

]
.

The claims follow from the fact that (see [Ono04], pg. 192) for p %= 2, 7 we have

3F2(−8) =

{
−1

p if p ≡ 3 (mod 4),
4x2−p

p2 if p ≡ 1 (mod 4), x2 + y2 = p, and x odd,

and that for p %= 2, 3 we have

3F2

(
−1

8

)
=

{
−φ(2)

p if p ≡ 3 (mod 4),
φ(2)(4x2−p)

p2 if p ≡ 1 (mod 4), x2 + y2 = p, and x odd.

Note that we cannot apply these facts in the single case p = 7 in Corollary 1. However, it is
simple to check by hand that the formula still holds in this case.
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