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Abstract

Bill Sands has conjectured that for no integer n ≥ 3 does there exist a vector of n integers
whose dot products with all permutations of (1, . . . , n) form a complete residue system mod
n!. In this paper we verify this conjecture when n + 1 is not prime, n = 4, and n = 6. We
also suggest a generalization of the problem.

1. Introduction

In the 2001 International Mathematical Olympiad ([4, 1], or p. 118 of [3]), the following was
posed as Problem 4. We have adapted the notation slightly.

Let n be an odd integer greater than 1, and let a1, a2, . . . , an be given integers.
For each of the n! permutations b = (b1, b2, . . . , bn) of 1, 2, . . . , n, let

T (b) =
n∑

i=1

aibi.

Prove that there are two permutations b and b′, b "= b′, such that n! is a divisor
of T (b) − T (b′).

It will be convenient for our purposes to consider permutations of 0, 1, . . . , n− 1 rather than
1, 2, . . . , n; this makes no fundamental difference to the problem.

This problem was proposed by Bill Sands, who conjectures ([3], p. 143) that the result
holds for all integers n > 2. It is clearly false for n = 1 and n = 2, with a1 = 0 and
(a1, a2) = (0, 1), respectively, providing counterexamples.

1The author’s work was done while holding a NSERC Undergraduate Research Fellowship in 2003 and
was supported by NSERC Discovery Grant #8306.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A17 2

Our main result addresses a generalization of the above problem, verifying Sands’s con-
jecture for many more n > 2.

Theorem 1 Let n be a positive integer such that n + 1 is not prime, and let a1, a2, . . . , an

be integers. There exist distinct permutations b and b′ of 0, 1, . . . , n − 1 for which

n∑

i=1

aibi ≡
n∑

i=1

aib
′
i (mod n!).

In particular, Theorem 1 applies when n > 2 is odd, and so the IMO problem follows as
a special case of this theorem.

We will call a vector a = (a1, . . . , an) of integers nice (in the sense of “showing fine
discrimination”) if there do not exist such permutations b "= b′, i.e. if

{a · b | b a permutation of {0, . . . , n − 1}}

is a complete set of residues modulo n!. Thus Theorem 1 asserts that there exist no nice
vectors of length n, for n + 1 not prime.

In the next section, we present some preliminaries. We then present a proof of Theorem
1, followed by independent proofs that there are no nice vectors for the cases n = 4 and
n = 6, which are the two smallest cases not covered by Theorem 1. Finally we comment on
some open problems.

2. Preliminaries

Any nonzero rational q can be uniquely written as

q = ±ta1
1 ta2

2 . . . tak
k ,

where t1, t2, . . . , tk are distinct primes and each ai is a nonzero integer. For a prime ti, we
define ordti(q), the order of ti in q, to be the exponent ai of ti in the above expression, or
0 if ti does not appear. We also set ordt(0) = ∞ for any prime t, and will adopt the usual
arithmetical conventions regarding ∞, in particular: ∞ + ∞ = ∞ + n = ∞ and n < ∞ for
all positive integers n. Then the following lemma is easy to prove.

Lemma 1 For any prime t and rationals q and r,

(a) ordt(q ± r) ≥ min(ordt(q), ordt(r)), and equality holds if ordt(q) "= ordt(r);

(b) ordt(qr) = ordt(q) + ordt(r);
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The Bernoulli numbers B0, B1, B2, . . . (e.g., see §6.5 of [2]) are rational numbers defined
by the recurrence

B0 = 1,
k−1∑

i=0

(
k

i

)
Bi = 0 for k ≥ 2.

So B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, etc. It is known (e.g., page 301 of [2]) that
for t prime,

ordt(Bt−1) = −1, ordt(Bi) ≥ 0 for all i < t − 1. (1)

One of the most familiar properties of the Bernoulli numbers is that they satisfy

x−1∑

i=0

it−1 =
1

t

t−1∑

j=0

Bj

(
t

j

)
xt−j (2)

for all positive integers t. In particular, this demonstrates that the function

St(x) =
x−1∑

i=0

it =
1

t + 1

t∑

j=0

Bj

(
t + 1

j

)
xt+1−j

is a polynomial in x of degree t + 1 for each t ≥ 0.

Write [xj]P (x) to denote the coefficient of xj in the polynomial P (x).

Lemma 2 For any prime t and any integer j ≥ 0,

ordt([x
j]St−1(x)) ≥ −1,

and
ordt([x

j]Sk−1(x)) ≥ 0

for all integers k < t.

Proof. In case j = 0, it suffices to notice that [x0]St−1(x) is the constant term of St−1(x) and
is thus 0, so ordt([xj]St−1(x)) = ∞. So let j > 0 henceforth.

Since t is prime, t |
(

t
j

)
for 1 ≤ j ≤ t− 1. Hence, by (1) and Lemma 1(b), for any integer

j ∈ [2, t − 1],

ordt([x
j]St−1(x)) = ordt

(
1

t
Bt−j

(
t

t − j

))
≥ −1 + 0 + 1 = 0;

also

ordt([x]St−1(x)) = ordt

(
1

t
Bt−1

(
t

t − 1

))
= ordt(Bt−1) = −1

and

ordt([x
t]St−1(x)) = ordt

(
1

t
B0

(
t

0

))
= ordt(

1

t
) = −1.
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Also, for each integer k < t and each 1 ≤ j ≤ k, again by (1) and Lemma 1(b),

ordt([x
j]Sk−1(x)) = ordt

(
1

k
Bk−j

(
k

k − j

))
= ordt(Bk−j) ≥ 0.

!

For positive integers m and t, define Dm,t to be the set of all t-tuples of distinct integers
from 0, 1, . . . , m − 1. Let q = (q1, q2, . . . , qt) be a t-tuple of positive integers, and define

sq(m) =
∑

b∈Dm,t

t∏

i=1

bqi
i ,

where we write b = (b1, b2, . . . , bt). Note that if m < t, then the sum is empty and sq(m) = 0.

Lemma 3 For each fixed q, sq(m) is a polynomial in m, with (m − k) as a factor for each
k = 0, 1, . . . , t − 1.

We present two proofs of Lemma 3.

First proof. We will expand the sum sq(m) with a general form of the inclusion-exclusion
principle. Consider the statements hj = hk for each 1 ≤ j < k ≤ t. Call the set of all such
statements P . The sum can then be written as

sq(m) =
∑

P ′⊆P

(−1)|P
′|

∑

h|=P ′

t∏

i=1

hqi
i ,

where, for any P ′ ⊆ P , h |= P ′ means that the sum ranges over all t-tuples h = (h1, h2, . . . , ht)
of integers from [0, m − 1] for which every member of P ′ is true. Now, to each such subset
P ′ there corresponds a graph G on {1, 2, . . . , t} defined as follows: the edge {j, k} is in G if
and only if the statement hj = hk is in P ′. Then for any j and k, hj and hk are forced to
be equal in the inner sum if and only if vertices j and k are in the same component of G.
Let CG,1, CG,2, . . . , CG,sG denote the components of G, and let Qi denote the sum

∑
j∈CG,i

qj.

Then sq(m) can be rewritten

sq(m) =
∑

G

(−1)e(G)
∑

h

sG∏

i=1

hQi
i ,

where, for each G, h ranges over all sG-tuples of integers from [0, m− 1], and where e(G) is
the number of edges of G. Now, the term inside the rightmost sum is a product of powers
of independent variables, so we can switch the sum and the product, obtaining

sq(m) =
∑

G

(−1)e(G)
sG∏

i=1

m−1∑

k=0

kQi =
∑

G

(−1)e(G)
sG∏

i=1

SQi(m). (3)
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But SQi(m) is a polynomial in m. Furthermore, sG ≤ |G| = t, and the number of graphs

G is at most 2|P | = 2(t
2), both bounded for fixed q. So, since sq(m) is a sum of products of

polynomials in m, we conclude that it can also be expressed as a polynomial in m.

Since sq(m) = 0 when m < t, as a polynomial sq(m) must have the factor
m(m − 1) · · · (m − t + 1). !

Second proof. We will show inductively on t that sq(m) can be expressed as a polynomial in
m. When t = 1, sq(m) = Sq1(m), which is a polynomial in m.

Suppose t > 1. Let q′ = (q1, q2, . . . , qt−1), and for each 1 ≤ i ≤ t − 1, let qi =
(q1, q2, . . . , qi−1, qi + qt, qi+1, . . . , qt−1). Then we can write

sq(m) =

(
m−1∑

i=0

iqt

)
sq′(m) −

t−1∑

i=1

sqi(m) = Sqt(m)sq′(m) −
t−1∑

i=1

sqi(m).

This equation holds even if m < t. Sqt(m) is a polynomial in m, and inductively sq′(m) and
sqi(m) for each i are polynomials in m. Thus so is sq(m).

Again sq(m) = 0 when 0 ≤ m < t, so sq(m) must have the given factors. !

3. Proof of Theorem 1

Let n > 2 be an integer with n+1 not prime. Towards a contradiction, let a = (a1, a2, . . . , an)
be a nice vector. Then as b = (b1, . . . , bn) ranges over all permutations of 0, 1, . . . , n− 1 (i.e.
over the elements of Dn,n),

T (b) =
n∑

i=1

aibi

takes on a value congruent to each of the integers 0, 1, . . . , n! − 1 at most once. Since
|Dn,n| = n!, T (b) must take on a value congruent to each of 0, 1, . . . , n! − 1 exactly once.

Our condition on n guarantees that we may choose a prime p < n for which n ≡ −1
(mod p). Then T (b)p−1 is congruent to each of 0p−1, 1p−1, . . . , (n!−1)p−1 mod n! as b ranges
over the elements of Dn,n. So

L :=
∑

b∈Dn,n

(
n∑

i=1

aibi

)p−1

must be congruent modulo n! to

R :=
n!−1∑

i=0

ip−1 = Sp−1(n!).
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By the multinomial theorem,

L =
∑

b∈Dn,n

∑

q

(
p − 1

q1 q2 · · · qn

) n∏

j=1

(ajbj)
qj

=
∑

b∈Dn,n

∑

q

(
p − 1

q1 q2 · · · qn

) n∏

j=1

a
qj

j

n∏

j=1

b
qj

j

=
∑

q

(
p − 1

q1 q2 · · · qn

) (
n∏

j=1

a
qj

j

)
∑

b∈Dn,n

n∏

j=1

b
qj

j .

as q ranges over every n-tuple of non-negative integers (q1, q2, . . . , qn) satisfying
∑n

i=1 qi =
p − 1.

For any such q, let tq be the number of its components which are nonzero. For any
given permutation c = (c1, c2, . . . , cn) of the integers 0, 1, . . . , n − 1, consider the set of all
permutations b = (b1, b2, . . . , bn) such that bi = ci for all i such that qi is nonzero. There will
be (n − tq)! such permutations b, and for each of these permutations the product

∏n
j=1 b

qj

j

will take the same value. Therefore, we can write

L =
∑

q

(
p − 1

q1 q2 · · · qn

) (
n∏

j=1

a
qj

j

)
(n − tq)!

∑

b∈Dn,tq

tq∏

j=1

b
q′j
j

=
∑

q

(
p − 1

q1 q2 · · · qn

) (
n∏

j=1

a
qj

j

)
(n − tq)!sq′(n).

where q′ = (q′1, q
′
2, . . . , q

′
tq) is obtained from q by deleting all of the zero components. Note

that
∑tq

i=1 q′i =
∑n

i=1 qi = p − 1.

By (3), for any integer m, sq′(m) can be expressed as a sum of products of the form
Si1(m) . . . Sik(m), with

∑k
j=1 ij = p − 1. In each such product, no ij > p − 1, and at most

one ij = p−1. Thus, by Lemma 2, the order of p in the coefficients of each Si is at least 0, with
one possible exception, where it may be −1. So if S(x) is any of these products above, then for
any integer a, ordp([xa]S(x)) ≥ −1 by Lemma 1(b), and consequently ordp([xa]sq′(x)) ≥ −1
by Lemma 1(a). Since this holds for any q′, we can choose a positive integer h such that for
any q′, hsq′(x) has integer coefficients, and that p2 ! h; we can further require that p! | h, so
that in particular ordp(h) = 1.

By Lemma 3, we may define the polynomial

s′q′(m) =
sq′(m)

m(m − 1) · · · (m − tq + 1)

for any tq-tuple q′ of positive integers. We then set

σ =
∑

q

(
p − 1

q1 q2 · · · qn

) (
n∏

j=1

a
qj

j

)
hs′q′(n), , (4)
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where the sum ranges over all n-tuples q = (q1, . . . , qn) with sum p− 1, so that L = σ ·n!/h.
Now,

hs′q′(p − 1) =
hsq′(p − 1)

(p − 1)(p − 2) . . . (p − tq)

= p · sq′(p − 1) ·
(

h

p(p − 1)(p − 2) . . . (p − tq)

)
.

Since the second and third factors of the last expression are both integers (in the latter case,
by choice of h), we see that p | hs′q′(p− 1). But hsq′ is a polynomial with integer coefficients
by our choice of h, so recalling the definition of s′q′ , hs′q′ must also be a polynomial with
integer coefficients. Consequently, the congruence class of hs′q′(m) modulo p depends only
on the congruence class of m mod p. In particular, since p | hs′q′(p − 1) and n ≡ −1 (mod
p), p | hs′q′(n). This holds for arbitrary q′, which means that p divides each term under the
summation in (4), so p | σ, that is, there is an integer f for which σ = pf . Then L = n!pf/h.

We now turn our attention to R. From (2), x is a factor of St(x) and St(x)/x is a
polynomial. Letting S ′

p−1(m) = Sp−1(m)/m, we have by (2) that

S ′
p−1(n!) =

Sp−1(n!)

n!
=

1

n!p

p−1∑

j=0

Bj

(
p

j

)
(n!)p−j

=
(n!)p−1

p
+

p−2∑

j=1

1

p

(
p

j

)
Bj(n!)p−1−j + Bp−1.

But note that p | n! (since p < n), and by (1) ordp(Bj) ≥ 0 for j < p − 1, ordp(Bp−1) =
−1, thus ordp(S ′

p−1(n!)) = −1 by Lemma 1(a). Because ordp(h) = 1 we then have that
ordp(hS ′

p−1(n!)) = 0 by Lemma 1(b). Therefore we can write

R = Sp−1(n!) =
n!

h
· hS ′

p−1(n!) =
n!

h
· k

for rational k such that ordp(k) = 0.

Finally, because we have assumed L and R to be congruent modulo n!, we must have
L − R = n!d for some integer d. However, hd = h(L − R)/n! = pf − k, so k = pf − hd. In
particular, k is integral. But p | h, while p ! k, a contradiction. This completes the proof. !

4. Two other cases

The following lemmas will be convenient to reduce the number of cases in the treatment of
other values of n.

Lemma 4 Suppose that a = (a1, . . . , an) is nice. Then:
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(a) any rearrangement of a is nice;

(b) for any integer k, a + k = (a1 + k, . . . , an + k) is nice; and

(c) for any integer k with (k, n!) = 1, ka = (ka1, . . . , kan) is nice.

Proof. Part (a) is easy to prove. For part (b), we have

n∑

i=1

(ai + k)bi =
n∑

i=1

aibi +
n∑

i=1

kbi =
n∑

i=1

aibi +
1

2
n(n + 1)k.

The map φ(x) = x + 1
2n(n + 1)k is a bijection on the integers mod n!, so this expression

takes each value mod n! exactly once. This proves part (b). Similarly, when (k, n!) = 1,

n∑

i=1

(kai)bi = k
n∑

i=1

aibi.

As φ′(x) = kx is a bijection on the integers mod n!, this takes on every value mod n! exactly
once, proving part (c). !

Recall that in the last section, we defined

T (b) =
n∑

i=1

aibi

where b = (b1, . . . , bn) is a permutation of 0, . . . , n − 1.

Lemma 5 Let a = (a1, . . . , an) be nice.

(a) Let m | n!. As b varies over all permutations of 0, . . . , n − 1, T (b) takes a value in
each congruence class mod m exactly n!/m times.

(b) If n is even, then
∑

ai is odd.

Proof. Part (a) follows easily from the observations that, modulo n!, T (a) will be congruent
to each integer [0, n! − 1] exactly once, and that each congruence class mod m is a union of
n!/m classes mod n!.

As for part (b), let Sa =
∑

T (b) as b ranges over all permutations of 0, . . . , n−1. Then,
modulo n!,

Sa ≡
n!−1∑

i=0

i =
n!(n! − 1)

2
≡ n!

2
.

However, for any given integer 0 ≤ k ≤ n − 1 and any index 1 ≤ i ≤ n, bi = k holds of just
(n−1)! different permutations b. So if we consider the expansions of the n! summands T (b),
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we see that ai occurs multiplied by k in exactly (n− 1)! of the summands, corresponding to
those permutations b such that bi = k. Hence, Sa can also be written (mod n!) as

Sa =
n∑

i=1

ai · (n − 1)!
n−1∑

k=0

k =
(n − 1)!n(n − 1)

2

n∑

i=1

ai =
n!(n − 1)

2

n∑

i=1

ai.

So n!/2 ≡ n!/2
∑

ai (mod n!), and thus
∑

ai must be odd. !

In the upcoming proofs, congruence of vectors is to be interpreted componentwise. That
is,

(a1, . . . , an) ≡ (b1, . . . , bn) (mod t)

if and only if ai ≡ bi (mod t) for all i.

We now handle the case n = 4, for which Sands also had a proof ([3], p. 143).

Theorem 2 There exist no nice vectors of length n = 4.

Proof. Suppose that a = (a1, a2, a3, a4) were nice. By Lemma 5(b), the sum of the compo-
nents of a is odd, so the number of odd components of a is either 1 or 3. If it is 1, then
(a1 + 1, . . . , a4 + 1) is a solution with three odd components by Lemma 4(b). So we may
assume that a has three odd components. By Lemma 4(a), we can assume without loss of
generality that a ≡ (0, 1, 1, 1) mod 2.

Go on to consider a mod 8. Of the three odd components of a, either two are congruent
mod 8 or not. Suppose two of the components of a are congruent mod 8, and, without
loss of generality, that these are a2 and a3. Then the permutations b = (1, 0, 3, 2) and
b′ = (1, 3, 0, 2) achieve

T (b) − T (b′) =
4∑

i=1

aibi −
4∑

i=1

aib
′
i = 3(a3 − a2).

Since 8 | (a3 − a2), it follows that T (b) ≡ T (b′) (mod 24), which contradicts that a is nice.

So we can assume that all of the odd components of a are distinct mod 8. Using Lemma 4
to multiply by an odd integer, and rearranging if necessary, it suffices to consider a congruent
to (0, 1, 5, 3) mod 8.

So assume a ≡ (0, 1, 5, 3) (mod 8). In this case, we count the permutations b of 0, 1, 2, 3
for which T (b) ≡ 2 (mod 8). Examining the 24 cases, we find that the only such permu-
tations are (2, 0, 3, 1) and (2, 1, 0, 3); since there are fewer than three of these, this case is
impossible, by Lemma 5(a). This completes the proof. !

Finally, we examine the case n = 6.

Theorem 3 There exist no nice vectors of length n = 6.
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Proof. Suppose that a = (a1, · · · , a6) were nice. By Lemma 5(b), we know that
∑

ai is
odd. By Lemma 4, we may assume without loss of generality that a is congruent to either
(0, 1, 1, 1, 1, 1) or (0, 0, 0, 1, 1, 1) mod 2 (analogously to the case n = 4).

Now, consider a mod 4. If a is congruent to (0, 1, 1, 1, 1, 1) mod 2, then by Lemma 4, we
can assume that the even element of a is congruent to 0 mod 4 by adding 2 to a if necessary;
also, by possibly multiplying by −1 we can assume that a has more elements congruent to
1 than to 3 mod 4. We then need to consider only the cases in which a is congruent to

(0, 1, 1, 1, 1, 1), (0, 1, 1, 1, 1, 3), and (0, 1, 1, 1, 3, 3) mod 4.

If a is congruent to (0, 0, 0, 1, 1, 1) mod 2, then we can assume that there there are more
elements of a congruent to 0 mod 4 than to 2, and more congruent to 1 mod 4 than to 3.
Furthermore, if a = (0, 0, 2, 1, 1, 1), the nice vector −a+1 will be congruent to (0, 0, 0, 1, 1, 3)
mod 4. So we must also consider the cases in which a is congruent to

(0, 0, 0, 1, 1, 1), (0, 0, 0, 1, 1, 3), and (0, 0, 2, 1, 1, 3) mod 4.

Altogether, we have six cases to consider. For most of the cases, we will need the fact,
from Lemma 5(a), that we must have 6!/4 = 180 values of T (b) in each congruence class
mod 4.

Case (i): a ≡ (0, 1, 1, 1, 1, 1)

For any permutation b, there are 5! = 120 permutations (including b) with the same
first component, and the values of T (b) for each of these values of b are congruent mod 4.
Therefore, 120 divides the number of values of T (b) in any congruence class mod 4. But
120 ! 180, so there cannot be equally many values in each congruence class, and we can reject
this case.

Case (ii): a ≡ (0, 1, 1, 1, 1, 3)

Similarly to case (i), we obtain sets of 4! = 24 permutations b for which the values of
T (b) are congruent mod 4, and 24 ! 180, so we can reject this case as well.

Case (iii): a ≡ (0, 1, 1, 1, 3, 3)

Consider the equivalence relation ∼ under which two permutations b = (b1, . . . , b6) and
b′ = (b′1, . . . , b

′
6) satisfy b ∼ b′ iff {b2, b3, b4} = {b′2, b′3, b′4} and {b5, b6} = {b′5, b′6}. Note that

when b ∼ b′, we will obtain T (b) ≡ T (b′). Each equivalence class of ∼ has size 3!2! = 12.
Thus, it suffices to consider one representative of each equivalence class and ascertain whether
we obtain 180/12 = 15 values of T (b) in each congruence class mod 4.

We will count the vectors b for which T (b) ≡ −1 (mod 4). Observe that

T (b) ≡
6∑

i=1

bi + 2(b5 + b6) − b1 ≡ −1 + 2(b5 + b6) − b1.
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Consequently 2(b5 + b6)− b1 ≡ 0 (mod 4) and b1 ≡ 0 (mod 2). In the case that b1 is either 0
or 4, we then have 2(b5 + b6) ≡ 0 (mod 4), so b5 + b6 ≡ 0 (mod 2), implying b5 and b6 have
the same parity. Of the components b2, . . . , b6, two are even and three are odd, so there are
four choices of b5 and b6. If b1 is 2, we have 2(b5 + b6) ≡ 2 (mod 4), so b5 + b6 ≡ 1 (mod 2),
so b5 and b6 are of opposite parity. Since there remain two even and three odd bs, this can
be done in 6 ways. Altogether, we have 4 + 4 + 6 = 14 vectors, not the 15 we needed, ruling
out the case a ≡ (0, 1, 1, 1, 3, 3).

Case (iv): a ≡ (0, 0, 0, 1, 1, 3)

The permutations b can be placed in classes of size 3!2! = 12 analogous to the classes
of the last case. We count vectors b, disregarding the order of b1, b2, b3 and of b4, b5, for
which T (b) ≡ b4 + b5 − b6 ≡ 0 (mod 4). This requires that b4 + b5 − b6 ≡ 0 (mod 2), so
b4, b5, and b6 either are all even or else consist of one even and two odd integers. If they
are all even, they must be 0, 2, and 4, and it can be seen that this yields no solution to
b4 + b5 − b6 ≡ 0 (mod 4). Suppose now that b4 and b5 are odd, and wlog b4 < b5. Then we
get 5 solutions, as tabulated here:

Number of
b4 b5 b6 solutions
1 3 0, 4 2
1 5 2 1
3 5 0, 4 2

Otherwise, exactly one of b4 and b5, say b4, is odd, as is b6. This yields 8 solutions:

Number of
b4 b6 b5 solutions
1 5 0, 4 2
5 1 0, 4 2
1 3 2 1
3 1 2 1
3 5 2 1
5 3 2 1

We obtain 13 solutions in total, not 15, so we have shown it impossible that a ≡ (0, 0, 0, 1, 1, 3).

Case (v): a ≡ (0, 0, 2, 1, 1, 3)

For this value of a our equivalence classes of bs have size 2!2! = 4, and for each congruence
class of T (b) mod 4 we will require 180/4 = 45 vectors b. We want T (b) ≡ 2b3+b4+b5−b6 ≡
0 (mod 4). First, note that when b3 is even, this reduces to the case b4 +b5−b6 ≡ 0 (mod 4),
whose solutions we counted in the discussion of case (iv). Since we found 13 solutions then,
and each of them had two even numbers among b1, b2, and b3, we obtain 26 solutions in
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this case. Now suppose b3 is odd. We then require b4 + b5 − b6 ≡ 2 (mod 4). We will again
tabulate the possible solutions. If b4, b5, and b6 are all even, we assume that b4 < b5; then
we have 9 solutions:

Number of
b4 b5 b6 b3 solutions
0 2 4 1,3,5 3
0 4 2 1,3,5 3
2 4 0 1,3,5 3

If two of b4, b5, and b6 are odd, still assuming that b4 < b5 we have 14 solutions:

Number of
b4 b5 (b6, b3) solutions
0 1 (3,5) 1
0 3 (1,5), (5,1) 2
0 5 (3,1) 1
1 2 (5,3) 1
1 3 (2,5) 1
1 4 (3,5) 1
1 5 (0,3), (4,3) 2
2 3 0
2 5 (1,3) 1
3 4 (1,5), (5,1) 2
3 5 (2,1) 1
4 5 (3,1) 1

Altogether we have 26 + 9 + 14 = 49 possible vectors, and not 45, showing that a ≡
(0, 0, 2, 1, 1, 3) is impossible.

Case (vi): a ≡ (0, 0, 0, 1, 1, 1)

We will examine this case mod 8. Of the three components congruent to 0 mod 4 in a,
at least two must be congruent mod 8, and of the three components congruent to 1 mod 4,
at least two must also be congruent mod 8. Suppose without loss of generality that a1 ≡ a2

and a4 ≡ a5 mod 8. Then, we can place the permutations b into classes of size 2!2! = 4,
such that two vectors within one class differ only in a possible exchange of b1 and b2, or of
b4 and b5, or both. Two vectors b in the same class yield congruent values of T (b) mod 8.
Thus the number of values of T (b) in any given congruence class mod 8 is divisible by 4.
Yet there should be 6!/8 = 90 values in each congruence class by Lemma 5(a), and 4 ! 90.
Thus, this case as well is impossible.

We have now reached a contradiction in every case, and the proof is finished. !
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5. Open problems

The least values of n for which the result of Theorem 1 is unknown are n = 10 and n = 12.
It is likely that a proof for any particular one of the unknown cases, along the lines of that
for n = 6 above, could be found, but a general technique is still lacking.

Here is another open problem. Instead of requiring the vectors b, b′ as in Theorem 1
to be permutations of 0, . . . , n − 1, let them be permutations of any fixed multiset S of n
integers.

Problem. Characterise the multisets S such that for every vector a of length
n = |S|, there do not exist distinct permutations b, b′ of S such that

a · b ≡ a · b′ (mod n!).

We will present some basic observations on this problem, including its solution for n ≤ 3.

We shall say that a vector a is nice for S if {a · b|b a permutation of S} is a complete
set of residues modulo n!; we shall also say that a multiset S of size n allows nice vectors
if there exists some a that is nice for S. Then the above problem asks for all multisets S
which allow nice vectors.

There is a sort of symmetry in this problem between a and S. Given a and S, let S ′ be the
multiset of all components of a and a′ the vector of all elements of S. Let S = {s1, . . . , sn},
and S ′ = {s′1, . . . , s′n}. Any permutation b of S can be written (sσ(1), . . . , sσ(n)), where σ is a
permutation of {1, . . . , n}; if we then let b′ = (s′σ−1(1), . . . , s

′
σ−1(n)), it is easy to confirm that

a · b = a′ · b′. This establishes a bijection between the permutations of S and those of S ′.
In particular, if a is nice for S, then a′ is nice for S ′.

As this symmetry might suggest, an analogue of Lemma 4 holds in this new problem in
which a is replaced by S. The more direct analogue of Lemma 4 continues to hold as well.
We won’t prove this statement here.

We will now consider particular values of n, starting with n = 1. Any multiset S of size
1 allows nice vectors. Indeed, if |S| = 1, there is only one possible permutation of S, so any
vector a is vacuously nice.

For |S| = 2, if S has two elements of the same parity, it is clear that a · b has the same
parity for either permutation b of S, so that S does not allow nice vectors. Otherwise, the
multiset S has one even and one odd element. Then S must be congruent mod 2 to {0, 1},
and this problem reduces to our main problem. In particular, S allows nice vectors.

However, we claim that no multiset S with |S| = 3 allows nice vectors . Let S =
{s1, s2, s3}. We consider two cases, according as whether S contains two elements congruent
modulo 3.
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Suppose, without loss of generality, that s1 ≡ s2 (mod 3). There must exist two compo-
nents of a = (a1, a2, a3), say a1 and a2, which are congruent mod 2. Then it is easily seen
that for b = (s1, s2, s3) and b′ = (s2, s1, s3), T (b) ≡ T (b′) (mod 3!). So S does not allow
nice vectors.

Now assume S has no two elements congruent modulo 3. S is congruent mod 6 to either
{k, k + 1, k + 2} or {k, k + 2, k + 4} for some integer k, as we can see by examining all eight
possibilities for S mod 6. Assume that a is nice for S. By the analogue of Lemma 4 for S
that we mentioned above, a is then also nice for either {0, 1, 2} or {0, 2, 4}. But the first of
these cases is our main problem, and we have seen that {0, 1, 2} does not allow nice vectors.
As for S = {0, 2, 4}, a · b must be even for any permutation b of S, so {0, 2, 4} does not
allow nice vectors either. This verifies our claim.

Thus it remains to be resolved: Are there any multisets S of size at least 4 which allow
nice vectors?
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