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Abstract

In this paper we prove several formulas for sums of squares of even Pell-Lucas numbers,
sums of squares of odd Pell-Lucas numbers, and sums of products of even and odd Pell-
Lucas numbers. These sums have nice representations as products of appropriate Pell and
Pell-Lucas numbers with terms from certain integer sequences.

1. Introduction

The Pell and Pell-Lucas sequences Pn and Qn are defined by the recurrence relations

P0 = 0, P1 = 2, Pn = 2 Pn−1 + Pn−2 for n ! 2,

and

Q0 = 2, Q1 = 2, Qn = 2 Qn−1 + Qn−2 for n ! 2.

In the Sections 2–4 we consider sums of squares of odd and even terms of the Pell-Lucas
sequence and sums of their products. These sums have nice representations as products of
appropriate Pell and Pell-Lucas numbers.

The numbers Qk make the integer sequence A002203 from [8] while the numbers 1
2 Pk

make A000129. In this paper we shall also need the sequences A001109, A029546, A029547
and A077420 that we shorten to ak, bk, ck and dk with k ! 0. For the convenience of the
reader we shall now explicitly define these sequences.
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The first ten terms of the sequence ak are 0, 1, 6, 35, 204, 1189, 6930, 40391, 235416 and
1372105, it satisfies the recurrence relations a0 = 0, a1 = 1 and an = 6 an−1 − an−2 for n ≥ 2,

and it is given by the formula an = (3+2
√

2)n−(3−2
√

2)n

4
√

2
.

The first seven terms of the sequence bk are 1, 35, 1190, 40426, 1373295, 46651605 and
1584781276, it satisfies the recurrence relations b0 = 1, b1 = 35, b2 = 1190 and

bn = 35 (bn−1 − bn−2) − bn−3

for n ≥ 3, and it is given by the formula bn = 1
192 (f+ F n

+ + f− F n
− − 6), where f± = 99 ± 70

√
2

and F± = 17 ± 12
√

2.

The first seven terms of the sequence ck are 1, 34, 1155, 39236, 1332869, 45278310 and
1538129671, it satisfies the recurrence relations c0 = 1, c1 = 34 and cn = 34 cn−1 − cn−2 for

n ≥ 2, and it is given by the formula cn =
F n+1

+ −F n+1
−

F+−F−
.

Finally, the first seven terms of the sequence dk are 1, 33, 1121, 38081, 1293633, 43945441
and 1492851361, it satisfies the recurrence relations d0 = 1, d1 = 33 and dn = 34 dn−1 − dn−2

for n ≥ 2, and it is given by the formula dn = 3+2
√

2
6 F n

+ + 3−2
√

2
6 F n

−.

In the last three sections we look into the alternating sums of squares of odd and even
terms of the Pell-Lucas sequence and the alternating sums of products of two consecutive
Pell-Lucas numbers. These sums also have nice representations as products of appropriate
Pell and Pell-Lucas numbers with terms from the above four integer sequences.

These formulas for ordinary sums and for alternating sums have been discovered with the
help of a PC computer and all algebraic identities needed for the verification of our theorems
can be easily checked in either Derive, Mathematica or Maple V. Running times of all these
calculations are in the range of a few seconds.

Similar results for Fibonacci and Lucas numbers have recently been discovered by the first
author in papers [1], [2], [3], and [4]. They improved some results in [7].

2. Pell-Lucas even squares

The following lemma is needed to accomplish the inductive step in the proof of our first
theorem.

Lemma 1. For every m ! 0 and k ! 0 the following equality holds:

32 a2
m+1 + Q2

2k+2m+2 + am+1 · Q2k · Q2k+2m = am+2 · Q2k · Q2k+2m+2. (2.1)

Proof. Let α = 1 +
√

2 and β = 1 −
√

2. Notice that α + β = 2 and α · β = −1 so that the
real numbers α and β are solutions of the equation x2 − 2 x − 1 = 0. Since Qj = αj + βj
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and

aj =
7α + β

16
α2j−2 +

α + 7β

16
β2j−2

for every j ! 0, the difference of the right hand side and the left hand side of the relation
(2.1) (after the substitutions β = − 1

α and α = 1 +
√

2 and the replacement of 99 + 70
√

2,

17 + 12
√

2, 7 + 5
√

2, 3 + 2
√

2, 1 +
√

2, and −1 +
√

2 with α6, α4, α3, α2, α and 1
α) is equal

to M
16 α4 , where M = p0 α4k+4m + p− α4k with p0 = p+ − 9232 − 6528

√
2 and

p± = 3α8 + 17α7 + 30α6 ± 14α5 − 5α4 ∓ 3α3.

Since both polynomials p0 and p− contain α− 1 −
√

2 as a factor we conclude that M = 0
and the proof is complete.

Theorem 1. For every m ! 0 and k ! 0 the following equality holds:

αm +
m∑

i=0

Q2
2k+2i =

{
Q4 k, if m = 0;

am+1 · Q2k · Q2k+2m, if m ! 1,
(2.2)

where the sequence αm is defined as follows: α0 = −2, α1 = 32, and αm − αm−1 = 32 · a2
m

for m ! 2 (i. e., αm = 32 ·
(∑m

j=1 a2
j

)
).

Proof. When m = 0 we obtain

Q2
2k − Q4k − 2 =

(
α2 k + β2 k

)2 − α4 k − β4 k − 2 = 2
(
αk

)2 (
βk

)2 − 2 = 0.

For m ! 1 the proof is by induction on m. When m = 1 the relation (2.2) is

32 + Q2
2k + Q2

2k+2 − 6 · Q2k · Q2k+2 = 0

which is true since its left hand side is (α2 − 2α− 1)(α2 + 2α− 1)(α4k + α−4k−4 − 6α−2).

Assume that the relation (2.2) is true for m = r. Then

αr+1 +
r+1∑

i=0

Q2
2k+2i = 32 a2

r+1 + αr + Q2
2k+2r+2 +

r∑

i=0

Q2
2k+2i =

32 a2
r+1 + Q2

2k+2r+2 + ar+1 · Q2k · Q2k+2r = ar+2 · Q2k · Q2k+2r+2,

where the last step uses Lemma 1 for m = r + 1. Hence, (2.2) is true for m = r + 1 and the
proof is completed.

Remark 1. The following are three additional versions of Theorem 1:

For every j ! 0 and k ! 1 the following equalities holds:

αj+1 +
j∑

i=0

Q2
2k+2i = aj+1 · Q2k−2 · Q2k+2j+2, (2.3)

j∑

i=0

Q2
2k+2i = γj + aj+1 · Q2k−1 · Q2k+2j+1, (2.4)
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j∑

i=0

Q2
2k+2i = δj + aj+1 · Q2k+1 · Q2k+2j−1, (2.5)

where γ0 = δ0 = 8 and γj − γj−1 = 2 · P 2
2 j+1 and δj − δj−1 = 2 · P 2

2 j−1 for every j ! 1.

3. Pell-Lucas odd squares

The initial step in an inductive proof of our second theorem uses the following lemma.

Lemma 2. For every k ! 1 the following identity holds:

Q2
2k+1 − Q2k−1 Q2k+3 = 32. (3.1)

Proof. By the Binet formula Qn = αn + βn so that we have

Q2
2k+1 − Q2k−1 Q2k+3 =

(α2k+1 + β2k+1)2 − (α2k−1 + β2k−1)(α2k+3 + β2k+3) =

2 (α · β)2 k+1 − (α · β)2 k−1(α4 + β4) = −2 + Q4 = −2 + 34 = 32.

The following lemma is needed to accomplish the inductive step in the proof of our second
theorem.

Lemma 3. For every j ! 0 and k ! 1 the following equality holds:

Q2
2k+2j+3 + Q2k−1(aj+1 Q2k+2j+3 − aj+2 Q2k+2j+5) = 32 a2

j+2. (3.2)

Proof. The difference of the left hand side and the right hand side of (3.2) (after the sub-
stitutions β = − 1

α and α = 1 +
√

2 and the replacement of 99 + 70
√

2, 17 + 12
√

2, 7 + 5
√

2,

3 + 2
√

2, 1 +
√

2, and −1 +
√

2 with α6, α4, α3, α2, α and 1
α) is equal to M

16 α8 , where

M = p0 α
4k+4j + p− α

4k

with p0 = p+ − 1827888 − 1292512
√

2 and

p± = 3α14 ± 17α13 + 30α12 ± 14α11 − 5α10 ∓ 3α9.

Since both polynomials p0 and p− contain α− 1 −
√

2 as a factor we conclude that M = 0
and the proof is complete.

Theorem 2. For every j ! 0 and k ! 1 the following equality holds:
j∑

i=0

Q2
2k+2i+1 = αj+1 + aj+1 · Q2k−1 · Q2k+2j+3. (3.3)
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Proof. The proof is by induction on j. For j = 0 the relation (3.3) is

Q2
2k+1 = 32 + Q2k−1 Q2k+3

which is true by the relation (3.1) in Lemma 2. Assume that the relation (3.3) is true for
j = r. Then

r+1∑

i=0

Q2
2k+2i+1 = Q2

2k+2r+3 +
r∑

i=0

Q2k+2i+1 =

Q2
2k+2r+3 + αr+1 + ar+1 · Q2k−1 · Q2k+2r+3 =

αr+1 + 32 a2
r+2 + ar+2 · Q2k−1 · Q2k+2r+5 =

α(r+1)+1 + ar+2 · Q2k−1 · Q2k+2(r+1)+3,

where the third step uses Lemma 3. Hence, (3.3) is true also for j = r + 1 and the proof is
complete.

Another version of Theorem 2 is the following statement:

Theorem 3. For every j ! 0 and k ! 1 the following equality holds:

βj +
j∑

i=0

Q2
2k+2i+1 = aj+1 · Q2k−2 · Q2k+2j+4, (3.4)

with β0 = 200 and βj − βj−1 = 2 · P 2
2j+3 for j ! 1.

Proof. We shall only outline the key steps in an inductive proof leaving the details to the
reader because they are analogous to the proof of Theorem 2.

The initial step is the equality 200 + Q2
2k+1 = Q2k−2 Q2k+4 which holds for every k ! 1.

On the other hand, the inductive step is realized with the following equality:

2 P 2
2r+5 + Q2

2k+2r+3 + ar+1 Q2k−2 Q2k+2r+4 = ar+2 Q2k−2 Q2k+2r+6,

which holds for every k ! 1 and every r ! 1.

4. Pell-Lucas products

For the first two steps in a proof by induction of our next theorem we require the following
lemma.

Lemma 4. For every k ! 1 the following equalities hold:

Q2k Q2k+1 = Q4k+1 + 2. (4.1)

Q2k Q2k+1 + Q2k+2 Q2k+3 = 6 Q2k Q2k+3 − 80. (4.2)
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Proof of (4.1). By the Binet formula we have

Q2k Q2k+1 =
(
α2k + β2k

) (
α2k+1 + β2k+1

)
=

α4k+1 + (α · β)2k (α + β) + β4k+1 = Q4k+1 + 2.

Proof of (4.2). When we apply the Binet formula to the terms in the difference of the left
hand side and the right hand side of (4.2) we get

80 + α4 k+1 + α (αβ)2 k + β (αβ)2 k + β4 k+1 + α4 k+5 + α3β2 (αβ)2 k +

β3α2 (αβ)2 k + β4 k+5 − 6α4 k+3 − 6α3 (αβ)2 k − 6β3 (αβ)2 k − 6β4 k+3.

Since αβ = −1, this simplifies to p(α)α4k + p(β) β4k + q, where p(x) = x5 − 6 x3 + x and
q = α3 β2 + α2 β3 − 6α3 − 6 β3 + α + β + 80. Now it is easy to check (by the substitutions α
= 1 +

√
2 and β = 1 −

√
2) that p(α) = 0, p(β) = 0 and q = 0. This implies that the relation

(4.2) holds.

With the following lemma we shall make the inductive step in the proof of the third
theorem.

Lemma 5. For every r ! 1 and k ! 1 the following equality holds:

Q2k(ar+2 Q2k+2r+3 − ar+1 Q2k+2r+1) − Q2k+2r+2 Q2k+2r+3 = 2 P2r+2 P2r+3.

Proof. Let R denote the difference of the left hand side and the right hand side of the above
relation. We need to show that R = 0.

Let A = α2k, B = β2k, U = β2r, V = β2r, u = 7α+β
16 and v = α+7β

16 . Note that ar+1 is equal
to u U + v V . By the Binet formula we get

R = (A + B)
[
(uα2 U + v β2 V )(α3 A U + β3 B V ) − (u U + v V )

(αA U + βB V )] − (α2 A U + β2 B V )(α3 A U + β3 B V ) −

(α2 U + β2 V )(α3 U + β3 V ) = %+

[
u A B +

(8 u − m) A2 − m

8

]
U2

− 2 (A B − 1) U V + (%− v A B − n) V 2,

where %± = 4(10 ± 7
√

2), m = 4 + 3
√

2 and n = 41 − 29
√

2. Since A B = 1, u = m
8 and

%− v = n it follows that R = 0.

Theorem 4. For every j ! 0 and k ! 1 the following equality holds:

αj +
j∑

i=0

Q2k+2i · Q2k+2i+1 =

{
Q4 k, if j = 0;

aj+1 · Q2k · Q2k+2j+1, if j ! 1,
(4.3)

where α0 = −2, α1 = 80, and αj+1 − αj = 2 · P2j+2 · P2j+3 for j ! 1.
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Proof. The proof is by induction on j. For j = 0 the relation (4.3) is

Q2k Q2k+1 − 2 = Q4k+1

which is true by (4.1). For j = 1 the relation (4.3) is

80 + Q2k Q2k+1 + Q2k+2 Q2k+3 = 6 Q2k Q2k+3

which is true by (4.2).

Assume that the relation (4.3) is true for j = r. Then

αr+1 +
r+1∑

i=0

Q2k+2i Q2k+2i+1 = αr + 2 P2r+2 P2r+3

+
r∑

i=0

Q2k+2i Q2k+2i+1 + Q2k+2r+2 Q2k+2r+3 = ar+1 Q2k Q2k+2r+1

+ 2 P2r+2 P2r+3 + Q2k+2r+2 Q2k+2r+3 = ar+2 Q2k Q2k+2(r+1)+1,

where the last step uses Lemma 5. Hence, (4.3) is true also for j = r + 1.

5. Alternating Pell-Lucas even squares

In this section we look for formulas that give closed forms for alternating sums of squares
of Pell-Lucas numbers with even indices.

Lemma 6. For every k ! 0 we have

Q2
2k = 8 + Q2k+1 · Q2k−1. (5.1)

Proof. By the Binet formula we get

8 + Q2k−1 Q2k+1 = 8 + (α2k−1 + β2k−1)(α2k+1 + β2k+1) = 8 + α4k +

β2 (αβ)2k−1 + α2 (αβ)2k−1 + β4k = α4k + 2 + β4k = (α2k + β2k)2 = Q2
2k.

Lemma 7. For every k ! 0 we have

Q2
2k − Q2

2k+2 = 32 · (1 − ak+1 Q2k). (5.2)

Proof. For real numbers a, b and c let pa
b , qa and ra;b

c denote αa−βa

αb−βb , αa + βa and a α+b β
c . The

difference of the left hand side and the right hand side in (5.2) is

(q2k)
2 − (q2k+2)

2 − 32 + 32
(
r7;1
16 α2k + r1;7

16 β2k
)

q2k.

Let α2k = A and β2k = B. The above expression reduces to

p(α) A2 + q A B + p(β) B2 − 32,
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where p(α) = 1 + 14α + 2β − α4 and q = 2 + 16α + 16β − 2α2 β2. If we replace α and
β with 1 +

√
2 and 1 −

√
2 we get p(α) = p(β) = 0 and q = 32. Hence, the difference is

32 A B − 32 = 0 because A B = 1.

Lemma 8. For every k ! 0 and every r ! 0 we have

32 · cr · (1 − ak+r+1 Q2k+2r) + Q2
2k+4r+4 − Q2

2k+4r+6 (5.3)

= 32 · cr+1 · (1 − ak+r+2 Q2k+2r+2).

Proof. Notice that cr = p4r+4
4 for every r ! 0. The difference of the left hand side and the

right hand side in (5.3) is

32 · p4r+4
4

[
1 −

(
r7;1
16 α2k+2r + r1;7

16 β2k+2r
)
q2k+2r

]
+ (q2k+4r+4)

2 −
(q2k+4r+6)

2 − 32 · p4r+8
4

[
1 −

(
r7;1
16 α2k+2r+2 + r1;7

16 β2k+2r+2
)
q2k+2r+2

]
.

Let α2k = A, β2k = B, α2r = U and β2r = V . The above expression reduces to M
α4−β4 ,

where M is

p(α, β) A2 U4 − q(α, β) A2 U2 V 2 + r(α, β) A B U3 V + 2 s A B U2 V 2 −
p(β,α)B2 V 4 + q(β,α)B2 U2 V 2 − r(β,α)A B U V 3 − 32(t(α)U2 − t(β)V 2),

where

p(α, β) = t(α)(α4 β4 − α8 + 14α5 + 2α4 β + 14α + 2β),

q(α, β) = 2β4(7α + β)(α4 β4 − 1),

r(α, β) = 16α4(α + β)(α6 β2 − 1),

s = α4 β4(α4 − β4)(α2 β2 − 1) and t(α) = α4 (α4 − 1). Replacing α and β with 1 +
√

2 and
1 −

√
2 we get

M = u+ A B U3 V − u− A B U V 3 − u+ U2 + u− V 2,

where u± = 128(140 ± 99
√

2). Hence, M = 0 so that the difference is zero because A B = 1
and U V = 1.

Lemma 9. For every k ! 0 and every r ! 0 we have

dr · Q2
2k+2r − 64 br−1 − Q2

2k+4r+2 + Q2
2k+4r+4 = dr+1 · Q2

2k+2r+2 − 64 br.

Proof. Notice that

br = r169;29
384 α4r + r29;169

384 β4r − 1

32

and

dr = r5;1
12 α4r + r1;5

12 β4r,
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for every r ! 0. The difference of the left hand side and the right hand side is
(
r5;1
12 α4r + r1;5

12 β4r
)
(q2k+2r)

2 − r169;29
6 α4r−4 − r29;169

6 β4r−4 − (q2k+4r+2)
2 +

(q2k+4r+4)
2 −

(
r5;1
12 α4r+4 + r1;5

12 β4r+4
)
· (q2k+2r+2)

2 + r169;29
6 α4r − r29;169

6 β4r.

Let α2k = A, β2k = B, α2r = U and β2r = V . The above expression reduces to −M
12 α4 β4 ,

where M is

p(α, β)A2U4 + q(α, β)(AUV )2 + r(α, β)ABU3V − 24 s AB(UV )2 +

p(β,α)B2V 4 + q(β,α)(BUV )2 + r(β,α)ABUV 3 − t(α, β)U2 − t(β,α)V 2,

with P = (αβ)4,

p(α, β) = P (α4 − 1)(5α5 + α4 β − 12α4 + 5α + β),

q(α, β) = P (P − 1)(α + 5β),

r(α, β) = 2 P (α6 β2 − 1)(5α + β),

s = P (P − α2 β2) and t(α, β) = 2 (P − β4)(169α + 29β). Replacing α and β with 1 +
√

2
and 1 −

√
2 we get

M = u+ A B U3 V + u− A B U V 3 − u+ U2 − u− V 2,

where u± = 16(24 ± 17
√

2). Hence, M = 0 so that the difference is zero because A B = 1
and U V = 1.

Theorem 5. a) For every m ! 0 and k ! 0 the following equality holds:
2 m+1∑

i=0

(−1)i · Q2
2k+2i = 32 · cm · (1 − ak+m+1 · Q2k+2m), (5.4)

b) For every m ! 1 and k ! 0 the following equality holds:
2 m∑

i=0

(−1)i · Q2
2k+2i = dm · Q2

2k+2m − 64 · bm−1. (5.5)

Proof of a). The proof is by induction on m. For m = 0 the relation (5.4) is

Q2
2k − Q2

2k+2 = 32 · (1 − ak+1 Q2k)

(i. e., the relation (5.2)) which is true by Lemma 7.

Assume that the relation (5.4) is true for m = r. Then

2(r+1)+1∑

i=0

(−1)i · Q2
2k+2i =

2r+1∑

i=0

(−1)i · Q2
2k+2i + Q2

2k+4r+4 − Q2
2k+4r+6

= 32 · cr · (1 − ak+r+1 · Q2k+2r) + Q2
2k+4r+4 − Q2

2k+4r+6

= 32 · cr+1 · (1 − ak+(r+1)+1 · Q2k+2(r+1)),



10 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A15

where the last step uses Lemma 8. Hence, (5.4) is true for m = r + 1 and the proof is
completed.

Proof of b). The proof is by induction on m. For m = 0 the relation (5.5) is

Q2
2k = d0 Q2

2k − 64 b−1

which is true since d0 = 1 and b−1 = 0.

Assume that the relation (5.5) is true for m = r. Then

2(r+1)∑

i=0

(−1)i · Q2
2k+2i =

2r∑

i=0

(−1)i · Q2
2k+2i − Q2

2k+4r+2 + Q2
2k+4r+4 =

dr · Q2
2k+2r − 64 br−1 − Q2

2k+4r+2 + Q2
2k+4r+6 = dr+1 · Q2

2k+2r+2 − 64 br,

where the last step uses Lemma 9. Hence, (5.5) is true for m = r + 1 and the proof is
completed.

6. Alternating Pell-Lucas odd squares

Lemma 10. For every k ! 0 we have

Q2
2k+3 − Q2

2k+1 = 32 · ak+1 · Q2k+2. (6.1)

Proof. By the Binet formulas the difference of the left hand side and the right hand side in
(6.1) is

Q2
2k+3 − Q2

2k+1 − 32 ak+1 Q2k+2 = (α2k+1 + β2k+1)2 − (α2k+3 + β2k+3)2

+ 32

(
7α + β

16
α2k +

α + 7β

16
β2k

)
(α2k+2 + β2k+2),

Let α2k = A and β2k = B. The above expression reduces to

p(α)A2 − q A B + p(β)B2,

where q = 2α3β3 − 2αβ − 2α3 − 14β2α− 14α2β − 2 β3 and p(α) = α2(14α− α4 + 2β + 1).
It is easy to check (by substitutions α = 1 +

√
2 and β = 1 −

√
2) that p(α) = 0, p(β) = 0

and q = 0. This implies that the relation (6.1) is true.

Lemma 11. For every k ! 0 we have

8 + Q2
2k+1 = Q2k · Q2k+2. (6.2)

Proof. Using the Binet representation of Pell-Lucas numbers we get

8 + Q2
2k+1 − Q2kQ2k+2 = 8 + (α2k+1 + β2k+1)2 − (α2k + β2k)(α2k+2 + β2k+2)

= 8 + 2 (αβ)2k+1 − (αβ)2k(α2 + β2) = 8 − 2 − 6 = 0,
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because αβ = −1 and α2 + β2 = 6. Hence, 8 + Q2
2k+1 = Q2kQ2k+2.

Lemma 12. For all k ! 0 and r ! 0 we have L = 0, where L is

Q2
2k+4r+5 − Q2

2k+4r+7 − 32 cr · ak+r+1 · Q2k+2r+2 + 32 cr+1 · ak+r+2 · Q2k+2r+4.

Proof. The expression L is in fact

(q2k+4r+5)
2 − (q2k+4r+7)

2 − 32 p4r+4
4

(
r7;1
16 α

2k+2r + r1;7
16 β

2k+2r
)
q2k+2r+2

+ 32 p4r+8
4

(
r7;1
16 α

2k+2r+2 + r1;7
16 β

2k+2r+2
)
q2k+2r+4.

Let α2k = A, β2k = B, α2r = U and β2r = V . The above expression reduces to M
α4−β4 ,

where M is

p(α, β)A2U4 + 2 q(α, β)(AUV )2 + 2 r(α, β)ABU3V −
2 s AB(UV )2 − p(β,α)B2V 4 + 2 q(β,α)(BUV )2 − 2 r(β,α)ABUV 3,

with

p(α, β) = α6 (α4 − 1)(α4 β4 − α8 + 14α5 + 2α4 β + 14α + 2β),

q(α, β) = α2β4((αβ)4 − 1)(7α + β),

r(α, β) = α4(α + β)(α6 β2 − 1)(α2 + 6αβ + β2)

and s = α5β5((αβ)2 − 1)(α4 − β4). Replacing α and β with 1 +
√

2 and 1 −
√

2 we see easily
that all coefficients of the above polynomial vanish so that L = 0.

Lemma 13. For every k ! 0 and every r ! 0 we have

2(P 2
2r+3 − P 2

2r+1) + dr · Q2k+2r · Q2k+2r+2

− Q2
2k+4r+3 + Q2

2k+4r+5 = dr+1 · Q2k+2r+2 · Q2k+2r+4.

Proof. The difference of the left hand side and the right hand side is

8
[(

p2r+3
1

)2 −
(
p2r+1

1

)2
]

+
(
r5;1
12 α4r + r1;5

12 β4r
)
q2k+2rq2k+2r+2 −

(q2k+4r+3)
2 + (q2k+4r+5)

2 −
(
r5;1
12 α4r+4 + r1;5

12 β4r+4
)
q2k+2r+2q2k+2r+4.

Let α2k = A, β2k = B, α2r = U and β2r = V . The above expression reduces to −M
12 (α−β)2 ,

where M is

(α− β)2
[
p(α, β)A2U4 + q(α, β)(AUV )2 + r(α, β)ABU3V −
24 s AB(UV )2 + p(β,α)B2V 4 + q(β,α)(BUV )2 + r(β,α)ABUV 3

]

− 96
[
t(α)U2 − 2wUV + t(β)V 2

]
,

with t(α) = α2(α4 − 1),

p(α, β) = t(α)(5α5 + α4 β − 12α4 + 5α + β),
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q(α, β) = t(αβ)(α + 5β)/β2,

r(α, β) = (α2 + β2)(α6 β2 − 1)(5α + β),

s = α3 β3((αβ)2 − 1) and w = αβ((αβ)2 − 1). Replacing α and β with 1 +
√

2 and 1 −
√

2
we get

M = u+ A B U3 V + u− A B U V 3 − u+ U2 − u− V 2,

where u± = 384(24 ± 17
√

2). Hence, M = 0 so that the difference is zero since A B = 1 and
U V = 1.

Theorem 6. a) For every j ! 0 and k ! 0 the following equality holds:

2 j+1∑

i=0

(−1)i · Q2
2k+2i+1 = −32 · cj · ak+j+1 · Q2k+2j+2, (6.3)

b) For every j ! 1 and k ! 1 the following equality holds:

2 · P 2
2j+1 +

2 j∑

i=0

(−1)i · Q2
2k+2i+1 = dj · Q2k+2j · Q2k+2j+2. (6.4)

Proof of a). The proof is by induction on j. For j = 0 the relation (6.3) is

Q2
2k+3 − Q2

2k+1 = 32ak+1Q2k+2

(i. e., the relation (6.1)) which is true by Lemma 10.

Assume that the relation (6.3) is true for j = r. Then

2(r+1)+1∑

i=0

(−1)i Q2
2k+2i+1 =

2r+1∑

i=0

(−1)i Q2
2k+2i+1 + Q2

2k+4r+5 − Q2
2k+4r+7

= −32 cr ak+r+1 Q2k+2r+2 + Q2
2k+4r+5 − Q2

2k+4r+7

= −32 cr+1 ak+r+2 Q2k+2r+4,

where the last step uses Lemma 12. Hence, (6.3) is true for j = r + 1 and the proof is
completed.

Proof of b). The proof is again by induction on j. For j = 0 the relation (6.4) is

2 P 2
1 + Q2

2k+1 = d0 Q2k Q2k+2

which is true by Lemma 11 since d0 = 1 and P1 = 2.
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Assume that the relation (6.4) is true for j = r. Then

2 P 2
2r+3 +

2(r+1)∑

i=0

(−1)i Q2
2k+2i+1 = 2(P 2

2r+3 − P 2
2r+1)

+

(
2 P 2

2r+1 +
2r∑

i=0

(−1)i Q2
2k+2i+1

)
− Q2

2k+4r+3 + Q2
2k+4r+5 =

2(P 2
2r+3 − P 2

2r+1) + dr Q2k+2r Q2k+2r+2 − Q2
2k+4r+3 + Q2

2k+4r+5

= dr+1 Q2k+2r+2 Q2k+2r+4,

where the last step uses Lemma 13. Hence, (6.4) is true for m = r + 1 and the proof is
completed.

7. Alternating Pell-Lucas products

Lemma 14. For every k ! 0 we have

Q2k Q2k+1 − Q2k+2 Q2k+3 + 8 P2k+3 Q2k = 80. (7.1)

Proof. The difference of the left hand side and the right hand side in (7.1) is

q2k q2k+1 − q2k+2 q2k+3 + 16 p2k+3
1 q2k − 80.

Let α2k = A and β2k = B. The above expression reduces to M
α−β where M is

p(α) A2 − q A B − p(β) B2 − 80(α− β),

with p(α) = α(β α4 − α5 + 16α2 + α− β) and

q = (α− β)(α3 β2 + α2 β3 − 16α2 − 16αβ − 16β2 − α− β).

If we replace α and β with 1 +
√

2 and 1 −
√

2 we get p(α) = p(β) = 0 and q = −160
√

2
and 80(α− β) = 160

√
2. Hence, M = 0 because A B = 1.

Lemma 15. For all k ! 0 and r ! 0 we have

8 cr+1 · (P2k+2r+5 · Q2k+2r+2 − 10) + Q2k+4r+4 · Q2k+4r+5 =

8 cr · (P2k+2r+3 · Q2k+2r − 10) + Q2k+4r+6 · Q2k+4r+7.

Proof. The difference L of the left hand side and the right hand side is

8 p4r+8
4

[
2 p2k+2r+5

1 q2k+2r+2 − 10
]
+ q2k+4r+4 q2k+4r+5

− q2k+4r+6 q2k+4r+7 − 8 p4r+4
4

[
2 p2k+2r+3

1 q2k+2r − 10
]

Let α2k = A, β2k = B, α2r = U and β2r = V . The above expression reduces to

M

(α + β)(α− β)2(α2 + β2)
,
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where M is

p(α, β)A2U4 − 16 q(α, β)(AUV )2 + 16 r(α, β)ABU3V − s AB(UV )2 +

p(β,α)B2V 4 − 16 q(β,α)(BUV )2 − 16 r(β,α)ABUV 3 − t(α)U2 + t(β)V 2,

with

p(α, β) = α6 (α4 − 1)(α6β − α7 + α3β4 − α2β5 + 16α4 + 16),

q(α, β) = α3β4((αβ)4 − 1),

s = α4β4((αβ)2 − 1)(α2 + β2)(α2 − β2)2,

r(α, β) = α4(α− β)(α6 β2 − 1)(α2 + αβ + β2)

and t(α) = 80α4(α− β) (α4 − 1). Replacing α and β with 1 +
√

2 and 1 −
√

2 we get

M = u+ A B U3 V + u− A B U V 3 − u+ U2 − u− V 2,

where u± = 1280(99 ± 70
√

2). Hence, M = 0 so that the difference is zero since A B = 1
and U V = 1.

Lemma 16. For all k ! 0 and r ! 0 we have

64 cr + dr · Q2k+2r · Q2k+2r+1 + Q2k+4r+4 · Q2k+4r+5 =

dr+1 · Q2k+2r+2 · Q2k+2r+3 + Q2k+4r+2 · Q2k+4r+3.

Proof. The difference L of the left hand side and the right hand side is

64 p4r+4
4 +

(
r5;1
12 α4r + r1;5

12 β4r
)

q2k+2r q2k+2r+1 − q2k+4r+2 q2k+4r+3

+ q2k+4r+4 q2k+4r+5 −
(
r5;1
12 α4r+4 + r1;5

12 β4r+4
)

q2k+2r+2 q2k+2r+3.

Let α2k = A, β2k = B, α2r = U and β2r = V . The above expression reduces to M
12(α4−β4) ,

where M is

p(α, β)A2U4 − q(α, β)(AUV )2 + r(α, β)ABU3V + 12 s AB(UV )2 −
p(β,α)B2V 4 − q(β,α)(BUV )2 − r(β,α)ABUV 3 + t(α)U2 − t(β)V 2,

with

p(α, β) = α (α4 − 1)(β4 − α4)(5α5 + α4β − 12α4 + 5α + β),

s = α2β2((αβ)2 − 1)(β4 − α4)(α + β),

r(α, β) = (β4 − α4)(α + β)(5α + β)(α6 β2 − 1),

q(α, β) = α((αβ)4 − 1)(β4 − α4)(α + 5β)

and t(α) = 768α4. Replacing α and β with 1 +
√

2 and 1 −
√

2 we get

M = −u+ A B U3 V + u− A B U V 3 + u+ U2 − u− V 2,
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where u± = 768(17 ± 12
√

2). Hence, M = 0 so that the difference is zero since A B = 1 and
U V = 1.

Theorem 7. a) For every j ! 0 and k ! 0 the following equality holds:

2 j+1∑

i=0

(−1)i ·Q2k+2i ·Q2k+2i+1 = −8·cj ·(P2k+2j+3 ·Q2k+2j−10), (7.2)

b) For every j ! 0 and k ! 0 the following equality holds:

βj +
2 j∑

i=0

(−1)i · Q2k+2i · Q2k+2i+1 = dj · Q2k+2j · Q2k+2j+1, (7.3)

where the sequence βj is determined by the conditions: β0 = 0 and βj+1 = βj + 64 · cj for
every j ! 0.

Proof of a). The proof is by induction on j. For j = 0 the relation (7.2) is

Q2k Q2k+1 − Q2k+2 Q2k+3 = −8 P2k+3 Q2k + 80

(i. e., the relation (7.1)) which is true by Lemma 14.

Assume that the relation (7.2) is true for j = r. Then

2(r+1)+1∑

i=0

(−1)i Q2k+2i Q2k+2i+1 =
2r+1∑

i=0

(−1)i Q2k+2i Q2k+2i+1 +

Q2k+4r+4 Q2k+4r+5 − Q2k+4r+6 Q2k+4r+7 = −8cr(P2k+2r+3 Q2k+2r − 10) +

Q2k+4r+4 Q2k+4r+5 − Q2k+4r+6 Q2k+4r+7 = −8cr+1(P2k+2r+5 Q2k+2r+2 − 10),

where the last step uses Lemma 15. Hence, (7.2) is true for j = r + 1 and the proof is
completed.

Proof of b). The proof is once again by induction on j. For j = 0 the relation (7.3) is
β0 + Q2k Q2k+1 = d0 Q2k Q2k+1 which is true since d0 = 1 and β0 = 0.

Assume that the relation (7.3) is true for j = r. Then

βr+1 +
2(r+1)∑

i=0

(−1)i Q2k+2i Q2k+2i+1 = βr+1 − βr + βr +

2r∑

i=0

(−1)i Q2k+2i Q2k+2i+1 − Q2k+4r+2 Q2k+4r+3 + Q2k+4r+4 Q2k+4r+5 =

64 cr + dr Q2k+2r Q2k+2r+1 − Q2k+4r+2 Q2k+4r+3 + Q2k+4r+4 Q2k+4r+5

= dr+1 Q2k+2r+2 Q2k+2r+3,

where the last step uses Lemma 16. Hence, (7.3) is true for j = r + 1 and the proof is
completed.
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We mention also the following equalities that have been discovered while attempting to
prove Theorem 7.

Theorem 8. For every k ! 0 we have

Q2k · Q2k+1 = Q2k+3 · Q2k−2 − 80 = 2 · (P2k+2 · P2k−1 − 6).
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[3] Z. Čerin, Some alternating sums of Lucas numbers, Central European Journal of Mathematics 3 (1)
(2005), 1 – 13.
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