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Abstract

In this paper we prove several formulas for sums of squares of even Pell-Lucas numbers,
sums of squares of odd Pell-Lucas numbers, and sums of products of even and odd Pell-
Lucas numbers. These sums have nice representations as products of appropriate Pell and
Pell-Lucas numbers with terms from certain integer sequences.

1. INTRODUCTION

The Pell and Pell-Lucas sequences P, and @),, are defined by the recurrence relations
POIO, P1:2, Pn:2pn71+Pnf2 fOI'Tl>2,
and

QO = 2a Ql = 2a Qn = 2C)n—l + Qn—Q for n = 2.

In the Sections 2-4 we consider sums of squares of odd and even terms of the Pell-Lucas
sequence and sums of their products. These sums have nice representations as products of
appropriate Pell and Pell-Lucas numbers.

The numbers @), make the integer sequence A002203 from [8] while the numbers 3 P,
make A000129. In this paper we shall also need the sequences A001109, A029546, A029547
and A077420 that we shorten to ag, bg, ¢ and dj with & > 0. For the convenience of the
reader we shall now explicitly define these sequences.
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The first ten terms of the sequence a; are 0, 1, 6, 35, 204, 1189, 6930, 40391, 235416 and

1372105, it satisfies the recurrence relations ag = 0, a; = 1 and a,, = 6 a,_1 — Gy, for n > 2,

and it is given by the formula a, = ®*2 \/5);’\}(23*2 v

The first seven terms of the sequence b, are 1, 35, 1190, 40426, 1373295, 46651605 and
1584781276, it satisfies the recurrence relations by = 1, by = 35, by = 1190 and

bn =35 (bnfl - bn72) - bn73

forn > 3, and it is given by the formula b, = 155 (f+ F + f- F™ — 6), where fy = 99 £ 70 V2
and Fy = 17 £ 12+/2.

The first seven terms of the sequence ¢, are 1, 34, 1155, 39236, 1332869, 45278310 and

1538129671, it satisfies the recurrence relations co =1, ¢; = 34 and ¢, = 34¢,_1 — ¢, for
Fz-’rl_FiH'l

n > 2, and it is given by the formula ¢, = FioF

Finally, the first seven terms of the sequence d;. are 1, 33, 1121, 38081, 1293633, 43945441
and 1492851361, it satisfies the recurrence relations dy = 1, dy = 33 and d,, = 34d,,_1 — d,,_»
for n > 2, and it is given by the formula d,, = % Fy+ % Fm,

In the last three sections we look into the alternating sums of squares of odd and even
terms of the Pell-Lucas sequence and the alternating sums of products of two consecutive
Pell-Lucas numbers. These sums also have nice representations as products of appropriate
Pell and Pell-Lucas numbers with terms from the above four integer sequences.

These formulas for ordinary sums and for alternating sums have been discovered with the
help of a PC computer and all algebraic identities needed for the verification of our theorems
can be easily checked in either Derive, Mathematica or Maple V. Running times of all these
calculations are in the range of a few seconds.

Similar results for Fibonacci and Lucas numbers have recently been discovered by the first
author in papers [1], [2], [3], and [4]. They improved some results in [7].

2. PELL-LUCAS EVEN SQUARES

The following lemma is needed to accomplish the inductive step in the proof of our first
theorem.

Lemma 1. For every m > 0 and k > 0 the following equality holds:

32a2,1 + Q3piomio + Wit Qo - Qoprom = Ameo * Qok + Qogramaa. (2.1)

Proof. Let « =14 /2 and 3 =1 — /2. Notice that a + 5 =2 and a - 3 = —1 so that the
real numbers a and 8 are solutions of the equation 22 —2x —1 = 0. Since Q; = o’ + [/
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and

a‘_7a+5a2j_2+04~|—7ﬁ

2j—2
=1 Y&

for every j > 0, the difference of the right hand side and the left hand side of the relation
(2.1) (after the substitutions 8 = —1 and o =1+ /2 and the replacement of 99 + 70v/2,
17+ 12v2, 74+ 5v2, 3+ 2v2, 1 + /2, and —1 + /2 with af, o?, o®, a?, a and é) is equal
where M = py o™+ 4+ p_ o* with py = p, — 9232 — 6528 v/2 and

Py = 30 +17a"4+30a%+140° —5a* F3a°.

M
to 154>

Since both polynomials py and p_ contain o — 1 — /2 as a factor we conclude that M = 0
and the proof is complete. |

Theorem 1. For every m > 0 and k > 0 the following equality holds:

S Qur, ifm=0;
Qpy + Z D2k = { (2.2)
i=0

U1 - Qok - Qortom, fm =1,

where the sequence oy, is defined as follows: ag = —2, oy = 32, and qy, — ayy = 32 - a2,
form =2 (i. e, a,, =32- (Z;"Zl a?)).

Proof. When m = 0 we obtain
Qo — Qup — 2= (oczk + @2k)2 —att—ptt_2=29 (o/l“)2 (5’“)2 —92=0.

For m > 1 the proof is by induction on m. When m = 1 the relation (2.2) is
32 + Q3 + Qs — 6+ Qo - Qapy2 = 0

which is true since its left hand side is (a* —2a — 1)(a? + 2a — 1)(a®* + a1 — 6a72).

Assume that the relation (2.2) is true for m = r. Then

r+1 r
Qi1+ Y Qi =320, +a, + Q3 +>  Qoiai =
r+1 2k+2i — r+1 r 2k+2r+2 2k+2¢
=0 1=0

2 2
32a,., + Q2k+2r+2 + arg1 - Qok - Qakror = Gria - Qak - Qoryorio,

where the last step uses Lemma 1 for m = r 4+ 1. Hence, (2.2) is true for m = r 4+ 1 and the
proof is completed. O

Remark 1. The following are three additional versions of Theorem 1:

For every 7 > 0 and k > 1 the following equalities holds:

J
2
Q1+ E Qoroi = @1 - Qar—2 - Qapy2jy2, (2.3)
i=0

J
Z ng+21 = 7] + aj+1 : Q2k71 : Q2k+2j+17 (24)
=0



4 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A15

J
Z Q%H% =05 + aj1 - Qopy1 - Qoars2j—1, (2.5)
1=0

where 7o = 6o =8 and 7; — v;_1 = 2- P3;,, and 0; — ;-1 = 2- P, for every j > 1.

3. PELL-LUCAS ODD SQUARES

The initial step in an inductive proof of our second theorem uses the following lemma.

Lemma 2. For every k > 1 the following identity holds:
Qi1 — Qar—1 Qapys = 32. (3.1)

Proof. By the Binet formula @, = o™ + " so that we have
Q31 — Qau—1 Qaprs =
<a2k+1 T ﬁ2k+1)2 _ (OCZkfl + ﬁ2k71)(a2k+3 + ﬁ2k+3) —
2(a- B — (- B @'+ 8Y) = =24 Qs = -2+ 34 = 32.
L]

The following lemma is needed to accomplish the inductive step in the proof of our second
theorem.

Lemma 3. For every j > 0 and k > 1 the following equality holds:

Q§k+2j+3 + Q2k71(aj+1 Qokt2j+3 — Ajro Q2k+2j+5> =32 ajzurz- (3.2)

Proof. The difference of the left hand side and the right hand side of (3.2) (after the sub-
stitutions [ = —é and a = 1 4+ /2 and the replacement of 99 4+ 70v/2, 17 + 12v/2, 7+ 5v/2,
34+2v2,1+ 2, and —1 + V2 with of, o, o®, o, a and 1) is equal to 1o, where
M = pya™ 4 £ p_ o
with po = py — 1827888 — 1292512 v/2 and
pr =3 +17a® +30a2 £ 140! — 50! F3°.

Since both polynomials py and p_ contain o — 1 — /2 as a factor we conclude that M =0
and the proof is complete. |

Theorem 2. For every 7 > 0 and k > 1 the following equality holds:

J
2
Z Qokr2ir1 = Qi1+ @1 - Qogp—1 - Qarraj1s. (3.3)
i=0
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Proof. The proof is by induction on j. For j = 0 the relation (3.3) is

Qo1 = 32+ Qop—1 Qakts

which is true by the relation (3.1) in Lemma 2. Assume that the relation (3.3) is true for
j =r. Then

r+1 r
Q2 _ Q2 + Q ) -
2k+2i+1 — X 2k+2r+3 2k+2i+1 —

=0 i=0

2
Q3krorys + Qg1 + g1 - Qo1 - Qokgarss =
2
Qry1 + 3207, 9+ argo - Qop—1 - Qoptorys =

Ars1)41 T Qg2 - Qor—1 - Qorto(r4+1)+3,

where the third step uses Lemma 3. Hence, (3.3) is true also for j = r + 1 and the proof is
complete. 0
Another version of Theorem 2 is the following statement:

Theorem 3. For every j > 0 and k > 1 the following equality holds:

J
Bi + Z Q§k+2¢+1 = @11 - Qan—2 - Qor+2j+4, (3.4)

i=0
with By = 200 and 3; — 3,1 =2 Py 5 for j > 1.

Proof. We shall only outline the key steps in an inductive proof leaving the details to the
reader because they are analogous to the proof of Theorem 2.

The initial step is the equality 200 + Q3 ,, = Qax—2 Q244 which holds for every & > 1.
On the other hand, the inductive step is realized with the following equality:

2 2
2P 5+ Q5 yoris t a1 Qar—2 Qopyorra = Aryo Qo2 Qaryarye,

which holds for every k£ > 1 and every r > 1. |

4. PELL-LUCAS PRODUCTS

For the first two steps in a proof by induction of our next theorem we require the following
lemma.

Lemma 4. For every k > 1 the following equalities hold:
Qa2k Q241 = Qa1 + 2. (4.1)

Qar Qart1 + Qorr2 Qarts = 6 Qo Qa3 — 80. (4.2)
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Proof of (4.1). By the Binet formula we have

QQk Q2k+1 — (Oé2k + ﬁ2k) (a2k+1 + 62k+1) _
Oz4k+1 + (CL/ . ﬂ)Zk (04 + ﬂ) + 64k+1 _ Q4k+1 +2.
[

Proof of (4.2). When we apply the Binet formula to the terms in the difference of the left
hand side and the right hand side of (4.2) we get

80 4 o 4 a (aB)*F + B (aB)*F + B 4 ot L 0?2 (0 B)7F +
ﬁ3a/2 (O[ﬁ)Qk + /84]€+5 — 6atFt3 — 6ad (Oéﬁ)zk _ 6&3 (Oéﬁ)zk . 664k+3‘
Since a8 = —1, this simplifies to p(a) a** + p(B) 3* + ¢, where p(z) = 2° — 6% + z and
=3 +a*3F —6a>—68°+ a+ 3+ 80. Now it is easy to check (by the substitutions a

=1++v2and f=1—+/2) that p(a) = 0, p(3) = 0 and ¢ = 0. This implies that the relation
(4.2) holds. O

With the following lemma we shall make the inductive step in the proof of the third
theorem.

Lemma 5. For everyr > 1 and k > 1 the following equality holds:

QQk(ar+2 Q2k+2r+3 — Gr41 Q2k+2r+1) - Q2k+2r+2 Q2k+2r+3 =2 P49 P2r+3-

Proof. Let R denote the difference of the left hand side and the right hand side of the above
relation. We need to show that R = 0.

Let A=a?* B=p* U=pp% V=03 u= % and v = %. Note that a,,; is equal
to uU + v V. By the Binet formula we get

R=(A+B)[(ua®U+ v V)@ AU+ BV) - (uU +vV)
(AU+BBV)| = (a*? AU+ BV)(®* AU + 3 BV) —
(8u—m) A% —m

8
—2(AB-1)UV+({_vAB—n)V?

where (4 =4(10£7v2), m=4+3v2 and n=41—-29+2. Since AB=1, u="2 and
{_v = n it follows that R = 0. O

(QPU+ BV QPU+3V)=1(, [uAB+ U?

Theorem 4. For every j > 0 and k > 1 the following equality holds:

J o
4k if 7 =0;

aj + Z Qak+2i * Qak+2i+1 = o
Py a1 Qop - Qory2jr1, tfj =1,

where ag = =2, a1 = 80, and oy — oy =2 Pojyo - Pojys for j > 1.
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Proof. The proof is by induction on j. For j = 0 the relation (4.3) is

Qak Qort1 — 2 = Quia
which is true by (4.1). For j =1 the relation (4.3) is

80 + Qak Qar41 + Qorr2 Qoart3 = 6 Qo Qopts
which is true by (4.2).

Assume that the relation (4.3) is true for j = r. Then

r+1
Qrp1 + Z Qaok+2i Q2k12i41 = O + 2 Poryo Poryg
=0
,
+ Z Qan+2i Q2kt2i+1 T Qokv2r+2 Qoak2r+3 = Ar1 Qo Q22011
i=0
+ 2 Poryo Porys + Qopyorgr Qorgarss = rpo Qo Qarga(r41)+1,
where the last step uses Lemma 5. Hence, (4.3) is true also for j = r + 1. OJ

5. ALTERNATING PELL-LUCAS EVEN SQUARES
In this section we look for formulas that give closed forms for alternating sums of squares
of Pell-Lucas numbers with even indices.

Lemma 6. For every k > 0 we have

Q3 = 8+ Qapyr - Qae—1- (5.1)

Proof. By the Binet formula we get
8 + Qo1 Qo1 = 8+ (o714 BN (2 ) =8 + ot +
62 (Oéﬁ)Qk_l + 042 (Oé /B)Zk—l + 64k — a4k + 2 + 64k — (OéQk + ﬁ2k)2 — ng
OJ

Lemma 7. For every k > 0 we have
ng - ngw =32 (1 — ag1 Q2x)- (5.2)
Proof. For real numbers a, b and ¢ let p¢, q, and t%° denote ‘Z‘;;_g:, a® + 3% and @ The
difference of the left hand side and the right hand side in (5.2) is
(q21)% — (dorr2)® — 32+ 32 (t&l ot + t}g 5%) k-
Let o?* = A and 3% = B. The above expression reduces to

p(a) A+ qAB+p(B) B® — 32,
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where p(a) =1+ 14a+28—a* and g=2+16a+ 163 —2a* 5% If we replace o and
B with 1++1/2 and 1 — /2 we get p(a) = p(3) =0 and ¢ = 32. Hence, the difference is
32AB —32=0 because AB = 1. O

Lemma 8. For every k > 0 and every r > 0 we have

32 ¢ (1 = apirg1 Qangor) + Q§k+4r+4 - Q§k+4r+6 (5.3)

=321 - (1 — appryo Qoprarta)-

Proof. Notice that ¢, = p; ™ for every r > 0. The difference of the left hand side and the
right hand side in (5.3) is
392. pir+4 [1 . (tﬂ;l a2k+2r + t};67 ﬁ2k+2r) q2k+2r] + (Q2k+4r+4)2 .

(Gkyarte)® — 3230 [1 = (efg @™ 7272 oyl B2F2742) gy op0]

Let a?* = A, 3 = B, o> =U and 3% = V. The above expression reduces to 044—]\—4&1’
where M is

pla, B) A2U* — q(a, ) A2U? V2 + (0, ) ABUPV +2s ABU? V2 —
p(B,a)B*V* 4+ q(8,a)B*U*V? —r(3,a) ABU V° — 32(t(a)U* — t(B3)V?),
where

pla, B) = t(a)(a* p* —a® +140° + 20" B+ 14a + 2 ),
q(e, B) =234(Ta+ p)(a" B - 1),

r(a, 8) =16a’(a + B)(a® 5% - 1),

s=a'Ba* — 1) (a?F? — 1) and t(a) = o (a* — 1). Replacing o and 3 with 14 /2 and
1—+2 we get

M=u,ABU*V —u_ABUV?® —u, U? +u_V?

where uy = 128(140 + 99 \/5) Hence, M = 0 so that the difference is zero because AB =1
and UV = 1. OJ

Lemma 9. For every k > 0 and every r > 0 we have

dr ) Q%k+2r — 64 br—l - ng+4r+2 + Q%k+4r+4 = dr+1 : ng+2r+2 — 64 b?"'

Proof. Notice that

16929 4 29;169 Hdr 1
br =T3gy @ + 35y [ T3

and

_ 51 4 1;5 odr
dr =t @+ [
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for every r > 0. The difference of the left hand side and the right hand side is

51 15 169:29 dr— 29,169 pdr—
(t12 o'+ i3D) 4T) (q2k+2v~)2 — % ot — T 64T ‘- (Q2k+4r+2)2 +
16929  dr _ 295169 3.

(q2k+4r+4)2 - (t?;zl ottt + t%f ﬁ4r+4) : (q2k+2r+2>2 + 5 6

Let o®* = A, % = B, o> = U and % = V. The above expression reduces to %,
where M is

p(a, B)A2U* + q(a, B)(AUV)? + (o, B)ABU®V — 245 AB(UV)? +
p(8,)B?V* + ¢(B,0)(BUV)? + r(8,0) ABUV? — t(a, B)U* — t(3, a)V?,
with P = (a8)4,
pla,B)=Pa* = 1)(5a° +a* B —12a* +5a + f),

g(a, f) = P (P = D)(a+50),

r(a,8) =2P (@’ B ~1)(5a + ),
s= P(P—a?#3?) and t(a, ) = 2 (P — $*)(169 a + 29 3). Replacing o and 3 with 14 /2
and 1 — /2 we get
M=u, ABU*V +u_ABUV?® —u U*—u_V?
where uy = 16(24 + 171/2). Hence, M = 0 so that the difference is zero because A B = 1
and UV = 1. O

Theorem 5. a) For every m > 0 and k > 0 the following equality holds:
2m+1

(1) Q3o =32+ o (1= G - Qanrom), (5.4)

=0

b) For every m > 1 and k > 0 the following equality holds:

2m

Z (_1>i ’ Q§k+2i = - Q§k+2m — 64 - by (5.5)

1=0

Proof of a). The proof is by induction on m. For m = 0 the relation (5.4) is

Q% — Q%mz =32 (1 — ar1 Qo)
(i. e., the relation (5.2)) which is true by Lemma 7.

Assume that the relation (5.4) is true for m = r. Then

2(r+1)+1 2r+1
Z (_1)1 ) ng-ﬂi = Z (_1>Z ) Q%k-i-% + ng+4r+4 - ng+4r+6
i=0 1=0

2 2
=32-¢ - (1 = apgrs1 - Qorror) + Qoprris — Qopgarss

=32 Crp1 - (1 = apg 1)1 - Qoargo0r+1))s



10 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A15

where the last step uses Lemma 8. Hence, (5.4) is true for m =7+ 1 and the proof is
completed. N

Proof of b). The proof is by induction on m. For m = 0 the relation (5.5) is
Qi = do Q3 — 640,

which is true since dp =1 and b_; = 0.

Assume that the relation (5.5) is true for m = r. Then

2(r+1) 2r
Z (—=1)"- Q%k+2z‘ = Z (=1)"- ng% - ng+4r+2 + Q%k+4r+4 =
i=0 i=0

dr - Q3pyor — 640, 1 — Q3 arir + Qpiaris = ot - Qopporyn — 640y,

where the last step uses Lemma 9. Hence, (5.5) is true for m =r 4 1 and the proof is
completed. O

6. ALTERNATING PELL-LUCAS ODD SQUARES

Lemma 10. For every k > 0 we have

Qdkrs — Qoper = 32 g - Qarya. (6.1)

Proof. By the Binet formulas the difference of the left hand side and the right hand side in
(6.1) is

Q%k-}—?, o ng-H — 392 Aot Q2k+2 — (a2k+1 + ﬁQk—H)Q o (a2k+3 + 52143-1-3)2

39 <70z1—€|j— 6042]“ L@ 1—67562k> (a2 | gok+2).

Let o?* = A and 3% = B. The above expression reduces to
p(@)A* —q A B+ p(8)B?,

whereq = 20?3 —2a 8 —2a® — 14 f2a — 14?3 — 2 4% and p(a) = o?(14a — o* + 23 + 1).
It is easy to check (by substitutions o = 14 /2 and § =1 — v/2) that p(a) =0, p(8) =0
and ¢ = 0. This implies that the relation (6.1) is true. O

Lemma 11. For every k > 0 we have

8+ Q3pp1 = Qor - Qakyo (6.2)

Proof. Using the Binet representation of Pell-Lucas numbers we get

8+ Q%k-{-l . Q2kQ2k+2 — 84+ (@2k+l + 62k+1)2 _ (OéQk 4 62]@)(@216-1-2 + 62k+2)
=8+ 2(aB)* —(ap)*(®+3)=8-2-6=0,
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because o 3 = —1 and o? + 32 = 6. Hence, 8 + Q§k+1 = Q21 Q2r+2. O
Lemma 12. For all k > 0 and r > 0 we have L = 0, where L s

2 2
Qohrtrss — Qoprarir — 32¢Cr » Qpgrg1 - Qorgart2 + 32 Crp1 - Qhgri2 - Qokg2r4a-

Proof. The expression L is in fact

7;1 1;7
(q2k+4r+5>2 - (q2k+4r+7>2 — 32 PZITH (th RS Vi 52k+2r) q2k+2r+2

Ar48 (Tl 2kt2r42 | LT 42k42r42
+32py " (v @ + vy 0 ) Q2k42r4-

Let o = A, f?* =B, o =U and 3% = V. The above expression reduces to OAL%,

where M is
pla, B)A2U* 4+ 2q(a, B)(AUV)? + 27(a, B)ABUPV —
25 AB(UV)? — p(B,a)B*V* +2q(3,a)(BUV)* = 27(83,a) ABUV?,
with
pla,B) =ab(a* —1)(a*B* —a® + 140° +2a* B+ 14 +2),
q(a, B) = 2B ((aB)* = 1)(Ta + B),

r(a, B) = a(a + B)(a® 7 = 1)(a” + 63 + 5%)

and s = a°B°((a3)? — 1)(a* — 3*). Replacing o and 3 with 1 + /2 and 1 — /2 we see easily
that all coefficients of the above polynomial vanish so that L = 0. O

Lemma 13. For every k > 0 and every r = 0 we have

2(P22r+3 - P22r+1) +d, - Qakror - Qokrorio

— Q3 rarys T Qoprarss = drr1 - Qoprorgo - Qourorya
Proof. The difference of the left hand side and the right hand side is

8 (pE) = (037)°] + (5 a¥ 4+ ¢1F B) Garsaraniars —

51 1;5
<q2k+4r+3)2 + (q2k+4r+5)2 - (1712 ottt (5D 54T+4) q2k+2r+292k+2r4+4-

Let o?* = A, 3°* = B, o® = U and % = V. The above expression reduces to Wﬁ”ﬁ)%
where M is
(a = B)? [pla, B)A2U* + (v, B)(AUV)? + r(e, B) ABU®V —
245 AB(UV)* + p(3,0) B°V* + ¢(3,0)(BUV)? + r(3,0) ABUV?|
— 96 [t(a)U? — 20UV +t(B)V?],
with t(a) = a?(a* — 1),
pla, B) = t(a)(5a’® + o’ —12a* + 50 + ),
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q(a, B) = t(ap)(a +58)/6,

r(a, 8) = (o + °)(a” 2 = 1)(ba + B),
s =a’F((af)? —1) and w = aB((af)? — 1). Replacing a and 8 with 1 ++/2 and 1 — /2

we get
M=u, ABU*V +u_ABUV?® —u U* —u_V?

where us = 384(24 & 17+/2). Hence, M = 0 so that the difference is zero since A B = 1 and
Uv =1. O

Theorem 6. a) For every j > 0 and k > 0 the following equality holds:

2j+1

Z (—1)i ) Q§k+2i+1 = =32 ¢j - agyjr1 - Qaryzjv2, (6.3)
i=0

b) For every j > 1 and k > 1 the following equality holds:

25
2 P22j+1 + Z (=1)"- Q%k+2i+1 = d; - Qar+2j - Qart2j+2- (6.4)
i=0

Proof of a). The proof is by induction on j. For j = 0 the relation (6.3) is

Q%k+3 — Qi1 = 32141 Qa2
(i. e., the relation (6.1)) which is true by Lemma 10.

Assume that the relation (6.3) is true for j = r. Then

2(r+1)+1 2r+1
i 2 i 2 2 2
Z (—1)" Qapyoi1 = Z (—1)" Qapsoir1 + Qoprarrs — Qapsarir
i=0 i=0

_ 2 2
= —32¢ Qhgri1 Qary2r+2 + Qopiarrs — Qoprarir

= =32 41 Qppra2 Qory2r+4,

where the last step uses Lemma 12. Hence, (6.3) is true for j =7+ 1 and the proof is
completed. N

Proof of b). The proof is again by induction on j. For j = 0 the relation (6.4) is

2P} + ng—&-l = do Q2r Q2r+2

which is true by Lemma 11 since dy = 1 and P, = 2.
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Assume that the relation (6.4) is true for j = r. Then

2(r+1)
r+3 + Z Q2k+21+1 2<P227"+3 - P227"+1)

+ < a1+ Z Q2k+2z+1> — Q3praris T Qapyarys =

2 2 2 2
2(Pyyy5 — P2r+1) + d; Qarror Qorr2ri2 — Qopyarys + Qopyarss

- d'r-l-l Q2k+2r+2 Q2k+2'r+47

where the last step uses Lemma 13. Hence, (6.4) is true for m =r 4+ 1 and the proof is
completed. N

7. ALTERNATING PELL-LUCAS PRODUCTS

Lemma 14. For every k > 0 we have

Qar Q2r+1 — Qort2 Q2rt3 + 8 Popyz Qar, = 80. (7.1)

Proof. The difference of the left hand side and the right hand side in (7.1) is
Qok okt — Gkt 2krs + 16T qap — 80

Let o?* = A and 3% = B. The above expression reduces to ai_ﬁ where M is

p(a) A* =g AB —p(B) B* — 80(a — ),
with p(a) = a(fa? —a® +16a* + a — 3) and
g=(a—B3)?pf*+a*p —160> —16a3 — 163> —a — 3).

If we replace o and 8 with 1+ /2 and 1 — /2 we get p(a) = p(3) = 0 and ¢ = —160 /2
and 80(a — 3) = 160 /2. Hence, M = 0 because A B = 1. O

Lemma 15. For allk > 0 and r > 0 we have

8 Cry1 - <P2k:+2r+5 ' Q2k+2r+2 - 10) + Q2k+4r+4 ' Q2k+4r+5 =

8¢ - (Pokyorts - Qarrar — 10) + Qortarte - Qoktarir-

Proof. The difference L of the left hand side and the right hand side is

8p4r+8 [ p2k+2r+5 Jokt2ri2 — 10} + Q2k+4r+4 Q2k+4r+5

Ar44 2%k+2r+3
— O2k4-4r+6 U2k+ar+7 — 3Py [2 Pi

Gokt2r — 10]
Let o?* = A, %! = B, o® = U and 3*" = V. The above expression reduces to
M

(a+ B)(a—B)2(a%+ 5?)
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where M is
p(a, B)A?U* — 16 q(a, B)(AUV)? +167(a, B)ABU?V — s AB(UV)? +
p(B,a)B*V* — 16 ¢(8, a)(BUV)? — 16 7(3,0) ABUV?® — t(a)U* + t(3)V?,
with
pla, B) =’ (a* — 1) (a®B — a” +a?p* — a?5° + 16 a* + 16),
g(a, B) = a’BY((ap)! = 1),
5= ' ((aB)? ~ 1)(0 + F)(0? — 52,
r(a, 8) = a'(a = B)(a” 5 = 1)(a® + af + §7)
and t(a) = 80 a*(a — ) (a* —1). Replacing a and 8 with 1 ++/2 and 1 — /2 we get
M=u, ABU*V +u_ABUV?® —u, U* —u_V?

where us = 1280(99 + 701/2). Hence, M = 0 so that the difference is zero since AB = 1
and UV = 1. 0J

Lemma 16. For allk > 0 and r > 0 we have

64c, +d, - Qapror - Qakrort1 + Qortarta - Qoktarss =

dri1 - Qaktort2 - Qokrorys + Qaprart2 - Qoktarss.

Proof. The difference L of the left hand side and the right hand side is
64pyt + (t?; o'+ t};;, 4T) O2k+2r U2k+2r+1 — U2k+4r+2 U2k+4r+3
51 4r+4 1;5 Hdr+4
+ Q2k+4r+4 Q2k+4r+5 — (tlg «Q +15 0 ) q2k+2r+2 92k+2r4-3-

Let o = A, 3%* = B, o® = U and 3> = V. The above expression reduces to ﬁ,
where M is

p(a, B) AU — q(o, B)(AUV)? + r(a, B)ABUV + 125 AB(UV)? —
p(3,0)B*V* — q(B3,a)(BUV)? — r(3,0) ABUV? + t(a)U? — t(B)V?,
with
p(a, B) = a(a* = 1)(B* — a*)(5a° + a'f — 120 +5a + 3),

s =a’F*((af)? = 1)(8* — a’)(a + B),
r(e, ) = (8 = a*)(a + B)(5a + B)(a° §* — 1),

q(e, 8) = a((aB)' = 1)(3* = a')(a + 50)
and t(a) = 768 a*. Replacing o and 3 with 14 v/2 and 1 — /2 we get
M=—u, ABU*V +u_ABUV?® +u,U? —u_V?,
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where us = 768(17 & 12/2). Hence, M = 0 so that the difference is zero since A B = 1 and
Uv =1. O

Theorem 7. a) For every j > 0 and k > 0 the following equality holds:

2j+1
Z (_1)i'Q2k+21'Q2k+21+1 = —8-¢;- (Partoj43- Qart2; —10), (7.2)

1=0

b) For every j = 0 and k > 0 the following equality holds:

2j
B + Z (=1)" - Qop+2i - Qokr2it1 = dj - Qanraj - Qort2jt1, (7.3)
=0

where the sequence f3; is determined by the conditions: By =0 and B;4+1 = B; + 64 -¢; for
every 7 = 0.

Proof of a). The proof is by induction on j. For j = 0 the relation (7.2) is

Qo Qa1 — Qort2 Q2 = —8 Papy Qax + 80
(i. e., the relation (7.1)) which is true by Lemma 14.

Assume that the relation (7.2) is true for j = r. Then

2(r41)+1 241
Z (—1)" Qak+2i Qopr2ip1 = Z (—1)" Qakt2i Qopr2it1 +
i=0 =0
Qokrarva Qokyarss — Qorrarts Qargartr = =8¢y (Poryorys Qoprar — 10) +
Qoktar+4 Qoktar+s — Qoprarye Qorrarr = —8Cr 11 (Porgarts Qaktarz — 10),

where the last step uses Lemma 15. Hence, (7.2) is true for j =7+ 1 and the proof is
completed. H

Proof of b). The proof is once again by induction on j. For j =0 the relation (7.3) is
Bo + Qar, Qars1 = dy Qar, Qarr1 Which is true since dy = 1 and 5y = 0.

Assume that the relation (7.3) is true for j = r. Then

2(r+1)
Bri1 + Z (—=1)" Qapr2i Qort2i+1 = Bry1 — B + Br +
i=0
2r
Z (—1)" Qarr2i Qort2i+1 — Qoktdrt2 Qokrarss + Qorrdria Qokrarss =
=0

64 ¢, + dr Qaryor Qoktor+1 — Q2rtar+2 Qortar+s + Qortarta Qoktarts
== errl Q2k+2r+2 Q2k+2r+37

where the last step uses Lemma 16. Hence, (7.3) is true for j =r + 1 and the proof is
completed. O
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We mention also the following equalities that have been discovered while attempting to
prove Theorem 7.

Theorem 8. For every k > 0 we have
Qok - Qok1 = Qapys - Qop—2 — 80 =2+ (Popyo - Pop—1 — 6).
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