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Abstract

Let a1, a2, . . . , ak be positive and pairwise coprime integers with product P . For each i,
1 ≤ i ≤ k, set Ai = P/ai. We find closed form expressions for the functions g(A1, A2, . . . , Ak)
and n(A1, A2, . . . , Ak) that denote the largest (respectively, the number of) N such that the
equation A1x1 + A2x2 + · · · + Akxk = N has no solution in nonnegative integers xi. This is
a special case of the well-known Coin Exchange Problem of Frobenius.

1. Introduction

Given positive integers a1, a2, . . . , ak, relatively prime, it is well-known that for all sufficiently
large N the equation

a1x1 + a2x2 + · · · + akxk = N (1)

has a solution with nonnegative integers xi. If we denote by g(a1, a2, . . . , ak) the largest
integer N such that (1) has no solution in nonnegative integers, then it is a well-known
result of Sylvester that g(a1, a2) = a1a2 − a1 − a2. The related functions n(a1, a2, . . . , ak)
and s(a1, a2, . . . , ak) denote the number of positive integers N for which (1) has no solution
and the sum of such integers, respectively. While it is well-known that n(a1, a2) = (a1 −
1)(a2 − 1)/2, the corresponding result s(a1, a2) = (a1 − 1)(a2 − 1)(2a1a2 − a1 − a2 − 1)/12 is
more recent and less known [4]. Except when the ai’s are in arithmetic progression [1, 5, 9, 15]
or in certain other particular cases with three or more variables [2, 3, 7, 10, 11, 12, 13, 14],
there is no closed form expression for either g or n. More information on this problem may
be found in the recently published monograph [8].

The purpose of this note is to obtain a formula for the functions g and n in a special case.
More specifically, we shall henceforth assume that the ai’s are pairwise coprime with product
P , and set Ai = P/ai for 1 ≤ i ≤ k. We determine g(A1, A2, . . . , Ak) and n(A1, A2, . . . , Ak)
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by two methods. The first method uses a reduction formula while the second method is
direct. We note that g(A1, A2) = g(a1, a2) and n(A1, A2) = n(a1, a2).

We close by showing that the set S! introduced in [16] has exactly one element in the
special case we are dealing with. Since it is known (and easy to see from the definition of
S!) that g ∈ S!, we have further confirmation of the result for g in the special case.

2. Main Results

For the sake of completeness, we prove two well-known results that help in evaluating the
functions g and n in the general case.

Lemma 1 [3, 13]. Let gcd(a1, a2, . . . , ak) = 1, and for 1 ≤ j ≤ a1 − 1, let mj denote the
least positive integer N congruent to j mod a1 such that (1) has a solution in nonnegative
integers. Then

(a) g(a1, a2, . . . , ak) = max
1≤j≤a1−1

mj − a1;

(b) n(a1, a2, . . . , ak) =
1

a1

a1−1∑

j=1

(mj − j) =
1

a1

a1−1∑

j=1

mj −
a1 − 1

2
.

Proof.

(a) From the definition of mi it follows that mi − a1 is not representable by a1, . . . , ak in
nonnegative integers for each i, 1 ≤ i ≤ a1. On the other hand, any N greater than
each mi − a1 and congruent to j mod a1 must be at least mj, and hence representable
by a1, . . . , ak in nonnegative integers.

(b) Since the numbers congruent to j mod a1 and not representable by a1, . . . , ak in non-
negative integers form an arithmetic progression with first term j, last term mj − a1

and common difference a1, their number is given by (mj − j)/a1. The second part of
the lemma now easily follows. !

Lemma 2 [6, 11]. Let a1, a2, . . . , ak be positive integers. If gcd(a2, . . . , ak) = d and
aj = da ′

j for each j > 1, then

(a) g(a1, a2, . . . , ak) = d g(a1, a ′
2, . . . , a ′

k) + a1(d − 1);

(b) n(a1, a2, . . . , ak) = d n(a1, a ′
2, . . . , a ′

k) + 1
2(a1 − 1)(d − 1);
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Proof. As in Lemma 1, for each j, 1 ≤ j ≤ a1 − 1, let mj and m ′
j denote the least pos-

itive integer congruent to j mod a1 representable as a nonnegative linear combination of
a1, a2, . . . , ak and a1, a ′

2, . . . , a ′
k, respectively. Since each such mj and m ′

j must also be rep-
resentable as a nonnegative linear combination of a2, . . . , ak and of a ′

2, . . . , a ′
k, respectively,

it follows that {mj : 1 ≤ j ≤ a1 − 1} = {dm ′
j : 1 ≤ j ≤ a1 − 1}. We now apply Lemma 1.

For part (a) we have

g(a1, a2, . . . , ak) = max
1≤j≤a1−1

mj − a1

= d

(
max

1≤j≤a1−1
m ′

j − a1

)
+ a1(d − 1)

= d g(a1, a ′
2, . . . , a ′

k) + a1(d − 1).

For part (b) we have

n(a1, a2, . . . , ak) =
1

a1

a1−1∑

j=1

mj −
1

2
(a1 − 1)

= d

(
1

a1

a1−1∑

j=1

m ′
j −

1

2
(a1 − 1)

)
+

1

2
(a1 − 1)(d − 1)

= d n(a1, a ′
2, . . . , a ′

k) + 1
2(a1 − 1)(d − 1).

!

Theorem 1. Let a1, a2, . . . , ak be pairwise coprime, positive integers with product P . Let
Ai = P/ai for 1 ≤ i ≤ k. Let σr denote the sum of the products of the ai’s taken r at a
time, so that σk = P and σk−1 = A1 + A2 + · · · + Ak. Then

(a) g(A1, A2, . . . , Ak) = (k − 1)σk − σk−1;

(b) n(A1, A2, . . . , Ak) =
1

2
{(k − 1)σk − σk−1 + 1}.

Proof. This is a direct consequence of Lemma 2. We induct on k. If k = 2, these are just
the well-known results mentioned in the Introduction. We observe that Ak is a multiple of
Aj/ak = A ′

j for each j $= k since Aj|akAk = σk and ak|Aj if j $= k.

For part (a), by the induction hypothesis, we have

g(A1, A2, . . . , Ak) = ak g

(
A1

ak
,
A2

ak
, . . . ,

Ak−1

ak
, Ak

)
+ Ak(ak − 1)

= ak g

(
A1

ak
,
A2

ak
, . . . ,

Ak−1

ak

)
+ σk − Ak

= ak g(A ′
1, A

′
2, . . . , A ′

k−1) + σk − Ak

= (k − 2)σk − (σk−1 − Ak) + σk − Ak

= (k − 1)σk − σk−1.
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For part (b), by the induction hypothesis, we have

n(A1, A2, . . . , Ak) = ak n

(
A1

ak
,
A2

ak
, . . . ,

Ak−1

ak
, Ak

)
+

1

2
(ak − 1)(Ak − 1)

= ak n

(
A1

ak
,
A2

ak
, . . . ,

Ak−1

ak

)
+

1

2
σk −

1

2
ak −

1

2
Ak +

1

2

= ak n(A ′
1, A

′
2, . . . , A ′

k−1) +
1

2
σk −

1

2
ak −

1

2
Ak +

1

2

=
1

2
{(k − 2)σk − (σk−1 − Ak) + ak + σk − ak − Ak + 1}

=
1

2
{(k − 1)σk − σk−1 + 1}.

!

The proof of Theorem 1 given above is based on Lemma 2. It is indeed possible to give
an independent proof. Using the notation of Theorem 1, we give a

Second proof of Theorem 1. Let a1, a2, . . . , ak be pairwise coprime, positive integers.
Let σr denote the sum of the products of the ai’s taken r at a time, and let Aj = σk/aj for
1 ≤ j ≤ k. Then g(A1, A2, . . . , Ak) = (k − 1)σk − σk−1.

Proof. If each xj ≥ 0 and

A1x1 + A2x2 + · · · + Akxk = (k − 1)σk − σk−1, (2)

Ajxj ≡ −Aj mod aj, so that xj ≥ aj − 1 since gcd(aj, Aj) = 1. But then

k∑

j=1

Ajxj ≥
k∑

j=1

Aj(aj − 1) ≥ kσk − σk−1,

and (2) has no solution in nonnegative integers.

Since the Aixi + Ajxj = Ai(xi + ai) + Aj(xj − aj), and since gcd(A1, A2, . . . , Ak) = 1, we
can always write any N in the form A1x1 + A2x2 + · · · + Akxk with 0 ≤ xj ≤ aj − 1 for
1 ≤ j ≤ k − 1. Now, if N > (k − 1)σk − σk−1 and we choose xj as above, then

xk =
N −

∑k−1
j=1 Ajxj

Ak
>

∑k−1
j=1 Aj(aj − xj − 1)

Ak
− 1 ≥ −1.

Thus xk ≥ 0, and every N greater than (k − 1)σk − σk−1 is expressible as a nonnegative
linear combination of the Aj’s. !

Lemma 3. Let a1, a2, . . . , ak be pairwise coprime, positive integers, and let Aj = σk/aj for
1 ≤ j ≤ k. If p, q are integers such that p + q = g(A1, A2, . . . , Ak), then exactly one of the
equations A1x1 + A2x2 + · · · + Akxk = p and A1x1 + A2x2 + · · · + Akxk = q is solvable in
nonnegative integers xj.
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Proof. If both the equations had a solution, so would g(A1, A2, . . . , Ak), contradicting its
definition. Suppose A1x1 + A2x2 + · · · + Akxk = p has no solution in nonnegative integers.
Choose xj such that 0 ≤ xj ≤ aj − 1 for 1 ≤ j ≤ k − 1. But then xk < 0, and

q = (k − 1)σk − σk−1 − p =
k−1∑

j=1

Aj(aj − xj − 1) + Ak(−xk)

is expressible in the given form, proving the lemma. !

Corollary 1. Let a1, a2, . . . , ak be pairwise coprime, positive integers. Let σr denote the
sum of the products of the ai’s taken r at a time, and let Aj = σk/aj for 1 ≤ j ≤ k. Then
n(A1, A2, . . . , Ak) = 1

2{(k − 1)σk − σk−1 + 1}.

Proof. If we pair p with q whenever p + q = g(A1, A2, . . . , Ak) and p, q ≥ 0, by Lemma 1,

n(A1, A2, . . . , Ak) =
1

2
{1 + g(A1, A2, . . . , Ak)} .

The corollary now follows from Theorem 1. !

The evaluation of g given in Theorem 1 can also be derived by explicitly determining the
set S!, introduced in [16], since g(a1, a2, . . . , ak) is the largest element in S!(a1, a2, . . . , ak).
For positive and coprime integers a1, a2, . . . , ak, let Γ! denote the positive integers in the set
{a1x1 + a2x2 + · · · + akxk : xj ≥ 0}. Then

S!(a1, a2, . . . , ak) := {n /∈ Γ! : n + Γ! ⊂ Γ!} ⊆ {mj − a1 : 1 ≤ j ≤ a1 − 1}.

Moreover,

mj − a1 ∈ S!(a1, a2, . . . , ak) ⇐⇒ mj + mi > mj+i for 1 ≤ i ≤ a1 − 1. (3)

We refer to [16] for the more notations and results. With the notations above, we show
that S!(A1, A2, . . . , Ak) = {(k − 1)σk − σk−1} for each k ≥ 2. Since g(a1, a2, . . . , ak) ∈
S!(a1, a2, . . . , ak), this further verifies the first result of Theorem 1.

Theorem 2. Let a1, a2, . . . , ak be pairwise coprime, positive integers. Let σr denote the
sum of the products of the ai’s taken r at a time, and let Aj = σk/aj for 1 ≤ j ≤ k. Then
S!(A1, A2, . . . , Ak) = {(k − 1)σk − σk−1} for k ≥ 2.

Proof. We prove the result by inducting on k. The case k = 2 is a special case of the
main result in [16]. Given pairwise coprime, positive integers a1, a2, . . . , ak, define integers
A1, A2, . . . , Ak as above. As in the proof of Lemma 2, for each j, 1 ≤ j ≤ Ak −1, let Mj and
M ′

j denote the least positive integer congruent to j mod Ak representable as a nonnegative
linear combination of A1, A2, . . . , Ak and A ′

1, A
′
2, . . . , A ′

k−1, Ak, respectively, where A ′
j =

Aj/ak for 1 ≤ j ≤ k − 1. Then {Mj : 1 ≤ j ≤ Ak − 1} = {akM ′
j : 1 ≤ j ≤ Ak − 1}. Observe

that each A ′
i divides Ak, and that {A ′

1, A
′
2, . . . , A ′

k−1} is just the set of Ai’s corresponding
to a1, a2, . . . , ak−1. From (3), Mj − Ak ∈ S!(A1, A2, . . . , Ak) if and only if Mj + Mi > Mj+i
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for 1 ≤ i ≤ Ak − 1, which holds precisely when M ′
j + M ′

i > M ′
j+i for 1 ≤ i ≤ Ak − 1.

Thus Mj − Ak ∈ S!(A1, A2, . . . , Ak) if and only if M ′
j − Ak ∈ S!(A ′

1, A
′
2, . . . , A ′

k−1, Ak) =
S!(A ′

1, A
′
2, . . . , A ′

k−1), which is the set {(k − 2)a1a2 · · · ak−1 − (A ′
1 + · · · + A ′

k−1)}, by the
induction hypothesis. It now follows that S!(A1, A2, . . . , Ak) = {akM ′

j − Ak} = {(k −
2)a1a2 · · · ak −ak(A ′

1 + · · ·+A ′
k−1)+akAk −Ak} = {(k−1)a1a2 · · · ak − (A1 +A2 + · · ·+Ak)},

as desired. !
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