ON A LINEAR DIOPHANTINE PROBLEM OF FROBENIUS

Amitabha Tripathi

Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi – 110016, India atripath@maths.iitd.ac.in

Received: 3/17/06, Revised: 4/17/06, Accepted: 4/24/06, Published: 5/3/06

Abstract

Let a_1, a_2, \ldots, a_k be positive and pairwise coprime integers with product P. For each i, $1 \leq i \leq k$, set $A_i = P/a_i$. We find closed form expressions for the functions $g(A_1, A_2, \ldots, A_k)$ and $n(A_1, A_2, \ldots, A_k)$ that denote the *largest* (respectively, the *number* of) N such that the equation $A_1x_1 + A_2x_2 + \cdots + A_kx_k = N$ has no solution in nonnegative integers x_i . This is a special case of the well-known *Coin Exchange Problem* of Frobenius.

1. Introduction

Given positive integers a_1, a_2, \ldots, a_k , relatively prime, it is well-known that for all sufficiently large N the equation

$$a_1 x_1 + a_2 x_2 + \dots + a_k x_k = N \tag{1}$$

has a solution with nonnegative integers x_i . If we denote by $g(a_1, a_2, \ldots, a_k)$ the largest integer N such that (1) has no solution in nonnegative integers, then it is a well-known result of Sylvester that $g(a_1, a_2) = a_1a_2 - a_1 - a_2$. The related functions $n(a_1, a_2, \ldots, a_k)$ and $s(a_1, a_2, \ldots, a_k)$ denote the number of positive integers N for which (1) has no solution and the sum of such integers, respectively. While it is well-known that $n(a_1, a_2) = (a_1 - 1)(a_2 - 1)/2$, the corresponding result $s(a_1, a_2) = (a_1 - 1)(a_2 - 1)(2a_1a_2 - a_1 - a_2 - 1)/12$ is more recent and less known [4]. Except when the a_i 's are in arithmetic progression [1, 5, 9, 15] or in certain other particular cases with three or more variables [2, 3, 7, 10, 11, 12, 13, 14], there is no closed form expression for either g or n. More information on this problem may be found in the recently published monograph [8].

The purpose of this note is to obtain a formula for the functions g and n in a special case. More specifically, we shall henceforth assume that the a_i 's are *pairwise* coprime with product P, and set $A_i = P/a_i$ for $1 \le i \le k$. We determine $g(A_1, A_2, \ldots, A_k)$ and $n(A_1, A_2, \ldots, A_k)$ by two methods. The first method uses a reduction formula while the second method is direct. We note that $g(A_1, A_2) = g(a_1, a_2)$ and $n(A_1, A_2) = n(a_1, a_2)$.

We close by showing that the set S^* introduced in [16] has exactly one element in the special case we are dealing with. Since it is known (and easy to see from the definition of S^*) that $g \in S^*$, we have further confirmation of the result for g in the special case.

2. Main Results

For the sake of completeness, we prove two well-known results that help in evaluating the functions g and n in the general case.

Lemma 1 [3, 13]. Let $gcd(a_1, a_2, ..., a_k) = 1$, and for $1 \le j \le a_1 - 1$, let m_j denote the *least* positive integer N congruent to $j \mod a_1$ such that (1) has a solution in nonnegative integers. Then

(a)
$$g(a_1, a_2, \dots, a_k) = \max_{1 \le j \le a_1 - 1} m_j - a_1;$$

(b) $n(a_1, a_2, \dots, a_k) = \frac{1}{a_1} \sum_{j=1}^{a_1 - 1} (m_j - j) = \frac{1}{a_1} \sum_{j=1}^{a_1 - 1} m_j - \frac{a_1 - 1}{2}.$

Proof.

- (a) From the definition of m_i it follows that $m_i a_1$ is not representable by a_1, \ldots, a_k in nonnegative integers for each $i, 1 \le i \le a_1$. On the other hand, any N greater than each $m_i a_1$ and congruent to $j \mod a_1$ must be at least m_j , and hence representable by a_1, \ldots, a_k in nonnegative integers.
- (b) Since the numbers congruent to $j \mod a_1$ and not representable by a_1, \ldots, a_k in nonnegative integers form an arithmetic progression with first term j, last term $m_j - a_1$ and common difference a_1 , their number is given by $(m_j - j)/a_1$. The second part of the lemma now easily follows.

Lemma 2 [6, 11]. Let a_1, a_2, \ldots, a_k be positive integers. If $gcd(a_2, \ldots, a_k) = d$ and $a_j = da'_j$ for each j > 1, then

(a)
$$g(a_1, a_2, \dots, a_k) = d g(a_1, a'_2, \dots, a'_k) + a_1(d-1);$$

(b)
$$n(a_1, a_2, \dots, a_k) = d n(a_1, a'_2, \dots, a'_k) + \frac{1}{2}(a_1 - 1)(d - 1);$$

Proof. As in Lemma 1, for each j, $1 \leq j \leq a_1 - 1$, let m_j and m'_j denote the *least* positive integer congruent to $j \mod a_1$ representable as a nonnegative linear combination of a_1, a_2, \ldots, a_k and a_1, a'_2, \ldots, a'_k , respectively. Since each such m_j and m'_j must also be representable as a nonnegative linear combination of a_2, \ldots, a_k and of a'_2, \ldots, a'_k , respectively, it follows that $\{m_j : 1 \leq j \leq a_1 - 1\} = \{dm'_j : 1 \leq j \leq a_1 - 1\}$. We now apply Lemma 1.

For part (a) we have

$$g(a_1, a_2, \dots, a_k) = \max_{1 \le j \le a_1 - 1} m_j - a_1$$

= $d\left(\max_{1 \le j \le a_1 - 1} m'_j - a_1\right) + a_1(d - 1)$
= $dg(a_1, a'_2, \dots, a'_k) + a_1(d - 1).$

For part (b) we have

$$n(a_1, a_2, \dots, a_k) = \frac{1}{a_1} \sum_{j=1}^{a_1-1} m_j - \frac{1}{2}(a_1 - 1)$$

= $d\left(\frac{1}{a_1} \sum_{j=1}^{a_1-1} m'_j - \frac{1}{2}(a_1 - 1)\right) + \frac{1}{2}(a_1 - 1)(d - 1)$
= $dn(a_1, a'_2, \dots, a'_k) + \frac{1}{2}(a_1 - 1)(d - 1).$

Theorem 1. Let a_1, a_2, \ldots, a_k be pairwise coprime, positive integers with product P. Let $A_i = P/a_i$ for $1 \le i \le k$. Let σ_r denote the sum of the products of the a_i 's taken r at a time, so that $\sigma_k = P$ and $\sigma_{k-1} = A_1 + A_2 + \cdots + A_k$. Then

(a)
$$g(A_1, A_2, \dots, A_k) = (k-1)\sigma_k - \sigma_{k-1};$$

(b) $n(A_1, A_2, \dots, A_k) = \frac{1}{2}\{(k-1)\sigma_k - \sigma_{k-1} + 1\}.$

Proof. This is a direct consequence of Lemma 2. We induct on k. If k = 2, these are just the well-known results mentioned in the Introduction. We observe that A_k is a multiple of $A_j/a_k = A'_j$ for each $j \neq k$ since $A_j|a_kA_k = \sigma_k$ and $a_k|A_j$ if $j \neq k$.

For part (a), by the induction hypothesis, we have

$$g(A_1, A_2, \dots, A_k) = a_k g\left(\frac{A_1}{a_k}, \frac{A_2}{a_k}, \dots, \frac{A_{k-1}}{a_k}, A_k\right) + A_k(a_k - 1)$$

= $a_k g\left(\frac{A_1}{a_k}, \frac{A_2}{a_k}, \dots, \frac{A_{k-1}}{a_k}\right) + \sigma_k - A_k$
= $a_k g(A'_1, A'_2, \dots, A'_{k-1}) + \sigma_k - A_k$
= $(k - 2)\sigma_k - (\sigma_{k-1} - A_k) + \sigma_k - A_k$
= $(k - 1)\sigma_k - \sigma_{k-1}.$

For part (b), by the induction hypothesis, we have

$$n(A_{1}, A_{2}, \dots, A_{k}) = a_{k} n \left(\frac{A_{1}}{a_{k}}, \frac{A_{2}}{a_{k}}, \dots, \frac{A_{k-1}}{a_{k}}, A_{k}\right) + \frac{1}{2}(a_{k} - 1)(A_{k} - 1)$$

$$= a_{k} n \left(\frac{A_{1}}{a_{k}}, \frac{A_{2}}{a_{k}}, \dots, \frac{A_{k-1}}{a_{k}}\right) + \frac{1}{2}\sigma_{k} - \frac{1}{2}a_{k} - \frac{1}{2}A_{k} + \frac{1}{2}$$

$$= a_{k} n(A_{1}', A_{2}', \dots, A_{k-1}') + \frac{1}{2}\sigma_{k} - \frac{1}{2}a_{k} - \frac{1}{2}A_{k} + \frac{1}{2}$$

$$= \frac{1}{2}\{(k-2)\sigma_{k} - (\sigma_{k-1} - A_{k}) + a_{k} + \sigma_{k} - a_{k} - A_{k} + 1\}$$

$$= \frac{1}{2}\{(k-1)\sigma_{k} - \sigma_{k-1} + 1\}.$$

The proof of Theorem 1 given above is based on Lemma 2. It is indeed possible to give an independent proof. Using the notation of Theorem 1, we give a

Second proof of Theorem 1. Let a_1, a_2, \ldots, a_k be pairwise coprime, positive integers. Let σ_r denote the sum of the products of the a_i 's taken r at a time, and let $A_j = \sigma_k/a_j$ for $1 \le j \le k$. Then $g(A_1, A_2, \ldots, A_k) = (k-1)\sigma_k - \sigma_{k-1}$.

Proof. If each $x_i \ge 0$ and

$$A_1x_1 + A_2x_2 + \dots + A_kx_k = (k-1)\sigma_k - \sigma_{k-1},$$
(2)

 $A_j x_j \equiv -A_j \mod a_j$, so that $x_j \geq a_j - 1$ since $gcd(a_j, A_j) = 1$. But then

$$\sum_{j=1}^{k} A_j x_j \ge \sum_{j=1}^{k} A_j (a_j - 1) \ge k \sigma_k - \sigma_{k-1},$$

and (2) has no solution in nonnegative integers.

Since the $A_i x_i + A_j x_j = A_i (x_i + a_i) + A_j (x_j - a_j)$, and since $gcd(A_1, A_2, \ldots, A_k) = 1$, we can always write any N in the form $A_1 x_1 + A_2 x_2 + \cdots + A_k x_k$ with $0 \le x_j \le a_j - 1$ for $1 \le j \le k - 1$. Now, if $N > (k - 1)\sigma_k - \sigma_{k-1}$ and we choose x_j as above, then

$$x_k = \frac{N - \sum_{j=1}^{k-1} A_j x_j}{A_k} > \frac{\sum_{j=1}^{k-1} A_j (a_j - x_j - 1)}{A_k} - 1 \ge -1$$

Thus $x_k \ge 0$, and every N greater than $(k-1)\sigma_k - \sigma_{k-1}$ is expressible as a nonnegative linear combination of the A_i 's.

Lemma 3. Let a_1, a_2, \ldots, a_k be pairwise coprime, positive integers, and let $A_j = \sigma_k/a_j$ for $1 \le j \le k$. If p, q are integers such that $p + q = g(A_1, A_2, \ldots, A_k)$, then exactly one of the equations $A_1x_1 + A_2x_2 + \cdots + A_kx_k = p$ and $A_1x_1 + A_2x_2 + \cdots + A_kx_k = q$ is solvable in nonnegative integers x_j .

Proof. If both the equations had a solution, so would $g(A_1, A_2, \ldots, A_k)$, contradicting its definition. Suppose $A_1x_1 + A_2x_2 + \cdots + A_kx_k = p$ has no solution in nonnegative integers. Choose x_j such that $0 \le x_j \le a_j - 1$ for $1 \le j \le k - 1$. But then $x_k < 0$, and

$$q = (k-1)\sigma_k - \sigma_{k-1} - p = \sum_{j=1}^{k-1} A_j(a_j - x_j - 1) + A_k(-x_k)$$

is expressible in the given form, proving the lemma.

Corollary 1. Let a_1, a_2, \ldots, a_k be pairwise coprime, positive integers. Let σ_r denote the sum of the products of the a_i 's taken r at a time, and let $A_j = \sigma_k/a_j$ for $1 \le j \le k$. Then $n(A_1, A_2, \ldots, A_k) = \frac{1}{2} \{ (k-1)\sigma_k - \sigma_{k-1} + 1 \}.$

Proof. If we pair p with q whenever $p + q = g(A_1, A_2, \ldots, A_k)$ and $p, q \ge 0$, by Lemma 1,

$$n(A_1, A_2, \dots, A_k) = \frac{1}{2} \{ 1 + g(A_1, A_2, \dots, A_k) \}$$

The corollary now follows from Theorem 1.

The evaluation of g given in Theorem 1 can also be derived by explicitly determining the set S^* , introduced in [16], since $g(a_1, a_2, \ldots, a_k)$ is the largest element in $S^*(a_1, a_2, \ldots, a_k)$. For positive and coprime integers a_1, a_2, \ldots, a_k , let Γ^* denote the positive integers in the set $\{a_1x_1 + a_2x_2 + \cdots + a_kx_k : x_j \geq 0\}$. Then

$$\mathcal{S}^{\star}(a_1, a_2, \dots, a_k) := \{ n \notin \Gamma^{\star} : n + \Gamma^{\star} \subset \Gamma^{\star} \} \subseteq \{ m_j - a_1 : 1 \le j \le a_1 - 1 \}.$$

Moreover,

$$m_j - a_1 \in \mathcal{S}^*(a_1, a_2, \dots, a_k) \iff m_j + m_i > m_{j+i} \text{ for } 1 \le i \le a_1 - 1.$$
 (3)

We refer to [16] for the more notations and results. With the notations above, we show that $\mathcal{S}^{\star}(A_1, A_2, \ldots, A_k) = \{(k-1)\sigma_k - \sigma_{k-1}\}$ for each $k \geq 2$. Since $g(a_1, a_2, \ldots, a_k) \in \mathcal{S}^{\star}(a_1, a_2, \ldots, a_k)$, this further verifies the first result of Theorem 1.

Theorem 2. Let a_1, a_2, \ldots, a_k be pairwise coprime, positive integers. Let σ_r denote the sum of the products of the a_i 's taken r at a time, and let $A_j = \sigma_k/a_j$ for $1 \le j \le k$. Then $\mathcal{S}^*(A_1, A_2, \ldots, A_k) = \{(k-1)\sigma_k - \sigma_{k-1}\}$ for $k \ge 2$.

Proof. We prove the result by inducting on k. The case k = 2 is a special case of the main result in [16]. Given pairwise coprime, positive integers a_1, a_2, \ldots, a_k , define integers A_1, A_2, \ldots, A_k as above. As in the proof of Lemma 2, for each $j, 1 \leq j \leq A_k - 1$, let M_j and M'_j denote the *least* positive integer congruent to $j \mod A_k$ representable as a nonnegative linear combination of A_1, A_2, \ldots, A_k and $A'_1, A'_2, \ldots, A'_{k-1}, A_k$, respectively, where $A'_j = A_j/a_k$ for $1 \leq j \leq k - 1$. Then $\{M_j : 1 \leq j \leq A_k - 1\} = \{a_k M'_j : 1 \leq j \leq A_k - 1\}$. Observe that each A'_i divides A_k , and that $\{A'_1, A'_2, \ldots, A'_{k-1}\}$ is just the set of A_i 's corresponding to $a_1, a_2, \ldots, a_{k-1}$. From (3), $M_j - A_k \in \mathcal{S}^*(A_1, A_2, \ldots, A_k)$ if and only if $M_j + M_i > M_{j+i}$

for $1 \leq i \leq A_k - 1$, which holds precisely when $M'_j + M'_i > M'_{j+i}$ for $1 \leq i \leq A_k - 1$. Thus $M_j - A_k \in \mathcal{S}^*(A_1, A_2, \dots, A_k)$ if and only if $M'_j - A_k \in \mathcal{S}^*(A'_1, A'_2, \dots, A'_{k-1}, A_k) = \mathcal{S}^*(A'_1, A'_2, \dots, A'_{k-1})$, which is the set $\{(k-2)a_1a_2\cdots a_{k-1} - (A'_1 + \dots + A'_{k-1})\}$, by the induction hypothesis. It now follows that $\mathcal{S}^*(A_1, A_2, \dots, A_k) = \{a_kM'_j - A_k\} = \{(k-2)a_1a_2\cdots a_k - a_k(A'_1 + \dots + A'_{k-1}) + a_kA_k - A_k\} = \{(k-1)a_1a_2\cdots a_k - (A_1 + A_2 + \dots + A_k)\}$, as desired.

Acknowledgment. The author wishes to thank the referee for some valuable comments and for pointing out the eighth reference.

References

- P. T. Bateman, Remark on a Recent Note on Linear Forms, American Mathematical Monthly 65 (1958), 517-518.
- [2] A. Brauer, On a Problem of Partitions, American Journal of Mathematics 64 (1942), 299-312.
- [3] A. Brauer and J. E. Shockley, On a problem of Frobenius, Crelle 211 (1962), 215-220.
- [4] T. C. Brown and P. J. Shiue, A remark related to the Frobenius problem, *Fibonacci Quarterly* 31 (1993), 31-36.
- [5] D. D. Grant, On linear forms whose coefficients are in Arithmetic progression, Israel Journal of Mathematics 15 (1973), 204-209.
- [6] S. M. Johnson, A Linear Diophantine Problem, Canadian Journal of Mathematics 12 (1960), 390-398.
- [7] A. Nijenhuis and H. S. Wilf, Representations of integers by linear forms in non negative integers, Journal of Number Theory 4 (1972), 98-106.
- [8] J. L. Ramirez Alfonsin, The Frobenius Diophantine Problem, Oxford University Press, 2006.
- [9] J. B. Roberts, Note on Linear Forms, Proceedings of the American Mathematical Society 7 (1956), 465-469.
- [10] J. B. Roberts, On a Diophantine problem, Canadian Journal of Mathematics 9 (1957), 219-222.
- [11] Ö. J. Rödseth, On a linear Diophantine problem of Frobenius, Crelle **301** (1978), 171-178.
- [12] O. J. Rödseth, On a linear Diophantine problem of Frobenius II, Crelle 307/308 (1979), 431-440.
- [13] E. S. Selmer, On the linear Diophantine problem of Frobenius, Crelle 293/294 (1977), 1-17.
- [14] E. S. Selmer and Ö. Beyer, On the linear Diophantine problem of Frobenius in three variables, Crelle 301 (1978), 161-170.
- [15] A. Tripathi, The Coin Exchange Problem for Arithmetic Progressions, American Mathematical Monthly (1994), no. 10, 779-781.
- [16] A. Tripathi, On a variation of the Coin Exchange Problem for Arithmetic Progressions, Integers: Electronic Journal of Combinatorial Number Theory (2003), 3, no. A01, 1-5.