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Abstract

We study the asymptotic behavior of the largest part size of a plane partition ω of the positive
integer n, assuming that ω is chosen uniformly at random from the set of all such partitions.
We prove that this characteristic, appropriately normalized, tends weakly, as n → ∞, to a
random variable having an extreme value probability distribution with distribution function,
equal to e−e−z

,−∞ < z < ∞. The representation of a plane partition as a solid diagram
shows that the same limit theorem holds for the numbers of rows and columns of a random
plane partition of n.

1. Introduction

A plane partition ω of the positive integer n is an array of non-negative integers

ω1,1 ω1,2 ω1,3 ...
ω2,1 ω2,2 ω2,3 ...
... ... ... ...

(1.1)

for which
∑

i,j ωi,j = n and the rows and columns are arranged in decreasing order:

ωi,j ≥ ωi+1,j,ωi,j ≥ ωi,j+1
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comments and suggestions.
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for all i, j ≥ 1. The non-zero entries ωi,j > 0 are called parts of ω. If there are λi parts in
the ith row of ω, so that for some r

λ1 ≥ λ2 ≥ ... ≥ λr > λr+1 = 0,

then the partition λ = (λ1,λ2, ...,λr) of the integer p = λ1 + λ2 + ... + λr is called the shape
of ω, denoted by λ. We also say that ω has r rows and p parts. Sometimes, for the sake of
brevity, the zeroes in the array (1.1) are deleted. For instance, the abbreviation

3 2 1
1 1

is assumed to present a plane partition of n = 8 having r = 2 rows and p = 5 parts.

It seems that MacMahon was the first who introduced the idea of a plane partition; see
[9]. He deals with the general problem of such partitions, enumerating them by the size of
each part, number of rows and number of columns. These problems have been subsequently
reconsidered by other authors who have developed methods, entirely different from those of
MacMahon. For important references and more details in this direction, we refer the reader
to the monographs of Andrews [4; Chap. 11] and Stanley [15; Chap. 7], as well as to the
survey paper [14; Chap. V].

Let q(n) denote the total number of plane partitions of the integer n ≥ 1. It turns out
that

Q(x) = 1 +
∞∑

n=1

q(n)xn =
∞∏

j=1

(1 − xj)−j (1.2)

(see [4; Corollary 11.3] or [14; Corollary 18.2]). The asymptotic of q(n) has been obtained
by Wright [17]. It is given by the following formula:

q(n) ∼ [ζ(3)]7/36

211/3631/2π1/2
n−25/36 exp {3[ζ(3)]1/3(n/2)2/3 + 2γ}, (1.3)

where

ζ(s) =
∞∑

j=1

j−s (1.4)

is the Riemann’s zeta function and

γ =

∫ ∞

0

y log y

e2πy − 1
dy.

The asymptotic of the coefficients in the power series expansion of
∏∞

j=1(1−xj)−aj under
a general scheme of assumptions on the sequence of non-negative numbers {aj}j≥1 was
obtained by Meinardus [10]. For plane partitions, we have aj = j, j = 1, 2, .... Meinardus’
theorem confirms Wright’s formula (1.3). (In the original statement of (1.3) [17; p. 179] the
constant 31/2 in the denominator is missing. However, it appears at the end of the proof on
p. 189. Further results on the asymptotic expansion of q(n) may be found in [2,3].)
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We introduce the uniform probability measure P on the set of all plane partitions of n,
assuming that the probability 1/q(n) is assigned to each plane partition.

Let Ln, Cn and Rn denote the size of the largest part, the number of columns and number
of rows in a plane partition of n, respectively. With respect to the probability measure P ,
Ln, Cn and Rn become random variables defined on the set of plane partitions of n. Our
aim in this paper is to study their limiting distributions as n → ∞.

We notice that any plane partition ω, defined by array (1.1), has an associated diagram
D(ω) = {(i, j, k) ∈ N3 : 1 ≤ k ≤ ωi,j}. Here N denotes the set of the positive integers.
Any permutation σ of the three coordinate axis (i, j, k), different from the identical one,
transforms D(ω) in a diagram that uniquely determines another plane partition σ ◦ ω. The
permutation σ also permutes the three statistics (Ln, Cn, Rn). Then, if one of these statistics
is restricted by certain inequality, the same restriction occurs on the statistics permuted by
σ. The one to one correspondence between ω and σ ◦ ω implies that Ln, Cn and Rn have
one and the same probability distribution (for more details see also [15; p. 371]).

The starting point in our asymptotic analysis is the following generating function identity,
which follows from a stronger result of MacMahon [9; Section 495]:

1 +
∞∑

n=1

P (Ln ≤ m, Rn ≤ r)q(n)xn =
m∏

k=1

r∏

j=1

(1 − xj+k−1)−1, m, r = 1, 2, ....

(For more details and other proofs of this result we refer the reader to [14; Chap. V]). If we
keep either of the parameters m and r fixed, setting the other one := ∞, we obtain

1 +
∞∑

n=1

P (Xn ≤ m)q(n)xn =
m∏

k=1

(1 − xk)−k
∞∏

j=m+1

(1 − xj)−m

= Q(x)
∞∏

j=m+1

(1 − xj)j−m, Xn = Ln, Cn, Rn. (1.5)

Here Q(x) was defined by (1.2). Note that Cn is also included in (1.5) since its distribution
coincides with those of Ln and Rn.

The object of this paper is to provide an asymptotic analysis for the Cauchy integrals
stemming from (1.5) in order to prove the following theorem.

Theorem 1. For any real and finite z, we have

lim
n→∞

P

{[
2ζ(3)

n

]1/3

Xn − log

[
n

2ζ(3)

]2/3

− log

[
1

2
log2 (n2/3)

]
≤ z

}
= e−e−z

, (1.6)

where ζ(s) denotes Riemann’s zeta function (1.4) and Xn = Ln, Cn, Rn.

The proof of this result is based on a method developed by Hayman [7]. The idea comes
from the fact that Q(x), the generating function enumerating the numbers q(n) of plane
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partitions of n, satisfies Hayman’s admissibilty properties in a neighborhood of its main
singularity x = 1 and outside it (see Lemmas 1 and 2 of the next section, respectively).
Hence, Hayman’s asymptotic result for the coefficients q(n) compensates, roughly speaking,
their contribution to the general asymptotic of the coefficients in (1.5). A careful analysis of
the product

∞∏

j=m+1

(1 − xj)j−m,

around x = 1 then yields the weak convergence to the extreme value distribution (1.6). A
relevant analytic approach to problems concerning random integer partitions is presented
in [11,12]. A different probabilistic method was previously suggested by Fristedt [6], who
used a conditioning device to transfer the problems related to integer partition statistics
to problems dealing with functionals of independent and geometrically distributed random
variables.

We organize the paper as follows. Section 2 contains auxiliary facts on the admissibility
of Q(x) and on the asymptotic behavior of the coefficients in its power series expansion. In
Section 3 we prove our main result.

We conclude this section noticing that plane partitions have many applications to such
diverse topics as ballot problems (see [14; Chap. IV] and [5]), symmetric functions (see [14;
Chap. II - IV], [15; Chap. 7]) and the references therein), the representation theory of the
symmetric group (see [14; Chap III] and [15; Chap. 7]), and analysis of algorithms (see [8;
Section 5.2.4] and [13; Chap. 12]).

2. Preliminary Asymptotics

In order to get an asymptotic estimate for Q(x) around its main singularity x = 1, we will
use a general result due to Meinardus [10] (see also [4; Chap. 6]) on the asymptotic behavior
of the nth coefficient in the expansion of

G(x) =
∞∏

j=1

(1 − xj)−aj ,

where {aj}∞j=1 is a sequence of given non-negative numbers. He introduced a set of assump-
tions on the Dirichlet’s series

D(s) =
∞∑

j=1

ajj
−s, (2.1)

generated by the sequence {aj}∞j=1. A basic restriction in his scheme states that D(s) has
to converge in the half-plane )e(s) > α > 0 and can be analytically continued into the
half-plane )e(s) ≥ −α0 for some α0 ∈ (0, 1). Moreover, in )e(s) ≥ −α0, D(s) is analytic
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except for a simple pole at s = α with residue A. Under these and certain other restrictions
on D(s), for v = y + 2πiw, Meinardus [10] (see also [4; Lemma 6.1]) proved that

G(e−v) = exp {AΓ(α)ζ(α + 1)v−α − D(0) log v + D′(0) + O(yα0)} (2.2)

as y → 0 uniformly for | arg v |≤ π/4 and | w |≤ 1/2. (Here Γ(α) denotes Euler’s gamma
function and log (.) presents the main branch of the logarithmic function satisfying log v < 0
for 0 < v < 1.)

Let us take now a sequence {rn}∞n=1 which, as n → ∞, satisfies

rn = 1 − [2ζ(3)]1/3

n1/3
+

[2ζ(3)]2/3

2n2/3
− ζ(3)

n
+ O(n−4/3). (2.3)

For the sake of brevity, for 0 < r < 1, we also set

b(r) =
6ζ(3)

(1 − r)4
. (2.4)

It is easy to check that (2.3) and (2.4) imply

b(rn) =
3n4/3

[2ζ(3)]1/3
+ O(n) (2.5)

as n → ∞.

The next lemma suggests a tool that we will subsequently use in Section 3 to obtain the
main terms in our asymptotic.

Lemma 1. If rn satisfies (2.3) for large n, then

Q(rne
iθ)e−iθn = Q(rn)e−θ2b(rn)/2[1 + O(1/ log3 n)]

as n → ∞ uniformly for | θ |≤ δn, where

δn =
n−5/9

log n
(2.6)

and b(rn) is determined by (2.4).

Proof. We apply first Meinardus’ asymptotic formula (2.2) to the plane partition generating
function Q(x) (see (1.2)). Since in this case we have aj = j, j = 1, 2, ... and D(s) = ζ(s − 1)
(see (2.1)), we find that α = 2, A = 1 and D(0) = −1/12. Classical results on the ζ function
(see [16; Section 13.51]) imply that (2.2) is valid with v = y +2πiw. Therefore, we can write

Q(e−v) = exp {ζ(3)v−2 +
1

12
log v + D′(0) + O(yα0)} (2.7)

as y → 0 uniformly for | w |≤ 1/2 and | arg (v) |≤ π/4 (here α0 ∈ (0, 1) is the constant
specified in Meinardus assumption [10] for the analytical continuation of D(s) = ζ(s − 1)).
Setting

e−v = rne
iθ, (2.8)
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we see that y = yn = − log rn and w = −θ/2π. An asymptotic expansion for − log rn, as
n → ∞, can be found using (2.3) as follows:

yn = − log rn =
[2ζ(3)]1/3

n1/3
− [2ζ(3)]2/3

2n2/3
+
ζ(3)

n

+
[2ζ(3)]2/3

n2/3
− 24/3[2ζ(3)]2/3[ζ(3)]1/3

4n
+ O(n−4/3)

=
[2ζ(3)]1/3

n1/3
+ O(n−4/3). (2.9)

Combining (2.7) - (2.9), we observe that

Q(rneiθ)

Q(rn)
e−iθn =

(
yn − iθ

yn

)1/12

exp {ζ(3)[(yn − iθ)−2 − y−2
n ] − iθn + O(yα0

n )}. (2.10)

A Taylor’s formula expansion for | θ |≤ δn yields

(yn − iθ)−2 − y−2
n = 2iθy−3

n − 6
θ2

2
y−4

n + O(| θ |3 y−5
n )

= 2iθy−3
n − 3θ2y−4

n + O(δ3
ny

−5
n ). (2.11)

Using (2.9), we also get the following estimate for the factor outside the exponent in (2.10):

(
yn − iθ

yn

)1/12

=

{
[2ζ(3)]1/3 − iθn1/3 + O(n−1)

[2ζ(3)]1/3 + O(n−1)

}1/12

= 1 + O(δnn
1/3), n → ∞. (2.12)

Finally we notice that (2.9) implies the bound

yα0
n = O(n−α0/3), n → ∞, (2.13)

where α0 ∈ (0, 1). Hence, inserting (2.5), (2.9), (2.11) - (2.13) into (2.10), we obtain

Q(rneiθ)

Q(rn)
e−iθn = [1 + O(δnn

1/3)] exp{ζ(3)[
2iθn

2ζ(3)[1 + O(n−1)]3

−θ2

2

6n4/3

24/3[ζ(3)]4/3[1 + O(n−1)]4
+ O(δ3

ny
−5
n )] − iθn + O(n−α0/3)}

= [1 + O(n−2/9/ log n)] exp{ζ(3)[
iθn

ζ(3)
(1 + O(n−1))

−θ2

2
[b(rn) + O(n)](1 + O(n−1)) + O(δnn

5/3)] − iθn + O(n−α0/3)}

= [1 + O(n−2/9/ log n)] exp{iθn + O(δn) − θ2b(rn)/2 + O(nδ2
n)

+O(δ2
nb(rn)n−1) + O(δ3

nn
5/3) − iθn + O(n−α0/3)}

= [1 + O(n−2/9/ log n)] exp {−θ2b(rn)/2 + O(1/ log3 n)}
= e−θ2b(rn)/2[1 + O(1/ log3 n)], n → ∞.

This completes the proof. !



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A13 7

We also need another lemma that will establish a uniform estimate for

Qm(x) =
m∏

j=1

(1 − xj)−j, m = 1, 2, ..., (2.14)

where | x |= rn and arg (x) is outside the range (−δn, δn). For the sake of convenience, we
also let

fm,n(θ) =
∑

j>m

jrj
n[cos (jθ) − 1]. (2.15)

Lemma 2. If rn and δn satisfy (2.3) and (2.6), respectively, then there exist two positive
constants ε and n0 such that

| Qm(rne
iθ) |≤ Qm(rn) exp {ε− (2.5)n2/9/[2ζ(3)]4/3 log2 n − fm,n(θ)}

uniformly for m = 1, 2, ..., π ≥| θ |≥ δn and n ≥ n0.

Proof. By taking logarithms in (2.14), for | x |< 1, we get

log Qm(x) = log [
m∏

j=1

(1 − xj)−j] = −
m∑

j=1

j log (1 − xj)

=
m∑

j=1

j
∞∑

l=1

xjl

l
=

∞∑

l=1

1

l

m∑

j=1

j(xl)j.

Thus, substituting x = rneiθ, we obtain

| Qm(rne
iθ) |=| exp {log Qm(rne

iθ)} |=| exp{
∞∑

l=1

1

l

m∑

j=1

jrlj
n eijlθ} |

=| exp{
m∑

j=1

jrj
ne

ijθ +
∞∑

l=2

1

l

m∑

j=1

jrlj
n eijlθ} |

= exp{
m∑

j=1

jrj
n)e(eijθ) +

∞∑

l=2

1

l

m∑

j=1

jrlj
n )e(eijlθ)}

= exp{
m∑

j=1

jrj
n cos (jθ) +

∞∑

l=2

1

l

m∑

j=1

jrlj
n cos (ljθ)}

≤ exp{
m∑

j=1

jrj
n cos (jθ) +

∞∑

l=2

1

l

m∑

j=1

jrlj
n }

= exp{
m∑

j=1

jrj
n[cos (jθ) − 1] +

∞∑

l=1

1

l

m∑

j=1

jrlj
n }

= Qm(rn) exp {Hm,n(θ)}, (2.16)
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where

Hm,n(θ) =
m∑

j=1

jrj
n[cos (jθ) − 1]

= )e

[
rneiθ

(1 − rneiθ)2

]
− rn

(1 − rn)2
− fm,n(θ)

=
rn(cos θ + r2

n cos θ − 2rn)

(1 − 2rn cos θ + r2
n)2

− rn

(1 − rn)2
− fm,n(θ). (2.17)

The function cos θ + r2
n cos θ attains its maximum in the range δn ≤| θ |≤ π at θ = δn and

θ = −δn. Note that

cos δn = 1 − δ2
n

2
+ O(δ4

n) = 1 − n−10/9

2 log2 n
+ O(n−20/9/ log4 n)

and

(1 − rn)−2 =

[
n

2ζ(3)

]2/3

+ O(n1/3).

Substituting these estimates into the right-hand side of (2.17), after some manipulations, we
obtain

Hm,n(θ) ≤ rn[1 − n−4/9/2[2ζ(3)]2/3 log2 n + O(n−7/9/ log2 n)]

(1 − rn)2
[
1 + rnn−10/9

(1−rn)2 log2 n
+ O

(
n−20/9

(1−rn)2 log4 n

)]2

− rn

(1 − rn)2
− fm,n(θ)

=
rn[1 − n−4/9/2[2ζ(3)]2/3 log2 n + O(n−7/9/ log2 n)]

(1 − rn)2[1 + 2n−4/9/[2ζ(3)]2/3 log2 n + O(n−7/9/ log2 n)

− rn

(1 − rn)2
− fm,n(θ)

=
rn[1 − n−4/9/2[2ζ(3)]2/3 log2 n + O(n−7/9/ log2 n)]

(1 − rn)2

×
{

1 − 2n−4/9

[2ζ(3)]2/3 log2 n
+ O

(
n−7/9

log2 n

)}
− rn

(1 − rn)2
− fm,n(θ)

= −rn

{[
n

2ζ(3)

]2/3

+ O(n1/3)

}
5n−4/9

2[2ζ(3)]2/3 log2 n
+ o(1) − fm,n(θ)

= − (2.5)n2/9

[2ζ(3)]4/3 log2 n
+ o(1) − fm,n(θ).

Inserting this estimate into (2.16), we obtain the required result. !

Further, we will essentially use the asymptotic form of the numbers q(n). Although this
is given by Wright’s formula (1.3), we need this result in a slightly different form. Since
Lemmas 1 and 2, together with (2.3) - (2.5), provide Hayman’s admissiblity [7] for the
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generating function Q(x) (see (1.2)), we can apply his general asymptotic formula to the
coefficients q(n). The next lemma encompasses these results. We only sketch its proof and
insert a remark explaining the role of the asymptotic expansion (2.3) there.

Lemma 3. For Q(x), the generating function of the numbers q(n) of plane partitions of n
defined by (1.2), we have

q(n) ∼ Q(rn)r−n
n /

√
2πb(rn) (2.18)

as n → ∞, where rn satisfies the equation

rQ′(r)/Q(r) = n (2.19)

for sufficiently large n and b(rn) is defined by (2.4).

Sketch of the proof. It is clear that | x |= 1 is a natural boundary for Q(x). Lemma 1
shows the behavior of Q(x) around its main singularity x = 1 (condition I of Hayman’s
definition [7]); Lemma 2 establishes that the growth of Q(x) as x → x0, | x0 |= 1 and x0 += 1
is negligible (condition II of [7]). It is then easily seen that

rQ′(r)

Q(r)
= 2

∞∑

j=1

r2j

(1 − rj)3
+

∞∑

j=1

rj

(1 − rj)2

=
2ζ(3)

(1 − r)3
+ o((1 − r)−1)

as r → 1−. This enables one to conclude that rn, determined for sufficiently large n by
(2.19), can be substituted by the asymptotic expansion (2.3). Thus, one can obtain (2.18)
after direct application of Hayman’s theorem [7]. !

Finally, notice that (2.3) - (2.5) and (2.7) imply the coincidence of the right sides of (1.3)
and (2.18).

3. Proof of the Main Result

We apply first Cauchy’s coefficient formula to (1.5) using the circle x = rneiθ,−π < θ ≤ π
as a contour of integration, where rn is determined by (2.3). Thus, for Xn = Ln, we obtain

P (Ln ≤ m)q(n) =
r−n
n

2π

∫ π

−π

Q(rne
iθ)e−iθn

∞∏

j=m+1

(1 − rne
ijθ)j−mdθ.

Then, we break up the range of integration as follows:

P (Ln ≤ m)q(n) = J1(m, n) + J2(m, n), (3.1)

where

J1(m, n) =
r−n
n

2π

∫ δn

−δn

Q(rne
iθ)e−iθn

∞∏

j=m+1

(1 − rj
ne

ijθ)j−mdθ, (3.2)
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J2(m, n) =
r−n
n

2π

∫

δn≤|θ|≤π

Q(rne
iθ)e−iθn

∞∏

j=m+1

(1 − rj
ne

ijθ)j−mdθ. (3.3)

We next let

eFm(x) =
∞∏

j=m+1

(1 − xj)j−m,

that is

Fm(x) =
∞∑

j=m+1

(j − m) log (1 − xj). (3.4)

3.1. An Asymptotic Estimate for J1(m, n)

We will employ a more compact form for J1(m, n). It is based on the notation given in (3.4).
We can write

J1(m, n) =
r−n
n

2π

∫ δn

−δn

Q(rne
iθ) exp {Fm(rne

iθ) − iθn}dθ. (3.5)

Using Taylor’s formula expansion, we obtain

Fm(rne
iθ) = Fm(rn) + rn(eiθ − 1)F ′

m(rn) +
r2
n

2
(eiθ − 1)2F ′′

m(rn)

+O(| θ |3| F ′′′
m (rn) |).

Substituting this expression into (3.5) and applying the result of Lemma 1 to Q(rneiθ), we
get a new expression for J1(m, n), namely:

J1(m, n) =
r−n
n

2π
Q(rn)eFm(rn)[1 + O(1/ log3 n)]

×
∫ δn

−δn

exp{(eiθ − 1)rnF
′
m(rn) +

1

2
(eiθ − 1)2r2

nF
′′
m(rn)

+O(δ3
n | F ′′′

m (rn) |)}dθ. (3.6)

Next, we will obtain asymptotic expressions for Fm(rn), F ′
m(rn), F ′′

m(rn) and F ′′′
m (rn) in terms

of the functions

ψj(v) =

∫ ∞

0

ujdu

eu+v − 1
, j = 0, 1, 2, 3, (3.7)

where the parameter v > 0 will be further substituted by

v = vn = myn (3.8)

(see again (2.9) for the asymptotic expansion of yn). The functions ψj(v) are closely related
to the Debye functions (see, e.g., [1; Section 27.1]). We will interpret the sums that we will
obtain as Riemann ones with step sizes equal to yn = − log rn.
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Starting with Fm(rn), we find, as n → ∞, that

Fm(rn) =
∑

j>m

(j − m) log (1 − rj
n)

= y−2
n

∑

jyn>vn

(jyn)yn log (1 − e−jyn) − my−1
n

∑

jyn>vn

yn log (1 − e−jyn)

∼ y−2
n

∫ ∞

vn

(u − vn) log (1 − e−u)du (3.9)

with vn defined by (3.8). Integrating by parts the integral in (3.9) and using (3.7) with j = 2,
we find that

eFm(rn) = [1 + o(1)] exp

{
−y−2

n

2
ψ2(vn)

}
(3.10)

as n → ∞. In the same way, we show that

rnF
′
m(rn) =

∑

j>m

(j − m)jrj
n

1 − rj
n

= −y−3
n

∑

jyn>vn

(jyn)2yne−jyn

1 − e−jyn
+ my−2

n

∑

jyn>vn

(jyn)yne−jyn

1 − e−jyn

= [1 + o(1)](−y−3
n )

∫ ∞

vn

u(u − vn)

eu − 1
du = −y−3

n [ψ2(vn) + vnψ1(vn)]. (3.11)

For the asymptotic of the second derivative of Fm we have

r2
nF

′′
m(rn) = −

∑

j>m

(j − m)j

[
jrj

n

1 − rj
n

− rj
n

1 − rj
n

+
jr2j

n

(1 − rj
n)2

]

= −
∑

j>m

j3

[
rj
n

1 − rj
n

+
r2j
n

(1 − rj
n)2

]
+ m

∑

j>m

j2

[
rj
n

1 − rj
n

+
r2j
n

(1 − rj
n)2

]

+
∑

j>m

j2 rj
n

1 − rj
n

− m
∑

j>m

j
rj
n

1 − rj
n

= [1 + o(1)]

{
−y−4

n

∫ ∞

vn

u2(u − vn)

[
1

eu − 1
+

1

(eu − 1)2

]
du + y−3

n

∫ ∞

vn

u(u − vn)
du

eu − 1

}

= −[1 + o(1)]y−4
n

∫ ∞

vn

u2(u − vn)

[
1

eu − 1
+

1

(eu − 1)2

]
du + O(y−3

n ) (3.12)

as n → ∞. Since the integrand in (3.12) includes (eu − 1)2 in its denominator, we need to
make an auxiliary calculation. Thus, for any a ≥ 1, we have

Ia =

∫ ∞

vn

ua

(eu − 1)2
du =

va
n

evn − 1
+ a

∫ ∞

0

(z + vn)a−1

ez+vn − 1
dz −

∫ ∞

0

(z + vn)a

ez+vn − 1
dz.

Setting a = 3 and a = 2, after simple manipulations, we easily obtain
∫ ∞

vn

u2(u − vn)

(eu − 1)2
du = I3 − vnI2 =

∫ ∞

0

(3 − 2vn)z2 + vnz + v2
n − z3

ez+vn − 1
dz
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= −ψ3(vn) + (3 − 2vn)ψ2(vn) + vnψ1(vn) + v2
nψ0(vn)

= −ψ3(vn) + (3 − 2vn)ψ2(vn) + vnψ1(vn) − log (1 − e−vn). (3.13)

On the other hand,
∫ ∞

vn

u2(u − vn)

eu − 1
du =

∫ ∞

0

(z3 + 2vnz2 + v2
nz)dz

ez+vn − 1
= ψ3(vn) + 2vnψ2(vn) + v2

nψ1(vn). (3.14)

Upon replacing (3.13) and (3.14) into (3.12), we get the required asymptotic of the second
derivative of Fm:

r2
nF

′′
m(rn) = −[1 + o(1)]y−4

n [3ψ2(vn) + (v2
n + vn)ψ1(vn) + v2

nψ0(vn)], n → ∞. (3.15)

Finally, following similar but simpler analysis, we obtain the following O-bound for the third
derivative of Fm:

F ′′′
m (rn) = O

(
y−5

n

∫ ∞

vn

u4

[
1

eu − 1
+

1

(eu − 1)2
+

1

(eu − 1)3

]
du

)
= O(y−5

n ), n → ∞. (3.16)

To find a complete asymptotic estimate for the integrand in (3.6), we approximate eiθ − 1
and (eiθ − 1)2 by iθ+ O(δ2

n) and −θ2 + O(δ3
n), respectively. Hence, for | θ |≤ δn, by (2.6) we

get
eiθ − 1 = iθ + O(n−10/9/ log2 n), (3.17)

(eiθ − 1)2 = −θ2 + O(n−5/3/ log3 n) (3.18)

as n → ∞. Furthermore, we notice that (2.9) implies, for large n, that

y−k
n =

[
n

2ζ(3)

]k/3

[1 + O(1/n)] =

[
n

2ζ(3)

]k/3

+ O(nk/3−1), k = 2, 3, 4, 5.

We substitute these estimates in the right sides of (3.10), (3.11), (3.15) and (3.16). Combining
the results obtained after these substitutions with those of (3.17) and (3.18), we see now that
(3.6) becomes

J1(m, n) =
r−n
n

2π
Q(rn)[1 + o(1)] exp

{
−1

2

[
n

2ζ(3)

]2/3

ψ2(vn)

}

×
∫ δn

−δn

exp{− iθn

2ζ(3)
[ψ2(vn) + vnψ1(vn)] − θ2b(rn)

2

+
θ2

2

[
n

2ζ(3)

]4/3

[3ψ2(vn) + (v2
n + vn)ψ1(vn) − v2

n log (1 − e−vn)]}dθ, n → ∞.

By letting θ = t/b1/2(rn),−∞ < t < ∞, in this integral with b(rn) defined by (2.4) (see also
(2.5)), we get

J1(m, n) =
r−n
n

2πb1/2(rn)
Q(rn)[1 + o(1)]exp

{
−1

2

[
n

2ζ(3)

]2/3

ψ2(vn)

}

×
∫ δnb1/2(rn)

−δnb1/2(rn)

exp {−itAn − Bnt
2/2}dt, n → ∞, (3.19)
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where
An =

n

2ζ(3)b1/2(rn)
[ψ2(vn) + vnψ1(vn)], (3.20)

Bn = 1 −
[

n

2ζ(3)

]4/3

[3ψ2(vn) + (v2
n + vn)ψ1(vn) − v2

n log (1 − e−vn)]/b(rn). (3.21)

On the other hand, (2.5) and (2.6) imply that

δnb
1/2(rn) ∼ dn1/9 log n, d =

√
3/[2ζ(3)]1/6. (3.22)

Further, we also need some asymptotic estimates for ψj(vn), j = 1, 2, as vn → ∞, pre-
sented in a slightly different form. Integrating by parts the right side of ψ2(vn) (see (3.7)),
we get

ψ2(vn) = −v2
n log (1 − e−vn) − 2

∫ ∞

vn

u log (1 − e−u)du. (3.23)

For u ∈ [vn,∞), we have

− log (1 − e−u) = e−u + O(e−2u) = e−u[1 + O(e−vn)],

and therefore,

−
∫ ∞

vn

u log (1 − e−u)du = [1 + O(e−vn)]

∫ ∞

vn

ue−udu

= [1 + O(e−vn)](vne
−vn + e−vn) = O(vne

−vn), vn → ∞.

Substituting this into (3.23), we conclude that

ψ2(vn) = −v2
n log (1 − e−vn) + O(vne

−vn), vn → ∞. (3.24)

In the same way for ψ1(vn) we obtain the following asymptotic:

ψ1(vn) = −vn log (1 − e−vn) + O(e−vn), vn → ∞. (3.25)

We are now ready to specify the sequence {vn}∞n=1 that will produce a non-degenerate limiting
distribution. We set

vn =
2

3
log n + log log n + z,−∞ < z < ∞, n = 1, 2, .... (3.26)

Obviously, assumption (3.26) implies that

− log (1 − e−vn) = e−vn + O(e−2vn) =
e−z

n2/3 log2 n
+ O(n−4/3/ log4 n),

and therefore,

−v2
n log (1 − e−vn) =

4e−z

9n2/3

[
1 + O

(
log log n

log n

)]
(3.27)
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as vn → ∞. Therefore, the exponent outside the integral of the right side of (3.19) becomes

exp

{
−1

2

[
n

2ζ(3)

]2/3

ψ2(vn)

}
= exp

{
− 2e−z

9[2ζ(3)]2/3

}
+ O

(
log log n

log n

)
(3.28)

as n → ∞. Turning to the integrand of (3.19), note that (3.24) - (3.27) imply somewhat less
precise but shorter estimates for ψ1 and ψ2. We have

ψ2(vn) = O(n−2/3), vnψ1(vn) = O(n−2/3), n → ∞.

Inserting them into (3.20) and taking into account the asymptotic form of b(rn) from (2.5),
we get

An = O(n−2/3), n → ∞. (3.29)

A similar analysis of (3.21) shows that

Bn = 1 + O(n−2/3 log n). (3.30)

Therefore the integrand of (3.19) tends to e−t2/2 as n → ∞.

Our final remark concerns the bounds of the integral in (3.19). They can be substituted
by −∞ and ∞ with an error term that is estimated, e.g., by using the asymptotic expansion
of the function (2π)−1/2

∫ ∞
v e−t2dt as v → ∞ (see [1; Chap. 7]). Hence, by (3.22) we find

that its order, as n → ∞, is at most O(n−1/9(log n) exp {−d2n2/9/ log2 n}) = o(1). This, in
combination with (3.28) - (3.30) and the Lebesgue dominated convergence theorem, shows
that

J1(m, n) =
r−n
n

2πb1/2(rn)
Q(rn)[1 + o(1)] exp

{
− 2e−z

9[2ζ(3)]2/3

}

×
∫ ∞

−∞
e−t2/2dt =

r−n
n√

2πb(rn)
Q(rn)[1 + o(1)] exp

{
− 2e−z

9[2ζ(3)]2/3

}
(3.31)

as n → ∞. Thus the estimate for J1(m, n) is completed.

3.2. An Asymptotic estimate for J2(m, n)

First, we recall (2.14) and (3.3). It is also clear that

Q(rne
iθ)

∞∏

j=m+1

(1 − rj
ne

ijθ)j−m = Qm(rne
iθ)

∞∏

j=m+1

1

(1 − rj
neijθ)m

. (3.32)

The infinite product in the right side of (3.32) can be estimated as follows:

|
∞∏

j=m+1

1

(1 − rj
neijθ)m

|≤
∞∏

j=m+1

1

(1 − rj
n)m

<
∞∏

j=m+1

1

(1 − rj
n)j

. (3.33)
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This bound is uniform for m = 1, 2, .... Now, to estimate the integrand in J2(m, n), we apply
successively Lemma 2 and (3.33). We obtain

| Q(rne
iθ)e−iθn

∞∏

j=m+1

(1 − rj
ne

ijθ)j−m |

≤ Qm(rn) exp {ε− (2.5)n2/9/[2ζ(3)]4/3 log2 n − fm,n(θ)}
∞∏

j=m+1

1

(1 − rj
n)j

= Q(rn) exp {ε− (2.5)n2/9/[2ζ(3)]4/3 log2 n − fm,n(θ)}, (3.34)

since by (2.14)

Q(rn) = Qm(rn)
∞∏

j=m+1

1

(1 − rj
n)j

.

Using (2.15), (2.9) and (3.26), we find that

| fm,n(θ) |≤ 2
∑

j>m

jrj
n = 2y−2

n

∑

jyn>myn

yn(jyn)e−jyn

= O

(
n2/3

∫ ∞

vn

ue−udu

)
= O(1).

In order to get an estimate which contains a term that is asymptotically equivalent to
q(n), we apply first the bound from (3.34), and then multiply and divide the whole expression
by

√
2πb(rn). Thus, using (2.4) again, we finally get

| J2(m, n) |≤ r−n
n Q(rn) exp {−(2.5)n2/9/[2ζ(3)]4/3 log2 n + O(1)}

=
r−n
n Q(rn)√
2πb(rn)

exp{−(2.5)n2/9/[2ζ(3)]4/3 log2 n + log
√

2πb(rn) + O(1)}

=
r−n
n Q(rn)√
2πb(rn)

exp {−(2.5)n2/9/[2ζ(3)]4/3 log2 n +
4

3
log n + O(1)} (3.35)

as n → ∞.

3.3. End of the Proof

Applying the result of Lemma 3 to (3.31) and (3.35), we obtain

J1(m, n) = exp

{
− 2e−z

9[2ζ(3)]2/3

}
q(n)[1 + o(1)]

and
J2(m, n) = o(q(n)).
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Replacing these estimates into (3.1) - (3.3), after appropriate cancellations we find that

P (Ln ≤ m) = exp

{
− 2e−z

9[2ζ(3)]2/3

}
+ o(1). (3.36)

Here m = vn/yn is determined by (3.8). Using estimate (2.9) for yn and expression (3.26)
for vn, we conclude that

m =
2
3 log n + 2 log log n + z

yn
=

[
n

2ζ(3)

]1/3 (
2

3
log n + 2 log log n + z

)
[1 + O(1/n)]

=

[
n

2ζ(3)

]1/3 (
2

3
log n + 2 log log n + z

)
+ O(n−2/3 log n)

as n → ∞. Substituting this value into (3.36), we obtain

P

{[
2ζ(3)

n

]1/3

Ln − log (n2/3) − log (log2 n) ≤ z + o(1)

}

= exp

{
− 2e−z

9[2ζ(3)]2/3

}
+ o(1). (3.37)

Now, it remains to replace z with z + log {2/9[2ζ(3)]2/3} and apply simple algebra to see
that

− log (n2/3) − log (log2 n) − log {2/9[2ζ(3)]2/3}

= − log

[
n

2ζ(3)

]2/3

− log

[
1

2
log2 (n2/3)

]
. (3.38)

The limiting distribution result (1.6) now follows from (3.37), (3.38) and the fact that Ln,
Cn and Rn are equidistributed. !
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