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Abstract

In this paper, we establish a formula expressing explicitly the general term of a linear recur-
rent sequence, allowing us to generalize the original result of J. McLaughlin [7] concerning
powers of a matrix of size 2, to the case of a square matrix of size m ≥ 2. Identities concerning
Fibonacci and Stirling numbers and various combinatorial relations are derived.

1. Introduction

The main theorem of J. McLaughlin [7] states the following:

Theorem 1. Let A =

(
a b
c d

)
be a square matrix of order two, let T = a + d be its trace,

and let D = ad − bc be its determinant. Let

yn =
!n/2"∑

i=0

(
n − i

i

)
T n−2i (−D)i . (1)

Then, for n ≥ 1,

An =

(
yn − dyn−1 byn−1

cyn−1 yn − ayn−1

)
. (2)

1Partially supported by the laboratory LAID3.
2Partially supported by the laboratory LATN.
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We remark that in this theorem, (yn)n≥−1 is a linear recurrent sequence that satisfies





y−1 = 0,
y0 = 1,
yn = Tyn−1 − Dyn−2 for all integer n ≥ 1.

(3)

By setting A0 =

(
1 0
0 1

)
and A1 =

(
−d b
c −a

)
, relation (2) of Theorem 1 may be

written as follows:

An = ynA0 + yn−1A1 for all integers n ≥ 0, (4)

with A0 = I2 and A1 = A − TI2 (where I2 is the unit matrix).

In Section 3, we extend this result (relation (4)) to any matrix A ∈ Mm (A) of order
m ≥ 2, A being a unitary commutative ring.

We prove the following result:

Let A ∈ Mm (A) and let P (X) = Xm − a1Xm−1 − · · · − am−1X − am be the characteristic
polynomial of A. Let A0, A1, . . . , Am−1 be matrices of Mm (A) defined by

Ak = −
k∑

i=0

aiA
k−i, for 0 ≤ k ≤ m − 1, with a0 = −1,

and let (yn)n>−m be the sequence of elements of A satisfying

yn =
∑

k1+2k2+···+mkm=n

(
k1 + k2 + · · · + km

k1, k2, . . . , km

)
ak1

1 ak2
2 . . . akm

m , for n > −m.

Then, for all integers n ≥ 0, An = ynA0 + yn−1A1 + · · · + yn−m+1Am−1.

The proof of this result is based on Theorem 2 given in Section 2.

In this section, we generalize Theorem 2, which permits us to express the general term
un of a recurrent linear sequence satisfying the relation

un = a1un−1 + a2un−2 + · · · + amun−m for all n ≥ 1,

in terms of the coefficients a1, a2, . . . , am and u0, u−1, u−2, . . . , u−(m−1). Applications to
Fibonacci, generalized Fibonacci and “multibonacci” sequences are also given.

Finally, in Section 4, further combinatorial identities are derived, including identities
concerning the Stirling numbers of the first and second kind.

As an illustration, we give a nice duality between the two following relations (Corollaries
5 and 7):

∑

k1+2k2+···+mkm=n

(
k1 + · · · + km

k1, . . . , km

)
(−1)n−(

∑m
i=1 ki)

(
m

m − 1

)k1

. . .

(
m
0

)km

=

(
n + m − 1

m − 1

)
,
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∑

k1+2k2+···+mkm=n

(
k1 + · · · + km

k1, . . . , km

)
(−1)n−(

∑m
i=1 ki)

[
m

m − 1

]k1

. . .

[
m
0

]km

=

{
n + m − 1

m − 1

}
,

where

(
k1 + · · · + km

k1, . . . , km

)
is the multinomial coefficient (Section 2), and

[
n
k

]
and

{
n
k

}

are, respectively, the Stirling numbers of the first and second kind as defined in [5].

2. Explicit Expression of the General Term of a Recurrent Linear Sequence

In this section, we let m ≥ 2 be an integer, A a unitary commutative ring, a1, a2, . . . , am,
α0, α1, . . . , αm−1 elements of A, and (un)n>−m a sequence of elements of A defined by

{
u−j = αj for 0 ≤ j ≤ m − 1,
un = a1un−1 + a2un−2 + · · · + amun−m for n ≥ 1.

(5)

The aim of this section is to give an explicit expression of un in terms of n, a1, a2, . . . , am,
α0, α1, . . . , αm−1 (Theorem 3).

Let us define the sequence (yn)n∈Z of elements of A, with the convention that an empty
sum is zero, by

yn =
∑

k1+2k2+···+mkm=n

(
k1 + k2 + · · · + km

k1, k2, . . . , km

)
ak1

1 ak2
2 . . . akm

m , for n ∈ Z, (6)

the summation being taken over all m-tuples (k1, k2, . . . , km) of integers kj ≥ 0 satisfying
k1 + 2k2 + · · · + mkm = n. With the previous convention, we have yn = 0 for n < 0. The
multinomial coefficient that appears in the summation is defined for integers k1, k2, . . . ,
km ≥ 0, by (

k1 + k2 + · · · + km

k1, k2, . . . , km

)
=

(k1 + k2 + · · · + km)!

k1!k2! · · · km!
,

and can always be written as a product of binomial coefficients
(

k1 + k2 + · · · + km

k1, k2, . . . , km

)
=

(
k1 + k2 + · · · + km

k1 + k2 + · · · + km−1

)
· · ·

(
k1 + k2 + k3

k1 + k2

) (
k1 + k2

k1

)
.

Let us adopt the following convention. For k1 + k2 + · · · + km ≥ 1, we put
(

k1 + k2 + · · · + (kj − 1) + · · · + km

k1, k2, . . . , kj − 1, . . . , km

)
= 0 when kj = 0,

for any j ∈ {1, 2, . . . , m} . We can now state the following lemma [p. 80 (Vol. 1), 4].

Lemma 1. Let kj ≥ 0 be integers for j ∈ {1, 2, . . . , m} , such that k1 + · · · + km ≥ 1. Then
(

k1 + k2 + · · · + km

k1, k2, . . . , km

)
=

m∑

j=1

(
k1 + · · · + (kj − 1) + · · · + km

k1, . . . , kj − 1, . . . , km

)
.
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This lemma permits us to easily prove the following result.

Lemma 2. The sequence (yn)n∈Z , defined by relation (6) , satisfies the recurrence relation

yn = a1yn−1 + a2yn−2 + · · · + amyn−m for n ≥ 1

with y0 = 1 and yn = 0 for n < 0.

Proof. First notice that, for n ≥ 1, for all j ∈ {1, 2, . . . , m} we have

ajyn−j =
∑

k1+2k2+···+mkm=n

(
k1 + · · · + (kj − 1) + · · · + km

k1, . . . , kj − 1, . . . , km

)
ak1

1 . . . a
kj

j . . . akm
m .

Applying Lemma 1, we obtain
m∑

j=1
ajyn−j = yn. The relations y0 = 1 and yn = 0 for n < 0

follow immediately. !

We can now state the following result.

Theorem 2. Let (un)n>−m the sequence of elements of A defined by






u−j = 0 for 1 ≤ j ≤ m − 1,
u0 = 1,
un = a1un−1 + a2un−2 + · · · + amun−m for n ≥ 1.

Then for all integers n > −m,

un =
∑

k1+2k2+···+mkm=n

(
k1 + k2 + · · · + km

k1, k2, . . . , km

)
ak1

1 ak2
2 . . . akm

m .

Corollary 1. Let q ≥ 1 be an integer, a, b ∈ A, and let (vn)n≥−q be the sequence of elements
of A defined by






v−j = 0 for 1 ≤ j ≤ q,
v0 = 1,
vn+1 = avn + bvn−q for n ≥ 0.

(7)

Then, for all n ≥ −q,

vn =

% n
q+1&∑

k=0

(
n − kq

k

)
an−k(q+1)bk, (8)

and, for all n ≥ 0,

vn+1 + bvn−q = 2vn+1 − avn =

%n+1
q+1 &∑

k=0

n + 1 − k (q − 1)

n + 1 − kq

(
n + 1 − kq

k

)
an+1−k(q+1)bk. (9)
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Proof. We deduce relation (8) directly from Theorem 2, with m = q +1, a1 = a, am = b and
ak = 0 for 1 < k < m. From (8) , we deduce (9) as follows:

vn+1 + bvn−q =

%n+1
q+1 &∑

k=0

(
n + 1 − kq

k

)
an+1−k(q+1)bk +

%n−q
q+1 &∑

k=0

(
n − (k + 1) q

k

)
an−q−(q+1)kbk+1

=

%n+1
q+1 &∑

k=0

(
n + 1 − kq

k

)
an+1−k(q+1)bk +

%n+1
q+1 &∑

k=1

(
n − kq
k − 1

)
an+1−k(q+1)bk

=

%n+1
q+1 &∑

k=0

(
n + 1 − kq

k

)
an+1−k(q+1)bk +

%n+1
q+1 &∑

k=0

k
n+1−kq

(
n + 1 − kq

k

)
an+1−k(q+1)bk

=

%n+1
q+1 &∑

k=0

n + 1 − k (q − 1)

n + 1 − kq

(
n + 1 − kq

k

)
an+1−k(q+1)bk.

!

We now give some applications of the above corollary.

Application 1. Let (Fn)n≥0 be the Fibonacci sequence





F0 = 0,
F1 = 1,
Fn+1 = Fn + Fn−1 for n ≥ 1.

Then, by setting ϕn = Fn+1 for n ≥ −1, we see that (ϕn)n≥−1 is also defined by





ϕ−1 = 0,
ϕ0 = 1,
ϕn = ϕn−1 + ϕn−2 for n ≥ 1.

The application of Corollary 1 gives us that

ϕn = Fn+1 =
!n/2"∑

k=0

(
n − k

k

)
, for n ≥ −1,

the relation given in [pp. 18-20, 12], and announced in [9] . Also

Fn + Fn+2 =

%n+1
2 &∑

k=0

n + 1

n + 1 − k

(
n + 1 − k

k

)
, for n ≥ 0,

and we find the relations given in Problem 6.98 of [10] , which state that

F2n−1 + F2n+1 =
n∑

k=0

2n

2n − k

(
2n − k

k

)
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and

F2n + F2n+2 =
n∑

k=0

2n + 1

2n + 1 − k

(
2n + 1 − k

k

)
.

Application 2. For q ≥ 1, let
(
G(q)

n

)

n≥0
be the generalized Fibonacci sequence as cited in

[8] , and let
(
H(q)

n

)

n≥0
be a sequence of numbers defined as follows:

{
G(q)

0 = G(q)
1 = · · · = G(q)

q = 1,

G(q)
n+1 = G(q)

n + G(q)
n−q for n ≥ q,

and

{
H(q)

0 = H(q)
1 = · · · = H(q)

q = 1,

H(q)
n+1 = H(q)

n − H(q)
n−q for n ≥ q.

We can extend easily the above sequences to (Gn)n≥−q and (Hn)n≥−q by






G(q)
−j = 0 for 1 ≤ j ≤ q,

G(q)
0 = 1,

G(q)
n+1 = G(q)

n + G(q)
n−q for n ≥ 0,

and






H(q)
−j = 0 for 1 ≤ j ≤ q,

H(q)
0 = 1,

H(q)
n+1 = H(q)

n − H(q)
n−q for n ≥ 0.

The application of Corollary 1 gives us, for n ≥ −q, the relations

G(q)
n =

% n
q+1&∑

k=0

(
n − kq

k

)
, and H(q)

n =

% n
q+1&∑

k=0

(−1)k

(
n − kq

k

)
.

Notice that G(1)
n = Fn+1 = ϕn, and H(2)

n is the integer function studied by L. Bernstein
[1] , who showed that the only zeros of H(2)

n are at n = 3 and n = 12. This result was treated
also by L. Carlitz [2, 3] and recently by J. McLaughlin and B. Sury [8].

The following theorem gives us an explicit formulation for un in terms of n, a1, a2, . . . ,
am, α0, α1, . . . , αm−1, and thus generalizes Theorem 2.

Theorem 3. Let (un)n>−m be a sequence of elements of A defined by

{
u−j = αj for 0 ≤ j ≤ m − 1,
un = a1un−1 + a2un−2 + · · · + amun−m for n ≥ 1.

(10)

Let (λj)0≤j≤m−1and (yn)n>−m be the sequences of elements of A defined by

λj = −
m−1∑

k=j

ak−jαk, for 0 ≤ j ≤ m − 1, with a0 = −1, (11)

and

yn =
∑

k1+2k2+···+mkm=n

(
k1 + k2 + · · · + km

k1, k2, . . . , km

)
ak1

1 ak2
2 . . . akm

m , for n > −m.
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Then for all integer n > −m, we have un = λ0yn + λ1yn+1 + · · · + λm−1yn+m−1.

Remark. Note that (11) is equivalent to




λ0

λ1

λ2
...

λm−2

λm−1





=





1 −a1 −a2 · · · −am−2 −am−1

0 1 −a1 −a2 · · · −am−2

0 0 1 −a1 · · · −am−3
...

...
. . . . . . . . .

...
0 0 · · · 0 1 −a1

0 0 0 · · · 0 1









α0

α1

α2
...

αm−2

αm−1





.

or

[λ0,λ1, . . . ,λm−1]
t = C [α0,α1, . . . ,αm−1]

t , (12)

where

C = (cij)1≤i,j≤m , with cij =






0 if i > j,
1 if i = j,

−aj−i if i < j.

We deduce also from relations (10) and (12) the matrix equality




un

un+1
...

un+m−2

un+m−1




=





yn yn+1 · · · yn+m−2 yn+m−1

yn+1 yn+2 · · · yn+m−1 yn+m
...

...
. . .

...
...

yn+m−2 yn+m−1 · · · yn+2m−4 yn+2m−3

yn+m−1 yn+m · · · yn+2m−3 yn+2m−2




×

×





1 −a1 −a2 · · · −am−1

0 1 −a1
. . .

...
...

. . . . . . . . . −a2

0 0 1 −a1

0 0 · · · 0 1









α0

α1
...

αm−2

αm−1





Proof. Let S be the A-module of sequences (vn)n>−m satisfying the recurrence relation

vn − a1vn−1 − a2vn−2 − · · ·− amvn−m = 0 for all n ≥ 1.

Let us consider the family of sequences
(
v(k)

n

)

n>−m
, for 0 ≤ k ≤ m − 1, defined by






v(0)
n = yn,

v(1)
n = yn+1 − a1yn,

v(2)
n = yn+2 − a1yn+1 − a2yn,

...

v(m−1)
n = yn+m−1 − a1yn+m−2 − a2yn+m−3 − · · ·− am−1yn,



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A12 8

i.e.,

v(k)
n = yn+k − (a1yn+k−1 + a2yn+k−2 + · · · + akyn) (13)

=
k∑

i=0

−aiyn+k−i, with a0 = −1.

By Theorem 2, we have (yn)n>−m ∈ S. Consequently, (yn+q)n>−m ∈ S for q ≥ 0, and finally
we deduce that

(
v(k)

n

)
n>−m

∈ S, for 0 ≤ k ≤ m − 1. (14)

It is easy to observe that we also have, for j, k ∈ {0, 1, 2, . . . , m − 1} ,

v(k)
−j = δkj =

{
1 if k = j
0 if k (= j

(15)

In fact, with a0 = −1, we can write, for j, k ∈ {0, 1, . . . , m − 1} ,v(k)
−j = −

∑k
i=0 aiy−j+k−i.

If k < j, then −j + k − i < 0 for 1 ≤ i ≤ k and v(k)
−j = 0 (because yq = 0 for q < 0). If

k = j, then v(k)
−j = v(j)

−j = −
j∑

i=0
aiy−i = −a0y0 = 1. If k > j, then for r = k − j < 0, we have

r ≥ 1 and

v(k)
−j = yr − (a1yr−1 + a2yr−2 + · · · + akyr−k) , and by using r − k = −j ≤ 0,

= yr − (a1yr−1 + a2yr−2 + · · · + akyr−k + · · · + amyr−m)

= 0 because (yn)n>−m ∈ S and r ≥ 1.

Relations (14) and (15) give easily, that for all n > −m,un =
m−1∑
k=0

αkv
(k)
n and, with (13) ,

un =
m−1∑

k=0

αk

(
k∑

i=0

−aiyn+k−i

)

=
m−1∑

k=0

k∑

j=0

−ak−jαkyn+j

=
m−1∑

j=0

(
m−1∑

k=j

−ak−jαk

)
yn+j

=
m−1∑

j=0

λjyn+j,

where λj is as defined in (11) . !
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Theorem 3 allows us to find various formulae for the Fibonacci numbers.

Corollary 2. For all integers n ≥ 1,

Fn =
1

2n+2

n∑

k=1

n + 1 − k

k

(
k

n + 1 − 2k

)
8k.

Remark. In this summation, we may, in fact, restrict the sum to those integers i ranging
between n+1

3 and n+1
2 , the binomial coefficient of the formula being zero for the other integers.

Proof. Note that Fn =2Fn−2+Fn−3 for n ≥ 3. Denoting by (yn)n≥−2 the sequence defined by






y−2 = y−1 = 0,
y0 = 1,
yn = 2yn−2 + yn−3 for n ≥ 1,

we see that, for n ≥ 1,Fn = yn−1 + yn−2. Theorem 3 allows us to state that, for n ≥ −2,

yn =
∑

2k+3l=n

(
k + l

l

)
2k =

∑

0≤t≤n

(
t

n − 2t

)
23t−n,

and Corollary 2 follows by simple calculations. !

The following result can also be easily deduced from Theorem 3.

Corollary 3. For all integers m ≥ 1, F2m−1 =
!m/3"∑

k=0

m + k

m − k

(
m − k

2k

)
2m−1−3k.

Now, let us consider for q > 1, the “multibonacci” sequence
(
φ(q)

n

)

n>−q
defined by






φ(q)
−(q−1) = · · · = φ(q)

−2 = φ(q)
−1 = 0,

φ(q)
0 = 1,

φ(q)
n = φ(q)

n−1 + φ(q)
n−2 + · · · + φ(q)

n−q for n ≥ 1,

(16)

where φ(2)
n = ϕn = Fn+1 = G(1)

n . Theorem 3 also implies that, for all n ≥ 0,

φ(q)
n =

∑

k1+2k2+···+qkq=n

(
k1 + k2 + · · · + kq

k1, k2, . . . , kq

)
.

Thus, for q = 3, we obtain

φ(3)
n =

∑

i+2j+3k=n

(
i + j + k

i, j, k

)
=

∑

2i+3j≤n

(
n − i − 2j

i + j

) (
i + j

i

)
.
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We deduce from (16) that φ(q)
n+1 = 2φ(q)

n − φ(q)
n−q, for n ≥ 1. Let us consider (ψn)n≥−q ,

the sequence defined by ψn := φ(q)
n , for n > −q and ψ−q = 1, which satisfies the recurrence

relationψn+1 = 2ψn − ψn−q, for n ≥ 0. After applying Theorem 3, we find that, for n ≥ 0,

ψn

(
= φ(q)

n

)
= λ0zn + λ1zn+1 + · · · + λqzn+q

= zn − 2zn+q−1 + zn+q,

with zn =

% n
q+1&∑

k=0

(
n − kq

k

)
2n−k(q+1) (−1)k , for n ≥ −q. We know, via Theorem 3 and

Corollary 1, that the sequence (zn)n≥−q satisfies the recurrence relation zn+1 − 2zn + zn−q =
0, for n ≥ 0. This gives, for n ≥ 0,

φ(q)
n = zn − zn−1 + (zn+q − 2zn+q−1 + zn−1)

= zn − zn−1.

Applying relation (9) in Corollary 1, we can write, for n ≥ 1,

φ(q)
n =

% n
q+1&∑

k=0

n − k (q − 1)

n − kq

(
n − kq

k

)
2n−1−k(q+1) (−1)k .

Thus,

∑

k1+2k2+···+qkq=n

(
k1 + · · · + kq

k1, . . . , kq

)
=

% n
q+1&∑

k=0

n − k (q − 1)

n − kq

(
n − kq

k

)
2n−1−k(q+1) (−1)k . (17)

For q = 3, we obtain
∑

i+2j+3k=n

(
i + j + k

i, j, k

)
=

∑

2i+3j≤n

(
n − i − 2j

i + j

) (
i + j

i

)

=

%n
4 &∑

k=0

n − 2k

n − 3k
(−1)k

(
n − 3k

k

)
2n−1−4k.

3. Powers of a Square Matrix of Order m

We start this section with the main result of this paper.

Theorem 4. Let A ∈ Mm (A) and let P (X) = Xm − a1Xm−1 − · · ·− am−1X − am be the
characteristic polynomial of A. Let A0, A1, . . . , Am−1 be matrices of Mm (A) defined by

Ak = −
k∑

i=0

aiA
k−i, for 0 ≤ k ≤ m − 1, with a0 = −1, (18)
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and let (yn)n>−m be the sequence of elements of A satisfying

yn =
∑

k1+2k2+···+mkm=n

(
k1 + k2 + · · · + km

k1, k2, . . . , km

)
ak1

1 ak2
2 . . . akm

m , for n > −m.

Then, for all integers n ≥ 0,

An = ynA0 + yn−1A1 + · · · + yn−m+1Am−1 (19)

Proof. Define, for 0 ≤ k ≤ m,

Pk (X) = −
k∑

i=0

aiX
k−i, with a0 = −1. (20)

For 0 ≤ k ≤ m − 1, we have

XPk (X) = Pk+1 (X) + ak+1. (21)

Relation (20) shows that the degree of Pk is k for 0 ≤ k ≤ m. It implies that (P0, P1, . . . , Pm−1)
is a basis of the free A-module Am−1 [X] consisting of polynomials of A [X] of degree ≤ m−1.

For all n ≥ 0, the remainder Rn of the euclidean division of Xn by Pm is written as
a linear combination of polynomials P0, P1, . . . , Pm−1. Then, for all n ≥ 0, there exists a
unique family (αn,k)0≤k≤m−1 such that

Rn =
m−1∑

k=0

αn,kPk. (22)

For 0 ≤ n ≤ m−1, we have Rn (X) = Xn, where Xn is a linear combination of P0, . . . , Pm−1,
and

{
α0,0 = 1
αn,k = 0 for n < k ≤ m − 1.

(23)

Relations (21) and (22) imply that

XRn (X) =
m−1∑

k=0

αn,k (Pk+1 (X) + ak+1)

=
m−1∑

k=0

ak+1αn,k +
m−1∑

k=1

αn,k−1Pk (X) + αn,m−1Pm (X) .

As a consequence, the polynomial Rn+1 (X)−XRn (X)−αn,m−1Pm (X) , of degree ≤ m−1,
is divisible by Pm (X), which is of degree m. This polynomial is thus the zero polynomial as
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well as its components in the basis (P0, P1, . . . , Pm−1). This provides us with the following
relations:

αn+1,0 =
m−1∑

k=0

ak+1αn,k, for n ≥ 0, (24)

αn+1,k = αn,k−1 for 1 ≤ k ≤ m − 1. (25)

Let us set, for all integers n ∈ Z,

zn =

{
αn,0 for n ≥ 0,
0 for n < 0.

(26)

One checks easily that for all integers n ≥ 0 and for 0 ≤ k ≤ m − 1,

αn,k = zn−k. (27)

Indeed, if n ≥ k this relation follows from (25) and (26) , and if 0 ≤ n < k ≤ m−1 it follows
from (23) and (26). From (25) , (26) and (27) , we find that






zn = 0 for n < 0,
z0 = 1,
zn = a1zn−1 + a2zn−2 + · · · + am−1zn−m−1 + amzn−m for n ≥ 1.

Theorem 2 implies that zn = yn, for all n ∈ Z, where

yn =
∑

k1+2k2+···+mkm=n

(
k1 + k2 + · · · + km

k1, k2, . . . , km

)
ak1

1 ak2
2 . . . akm

m .

This last fact, together with the Cayley-Hamilton Theorem, (22) , (20) , (18) and (27) now
give that

An = Rn (A) =
m−1∑

i=0

αn,iPi (A) =
m−1∑

i=0

zn−iAi =
m−1∑

i=0

yn−iAi.

which completes the proof of (19) . !

4. Further Combinatorial Identities

Some nice combinatorial identities can be derived from Theorem 4 by considering various
particular matrices with simple forms.

Corollary 4. Let n be a positive integer. Then

∑

k1+2k2+···+mkm=n

(
k1 + · · · + km

k1, . . . , km

)
(−1)n−(k1+···+km)

(
m

m − 1

)k1

. . .

(
m
0

)km

=

(
n + m − 1

m − 1

)
,
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where

(
n + m − 1

m − 1

)
is the number of m- combinations with repetition of finite set {1, . . . , n} ,

and the summation is taken over all m-tuples (k1, k2, . . . , km) of integers kj ≥ 0 satisfying
the relation k1 + 2k2 + · · · + mkm = n.

Proof. Let Jm be the m × m Jordan matrix,

Jm =





1 1 0 · · · 0

0 1 1
. . .

...

0 0
. . . . . . 0

...
...

. . . 1 1
0 0 · · · 0 1




.

The characteristic polynomial of Jm is (X − 1)m. We also have Jn
m =

((
n

j − i

))

1≤i,j≤m

.

Applying Theorem 4 with A = Jm, and considering the (1, m) entries of both sides of

(19), we obtain the relation

(
n

m − 1

)
= yn−(m−1), which leads to the result. !

From Corollary 4, we obtain the following combinatorial identities, for m = 2, 3, 4.

∑

2i≤n

(−1)i

(
n − i

i

)
2n−2i = n + 1,

∑

2i+3j≤n

(−1)i

(
n − i − 2j

i + j

) (
i + j

i

)
3n−i−3j =

(
n + 1

2

)

∑

2i+3j+4k≤n

(−1)i+k

(
n − i − 2j − 3k

i + j + k

) (
i + j + k

i + j

) (
i + j

i

)
22n−3i−4j−8k3i =

(
n + 3

3

)

Like J. Mc Laughlin and B. Sury [8, Corollary 6], we can also derive Corollary 4 from the
following result.

Corollary 5. ([8, Theorem 1]) Let x1, x2, . . . , xm be elements of the unitary commutative

ring A with sk =
∑

1≤i1<i2<···<ik≤m

xi1xi2 · · ·xik , for 1 ≤ k ≤ m. Then, for each positive integer n,

∑

k1+k2+···+km=n

xk1
1 . . . xkm

m =
∑

k1+2k2+···+mkm=n

(
k1 + · · · + km

k1, . . . , km

)
(−1)n−k1−···−km sk1

1 . . . skm
m ,

with the summations being taken over all m-tuples (k1, k2, . . . , km) of integers kj ≥ 0 satis-
fying the relations k1 +k2 + · · ·+km = n for the left-hand side and k1 +2k2 + · · ·+mkm = n
for the right-hand side.
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Proof. Let us give a proof of this result by using Theorem 2. For n > −m and 1 ≤ l ≤ m,
consider q(l)

n :=
∑

k1+k2+···+kl=n

xk1
1 xk2

2 . . . xkl
l , and qn := q(m)

n . Let E : βn )−→ βn+1 be the shift

operator which acts on any sequence (βn)n, and, for 1 ≤ l ≤ m, let Ql be the operator given
by Ql := (E − x1) (E − x2) · · · (E − xl) . Notice that Qm = Em − s1Em−1 + · · · + (−1)m sm.

Then, for n ≥ 1 and 2 ≤ l ≤ m, we have (E − xl) · q(l)
n−l = q(l−1)

n−(l−1). Therefore,

Qm

(
q(m)
n−m

)
= Qm−1

(
q(m−1)
n−(m−1)

)
= · · · = Q1

(
q(1)
n−1

)
= 0.

Thus,

qn = s1qn−1 − s2qn−2 + · · · + (−1)m−1 smqn−m, for n ≥ 1. (28)

By the definition of qn, we also have

qn = 0 for n < 0 and q0 = 1. (29)

Applying Theorem 2 to the sequence (qn)n>−m , we obtain the result. !

Corollary 4 follows immediately by setting xi = 1 for all i in the previous corollary.

The following theorem is an extension of a result of J. Mc Laughlin and B. Sury [8,
Theorem 3].

Theorem 5. Let K be a field of characteristic zero, and let x1, x2, . . . , xm be independent
variables. Then, in K (x1, x2, . . . , xm) ,

∑

k1+···+km=n

xk1
1 xk2

2 . . . xkm
m =

m∑

i=1

xn+m−1
i∏

j '=i (xi − xj)
.

Proof. For γ1, γ2, . . . , γm ∈ K (x1, x2, . . . , xm) , let V (γ1, γ2, . . . , γm) denote the Vander-
monde determinant defined by V (γ1, γ2, . . . , γm) = det

(
γj−1

i

)
1≤i,j≤m

. It is well known that

V (γ1, γ2, . . . , γm) =
∏

1≤i<j≤m
(γj − γi) . By (28) , the sequence (qn)n>−m defined by

qn =
∑

k1+k2+···+km=n

xk1
1 xk2

2 . . . xkm
m

is a recurrent sequence with characteristic polynomial

Xm − s1X
m−1 + · · · + (−1)m sm = (X − x1) (X − x2) · · · (X − xm) .

This polynomial has m distincts roots x1, x2, . . . , xm. We deduce that there exist m elements
Ai = Ai (x1, x2, . . . , xm) ∈ K (x1, x2, . . . , xm) , 1 ≤ i ≤ m, such that

qn =
m∑

i=1

Aix
n
i for n ≥ −m.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A12 15

The initial conditions given by (28) lead to the Cramer system
m∑

i=1

Ai

xj
i

= δj,0 for 0 ≤ j ≤

m − 1. The resolution of this system gives

Ai =
V

(
1
x1

, . . . , 1
xi−1

, 0, 1
xi+1

, . . . , 1
xm

)

V
(

1
x1

, . . . , 1
xi−1

, 1
xi

, 1
xi+1

, . . . , 1
xm

) =
xm−1

i∏
j '=i (xi − xj)

, for 1 ≤ i ≤ m.

This completes the proof. !

Let us now give an application to Stirling numbers. For n ≥ 0, with the notations of [5] ,

the Stirling numbers of the first kind

[
n
k

]
, and the Stirling numbers of the second kind

{
n
k

}
, can be defined by the equations

Xn =
n∑

k=0

[
n
k

]
Xk, (30)

with Xn :=

{
1 if n = 0,
X (X + 1) (X + 2) · · · (X + n − 1) if n ≥ 1,

and

Xn =
n∑

k=0

{
n
k

}
Xk, (31)

with Xk :=

{
1 if k = 0,
X (X − 1) (X − 2) · · · (X − k + 1) if k ≥ 1.

It is well known [p. 38 (Vol. 2), 4] that

{
n
k

}
=

1

k!

k∑

i=0

(−1)k−i

(
k

i

)
in. From Theorem 5

and Corollary 5, we deduce

∑

k1+2k2+···+mkm=n

(
k1 + · · · + km

k1, . . . , km

)
(−1)n−k1−···−km sk1

1 . . . skm
m =

m∑

i=1

xn+m−1
i∏

j '=i (xi − xj)
. (32)

If we take xk = − (k − 1) for 1 ≤ k ≤ m, we have sk = (−1)k

[
m

m − k

]
, for 1 ≤ k ≤ m,

and relation (32) gives the following result

Corollary 6. For all positive integers m and n,

∑

k1+2k2+···+mkm=n

(
k1 + · · · + km

k1, . . . , km

)
(−1)n−(k1+···+km)

[
m

m − 1

]k1

. . .

[
m
0

]km

=

{
n + m − 1

m − 1

}
.
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Note that Theorem 5 gives the following relation, which is stated in [p. 42, (Vol. 2), 4].

For all positive integers m and n,

{
n + m − 1

m − 1

}
=

∑

k1+···+km−1=n

1k12k2 . . . (m − 1)km−1 .

For m = 3, 4 and 5, we obtain

∑

2i≤n

(−1)i

(
n − i

i

)
2i3n−2i = 2n+1 − 1,

∑

2i+3j≤n

(−1)i

(
n − i − 2j

i + j

) (
i + j

i

)
6n−2i−2j11i =

3n+2 − 2n+3 + 1

2
,

∑

2i+3j+4k≤n

(−1)i+k

(
n − i − 2j − 3k

i + j + k

) (
i + j + k

i + j

) (
i + j

i

)
2n−2i−2j−k3k5n−i−j−4k7i

=
4n+3 − 3n+4 + 3 · 2n+3 − 1

6
.

Corollary 7. Let n be a positive integer and let x and y be indeterminates. Then

∑

2i+3j+4k≤n

(−1)i+k

(
n − i − 2j − 3k

i + j + k

) (
i + j + k

i + j

) (
i + j

i

)
(2x + 2y)n−2i−2j−4k ×

× (xy)j+2k (
x2 + 4xy + y2

)i
=

(n + 1) (xn+3 − yn+3) − (n + 3) xy (xn+1 − yn+1)

(x − y)3 .

Corollary 8. Let n a positive integer and x, y be indeterminates. Then

∑

2i+3j+4k≤n

(−1)i+k

(
n − i − 2j − 3k

i + j + k

) (
i + j + k

i + j

) (
i + j

i

)
×

× (3x + y)n−2i−3j−4k xi+2j+3kyk (3x + 3y)i (x + 3y)j

=
(n + 1) (n + 2) (xn+3 − yn+3) − (n + 3) y [n (xn+2 − yn+2) + (n + 2) xn+1 (x − y)]

2 (x − y)3 .

Proof of Corollaries 7 and 8. It suffices to put, in Corollary 4, x1 = x2 = x and x3 = x4 = y
to obtain Corollary 7; x1 = x2 = x3 = x and x4 = y to obtain Corollary 8. !
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