ON THE LARGEST k-PRIMITIVE SUBSET OF $[1, n]$

Sujith Vijay

Department of Mathematics, Rutgers University, New Brunswick, NJ 08854, USA.
sujith@math.rutgers.edu

Received: 6/28/04, Revised: 1/24/06, Accepted: 1/27/06, Published: 2/1/06

Abstract

We derive bounds on the size of the largest subset of $\{1,2, \ldots, n\}$ such that no element divides k others, for $k \geq 3$ and sufficiently large n.

1. Introduction

Let $S \subseteq \mathbb{N}$ be a finite set of positive integers. We say that S is k-primitive if no member of S divides k other elements in S.

Let $f_{k}(n)$ denote the size of the largest k-primitive subset of $[1, n]$. It is well-known that $f_{1}(n)=\left\lceil\frac{n}{2}\right\rceil$. Lebensold [2] showed that, if n is sufficiently large,

$$
(0.672 \ldots)<\frac{f_{2}(n)}{n}<(0.673 \ldots)
$$

In this article, we show that, for $k \geq 3$ and sufficiently large n,

$$
\frac{k}{k+1}+\frac{1}{8 k^{4}}<\frac{f_{k}(n)}{n}<1-\frac{1}{8 k \ln k} .
$$

Moreover, given $\epsilon>0$, there exists $k_{0}(\epsilon)$ such that for $k \geq k_{0}(\epsilon)$ and $n \geq n_{0}(k)$,

$$
\frac{k}{k+1}+\frac{1-\epsilon}{k^{4}}<\frac{f_{k}(n)}{n}<1-\frac{1}{\left(2 e^{\gamma}+\epsilon\right) k \ln k}
$$

2. The Lower Bound

For $\alpha \in \mathbb{R}$ and $S \subseteq \mathbb{N}$, we shall write αS to denote the set $\{\alpha x: x \in S\}$. We begin by deriving a lower bound on $f_{k}(n)$.

Define $S_{0}=\{x:(k+1) x>n\}$, with $\left|S_{0}\right|=\frac{n k}{k+1}+O(1)$. Clearly, S_{0} is k-primitive. Let $S_{1}=\left\{x: \frac{n}{k+3}<x<\frac{n k}{(k+1)^{2}}, k(k+1) \mid x\right\}$. Observe that any element in S_{1} has exactly $k+1$ other multiples in $[1, n]$. Let $S_{2}=(k+1) S_{1}, S_{3}=(k+2) S_{1}$ and $S^{\prime}=\left(S_{0} \cup S_{1}\right) \backslash\left(S_{2} \cup S_{3}\right)$. Note that S^{\prime} is k-primitive.

Let $S_{4}=(k+1)^{-1} S_{3}$ and and $S_{5}=k^{-1} S_{2}$. Any element in $S_{4} \cup S_{5}$ has at most k other multiples in $[1, n]$. By construction, at least one of these will not occur in S^{\prime}. Furthermore, no multiple of an element in S_{4}, except possibly itself, occurs in S_{5} and vice versa. It follows that $S \doteq S^{\prime} \cup S_{4} \cup S_{5}$ is k-primitive.

Note that

$$
\left|S_{i}\right|=\frac{n(k-1)}{k(k+1)^{3}(k+3)}+O(1), \text { for } 1 \leq i \leq 5
$$

Furthermore,

$$
S_{i} \cap S_{j}=\emptyset \text { for } 1 \leq i<j \leq 5 \text { except when } i=4 \text { and } j=5 .
$$

Finally,

$$
\left|S_{4} \cap S_{5}\right|=\frac{n\left(k^{3}-4 k-1\right)}{k^{2}(k+1)^{5}(k+2)(k+3)}+O(1)
$$

Thus we have,

$$
|S|=\left|S_{0}\right|+\left|S_{1}\right|-\left|S_{4} \cap S_{5}\right|>n\left(\frac{k}{k+1}+\frac{1}{8 k^{4}}\right) .
$$

Note that for sufficiently large k,

$$
|S|>n\left(\frac{k}{k+1}+\frac{1-\epsilon}{k^{4}}\right) .
$$

3. The Upper Bound

Let S be a k-primitive subset of $[1, n]$. For a positive integer $x \leq n /(k+1)$, let $C_{x} \doteq$ $\{x, 2 x, \ldots,(k+1) x\}$ be the chain containing x. Observe that $C_{x} \subseteq[1, n]$ and $\left|S \cap C_{x}\right| \leq k$.

Thus if $C_{x_{1}}, C_{x_{2}}, \ldots, C_{x_{m}}$ are pairwise disjoint, $|S| \leq n-m$.

Let $X=\left\{x: \frac{n}{2(k+1)}<x<\frac{n}{k+1}, x\right.$ has no prime factor in $\left.[2, k]\right\}$. Thus if $r \leq k$ and $x \in X$, we have $(r, x)=1$.

We claim that $\left\{C_{x_{m}}\right\}, x_{m} \in X$ is a pairwise disjoint collection.

Suppose not. Let $r x_{i}=s x_{j}, x_{i} \neq x_{j}, 1 \leq r<s \leq k+1$. Since $r \leq k$ and $x_{j} \in X$, we have $\left(r, x_{j}\right)=1$. Thus $x_{j} \mid x_{i}$, i.e., $x_{i} \geq 2 x_{j}>\frac{n}{k+1}$, which is impossible. This proves our claim.

Let P_{k} denote the product of the prime numbers not exceeding k. The easy estimate $P_{k}<3^{k}$, together with an application of the Chinese Remainder Theorem, yields

$$
|X|=\frac{n}{2(k+1)} \prod_{p \leq k}\left(1-\frac{1}{p}\right)+O\left(3^{k}\right) .
$$

By Mertens's theorem,

$$
\prod_{p \leq x}\left(1-\frac{1}{p}\right) \geq \frac{1}{e^{\gamma+\delta} \ln x} \text { where }|\delta|<\frac{4}{\ln (x+1)}+\frac{1}{2 x}+\frac{2}{x \ln x}
$$

Computations for a bounded initial segment (suffices to consider $x<12000$) establish that

$$
\prod_{p \leq x}\left(1-\frac{1}{p}\right) \geq \frac{\ln 3}{3 \ln x} \text { for } x \geq 3
$$

Therefore, we obtain, for $k \geq 3$,

$$
|X|>\frac{n}{8 k \ln k}
$$

and, for sufficiently large k,

$$
|X|>\frac{n}{\left(2 e^{\gamma}+\epsilon\right) k \ln k}
$$

References

[1] R. K. Guy, Unsolved Problems in Number Theory, Second Edition. Springer-Verlag, 1994.
[2] K. Lebensold, A divisibility problem, Studies in Applied Mathematics 56, 1977.
[3] F. Mertens, Ein Beitrag zur analytyischen Zahlentheorie, Journal für die Reine und Angewandte Mathematik 78, 1874.

