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Abstract

In this paper, we offer a complete strategy for a variant of Nim which is partial.
Such a strategy can be construed although its canonical form is exponentially complex.
Variations of Nim are common in the literature (see [1], [3] and [4] for instance), but as
far as we know, this variant of Partial Nim has not been explored before.

We shall assume that the reader is familiar with the basics of combinatorial game
theory. See [2] for an excellent explanation of this theory.

1. Introduction

The game of Partial Nim is played as follows: we begin with several piles of stones; some
piles of which are colored Red, some of which are colored bLue, while others are colored
grEen. At each turn, players Left and Right select a pile and remove a certain number
of stones from it, subjected to the following conditions.

1. In a bLue pile, Left may only remove an odd number of stones while Right may
only remove an even number.

2. Conversely, in a Red pile, Right may only remove an odd number of stones while
Left may only remove an even number.

3. In a grEen pile, there are no restrictions, just like conventional Nim.
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The player who is unable to make a move loses. A simple mnemonic for the above
cases is as follows: bLue piles are advantageous to Left, while Red piles are advantageous
to Right.

In the following sections, we shall describe a complete strategy for this game. The
crux lies in the Lexicographical Ordering Principle (Theorem 2).

2. Preliminaries

First, the grEen piles easily simplify to a nim value ∗n, and by symmetry we only need
to look at the bLue piles.

Definition 1 : Let An be the game of partial Nim with a bLue pile of n stones.

The canonical form of An may be determined recursively. The first few values of An

are:

A0 = 0

A1 = 1

A2 = {A1|A0} = 1|0

A3 = {A2, A0|A1} =
1

2

Theorem 1 : For n ≥ 1, we have:
(i) A2n−1 = 1

2n−1 .
(ii) A2n = {1 | 0, A2n−2}, which is canonical for n > 1.
(iii) A2 > A4 > A6 > . . . .

Proof. The proof is by induction. Suppose the above holds for all n ≤ m, m ≥ 2. Then

A2m+1 = {A2m, A2m−2, . . . , A0 | A2m−1, A2m−3, . . . , A1}.

By induction hypothesis, each A2i−1 on the right is 1
2i−1 so Right’s best move is to

A2m−1 = 1
2m−1 . On the left, A2i (i = 1, . . . , m) reverses back to 0 since A2m+1 is positive.

Hence A2m+1 = {0 | 2−(m−1)} = 1
2m .

For the even case, Left’s best move is to A1 = 1, while for Right’s moves, the induction
hypothesis gives A2 > A4 > · · · > A2m so her best move is to either A2m or A0 = 0.
Hence,

A2m+2 = {1 | 0, A2m} ≤ {1 | 0, A2m−2} = A2m.

Note that equality cannot hold since Right has a winning strategy in A2m+2 − A2m by
taking A2m+2 → A2m leaving 0.
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Finally, A2m+2 is in canonical form since the Right option A2m is confused with 0 and
does not reverse to 1 (which is incomparable to A2m+2).

Corollary 1 : For an integer n ≥ 1,
(i) A2n has a confusion interval of (0, 1).
(ii) At the end points, A2n is confused with both 0 and 1.
(iii) A2n has a temperature of 1

2
.

Proof. (i) and (iii) follow from induction and the recursive formula in Theorem 1(ii),
while (ii) follows from the fact that A2n is a first-player win (hence confused with 0) and
A2n − 1 = {0 | − 1, A2n−2} is a first-player win as well.

Let us centralize the game A2n so that its mean is 0.

Definition 2 : For m ≥ 1, let [m] denote the game 1
2
− A2m and [−m] denote the game

−[m]. More generally, we define

[m1, m2, . . . , mr] = [m1] + [m2] + · · · + [mr]

for non-zero integers m1, m2, . . . , mr.

Theorem 1 immediately gives a recursive definition of [m]:

[1] = ±1

2
, [m + 1] =

{
1

2
, [m]

∣∣∣∣ −1

2

}
.

It is clear that the difficulty of handling [m] in sums of games increases exponentially as
m gets larger. Expressing [m1, . . . , mr] in canonical form is probably out of the question.
Furthermore, we shall see later in Section 4 that the differences between these sums are
extremely small, typically about tiny +1. Hence comparison between the games appears
rather difficult.

3. Strategy

Immediately, Theorem 1 and Corollary 1 give the following.

Lemma 1 : Let m be a non-zero integer.
(i) The confusion interval of [m] is the closed interval −1

2
≤ x ≤ +1

2
.

(ii) The temperature of each [m] is 1
2
.

(iii) . . . [−3] < [−2] < [−1] = [1] < [2] < [3] < . . . .

The next step is to analyze the pair [i, j].

Lemma 2 : Let i, j be non-zero integers. Then the game [i, j] is infinitesimal.

Proof. Suppose i, j > 0. Then Lemma 1(iii) gives [i, j] = [i] + [j] > [1] + [1] = 0. So
it suffices to show [i, j] �> ε for any positive number ε. Indeed, in the game [i, j] − ε,
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Right has a winning strategy if she starts: take [i] → −1
2

and leave [j]− (1
2
+ ε) which is

negative since 1
2

+ ε lies outside the confusion interval of [j].

On the other hand, suppose we have i > j > 0 and the game [i,−j] = [i] − [j]. Then
[i] > [j] by Lemma 1(iii), while in the game [i] − [j] − ε, Right takes [i] → −1

2
as before

to secure a win.

Theorem 2 (Lexicographical Ordering Principle) : Suppose we have positive inte-
gers m1 ≤ m2 ≤ · · · ≤ mr and n1 ≤ n2 ≤ · · · ≤ nr. Then

[m1, m2, . . . , mr] < [n1, n2, . . . , nr]

if the r-tuples satisfy (mi)
r
i=1 < (ni)

r
i=1 in lexicographical ordering, i.e. if there exists

1 ≤ i ≤ r, such that mj = nj for all 1 ≤ j < i but mi < ni.

Proof. First, the theorem holds for r = 1 and for m1 = m2 = · · · = mr = 1 (cf.
Lemma 1(iii)). With these simple cases in mind, we now apply induction on the sum
r +

∑
i(mi + ni).

Let r ≥ 2 and G = [n1, . . . , nr,−m1, . . . ,−mr]. We first prove that G ≥ 0. If any mi

and nj are equal, we may cancel both and apply the induction hypothesis for r − 1. So
we assume that mi �= nj for any i, j. Now if Right has the first move in G, she has the
following options:

Case 1 : Take [ni] → −1
2
, so the right incentive ∆R = G − GR = 1

2
+ [ni]. Then the

best choice for Right is [nr]. Left may counter this move by taking [mr] → 1
2

to produce

[n1, n2, . . . , nr−1,−m1,−m2, . . . ,−mr−1]

which is non-negative by induction hypothesis. So Left wins in this case.

Case 2 : Take −[mi] → −[mi − 1] for some mi > 1. Now we still have

(m1, . . . , mi−1, mi − 1, mi+1, . . . , mr) < (n1, . . . , nr),

so the resulting game from G is positive by induction hypothesis. Left still wins.

Case 3 : Take −[mi] → −1
2
, so ∆R = 1

2
− [mi]. Since the smallest [mi] is [m1], Right

would do best by moving G to [n1, . . . , nr,−m2, . . . ,−mr] − 1
2
. If m2 < n2 as well, then

Left may counter with [n1] → 1
2

and reduce G to

[n2, n3, . . . , nr,−m2,−m3, . . . ,−mr],

which is ≥ 0 by induction hypothesis. Otherwise, m2 > n2 and Left responds with
[−m2] → 1

2
leaving

[n1, n2, . . . , nr,−m3, . . . ,−mr] = [n1, n2, . . . , nr,−1,−1,−m3, . . . ,−mr].
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Since m1 ≥ 1 and m2 > n2 ≥ 1, we have reduced the sum
∑

(mi + ni), and induction
applies.

The above shows G ≥ 0. To complete the proof for G > 0, note that

[m1, . . . , mr−1, mr] < [m1, . . . , mr−1, mr + 1] ≤ [n1, . . . , nr].

It is natural now to ask for a comparison between [m1, . . . , mr] and [n1, . . . , ns] in
general. Suppose r + s is even and r > s. Then we may add pairs of [1, 1] = 0 to
the second game until both games have equal number of terms. The Lexicographical
Ordering Principle gives us [m1, . . . , mr] > [n1, . . . , ns]. Hence, w have a more general
result

Corollary 2 : Suppose m1 ≤ m2 ≤ · · · ≤ mr and n1 ≤ n2 ≤ · · · ≤ ns are positive
integers, and r < s are of the same parity. Assume further that at most one mi (resp.
nj) is equal to 1. Then

[m1, m2, . . . , mr] < [n1, n2, . . . , ns].

In summary, we get the following ordering:

0 = [1, 1] < [1, 2] < [1, 3] < [1, 4] < · · · < [1, m] < . . .

< [2, 2] < [2, 3] < [2, 4] < · · · < [2, m] < . . .

< [3, 3] < [3, 4] < · · · < [3, m] < . . .

...
...

< [1, 2, 2, 2] < [1, 2, 2, 3] < [1, 2, 2, 4] < [1, 2, 2, 5] < . . .

< [1, 2, 3, 3] < [1, 2, 3, 4] < [1, 2, 3, 5] < . . .

...
...

< [1, 2, 2, 2, 2, 2] < [1, 2, 2, 2, 2, 3] < [1, 2, 2, 2, 2, 4] < . . .

...
...

Next, we shall compare the games [m1, . . . , mr] and [n1, . . . , ns] when r and s are of
different parity. Again, assume m1 ≤ · · · ≤ mr and n1 ≤ · · · ≤ ns, and that at most
one mi (resp. nj) is equal to 1. As before, let G = [m1, . . . , mr,−n1, . . . ,−ns] be the
difference. Since [m, n] is infinitesimal for all m, n �= 0, G has confusion interval (−1

2
, +1

2
).

The only uncertainty lies in the endpoints −1
2
, +1

2
.

Theorem 3: Let G be as above, with r < s. Then
(i) the game G is confused with −1

2
; and

(ii) G < +1
2
, unless we have the exceptional case of r = s − 1 and (mi)

r
i=1 ≥ (ni)

r
i=1

lexicographically.
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Proof. (i) Look at G + 1
2
. If Left starts, he wins easily by taking −[ns] → +1

2
to produce

[m1, . . . , mr,−n1, . . . ,−ns−1]+1. Since the bracketed part has an even number of terms,
it is infinitesimal and hence G + 1

2
> 0.

If Right starts and r > 0, he takes [mr] → −1
2

and leaves the game [m1, . . . , mr−1,−n1, . . . ,−ns]
which is negative by Corollary 2. On the other hand, if r = 0, Right repeatedly takes
any −[nj] → −1

2
. Left then has no choice but to take a −[nj′ ] → +1

2
or [mi] → +1

2
.

Since r + s is odd, this exchange favours Right.

(ii) Consider G− 1
2
. If Right starts, she wins by turning any [mi] or −[nj] to −1

2
. But

if Left starts, he has the following options.

Case 1 : Take [mi] → 1
2
, producing [m1, . . . , m̂i, . . . , mr,−n1, . . . ,−ns] which is neg-

ative by Corollary 2. This move is clearly bad.

Case 2 : Left takes [mi] → [mi − 1] for some mi > 1, which Right counters by
[mi − 1] → −1

2
and wins.

Case 3 : Left’s only chance is to take [−nj] → 1
2
. This gives ∆L = 1

2
+ [nj] so the

best choice is in [−ns]. The resulting game is

[m1, m2, . . . , mr,−n1,−n2, . . . ,−ns−1].

By the Lexicographical Ordering Principle and its Corollary, this game is negative (Right
wins) unless r = s − 1 and (mi)

r
i=1 ≥ (ni)

r
i=1 lexicographically; in which case it is ≥ 0

and Left wins. This proves the theorem.

Note that we have not taken into account the grEen part of partial Nim, i.e. we need
to compare [m1, . . . , mr] and ∗N . This will be covered in the next section.

Examples : Let us analyze the following games, where the brackets () and (()) refer to
bLue and Red piles respectively.

1. (3,3,9), ((2,1)). The odd piles sum up to 1
2

+ 1
2

+ 1
24 − 1. The confusion interval of

((2)) is (−1, 0), hence the first player wins.

2. (1,2,6), ((3,3,3,5)). The odd piles add up to −3
4
, while (2, 6) = A2+A4 = 1+[−1,−3]

is 1-ish. So Left wins.

3. (1), ((8,4,6)). This game is 1 − A4 − A2 − A3 = −1
2

+ [4, 2, 3]. Since [4, 2, 3] is
confused with 1

2
, the first player wins.

4. (1,2,6,10), ((3,5,5,4,4,8)). This game is [2, 2, 4,−1,−3,−5] > 0 since lexicographi-
cally (1, 3, 5) < (2, 2, 4). Left wins.

5. (1,3,12), ((5,5,8,4,2)). The resulting sum is [4, 2, 1,−6] > 0, so Left wins.
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6. (3,3,4,8), ((6,10,6)). The sum is 1
2

+ [3, 3, 5,−2,−4]. Since removing [5] gives
[2, 4] < [3, 3], the game [3, 3, 5,−2,−4] > −1

2
by Theorem 3, i.e. Left wins.

7. (3,3,8,8), ((6,10,6)). Similar to (5), but in [3, 3, 5,−4,−4], deleting the game [5]
results in the exceptional case of [3, 5] < [4, 4]. So the first player wins.

In canonical form, the game in example (6) is:

1, {1|||0||0|− 1, {0|− 1}} || {1|||0||0|− 1, {0|− 1}} | {0|− 1, {0|− 1}}, {0||0|− 1, {0|− 1}}

according to David Wolfe’s Gamesman Toolkit, which also verified this game to be posi-
tive.

4. Comparing [m1, . . . , mr] With Infinitesimals

For an even r, let us compare the games [m1, . . . , mr] and +k = {0||0| − k}. Throughout
the rest of this article, for games A and B, we will write A � B if A > n · B for any
positive integer n.

Lemma 3 : Let Dm = [m + 1,−m]. Then we have

+1 = D1 � D2 � D3 � · · · � +1+ε

for any number ε > 0.

Proof. The equality on the left is easy. The Lexicographical Ordering Principle gives
Dm > i ·Dm+1 for any positive integer i. For the rightmost inequality, it suffices to show
Dm ≥ +1+ε for any m and number ε > 0.

Indeed, we wish to show that G = [m] − [m + 1] + +1+ε ≤ 0. Suppose Left starts. If
he moves [m] → [m− 1], Right can respond with −[m + 1] → −[m]. On the other hand,
if he takes −[m + 1] → 1

2
or [m] → 1

2
, Right makes a move in the tiny component and

wins.

Corollary 3 : The game G = [m1, . . . , mr], if positive, satisfies +1+ε < G < +1−ε for
any number ε > 0.

Proof. If r is odd, then G is fuzzy. When r is even, the right inequality follows easily
from the Lexicographic Ordering Principle :

[m1, . . . , mr] = (r + 2)[1, 1] + [m1, . . . , mr] <

r+1︷ ︸︸ ︷
[1, 2, . . . , 1, 2] = (r + 1)[1, 2] < +1−ε.

To prove the left inequality, we may append copies of [1, 1] or [−1,−1] to G, such that
in G = [m1, . . . , mr], there are as many positive mi’s as negative mi’s. In this way, we
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may rewrite G as [m1, . . . , ms] − [n1, . . . , ns] =
∑s

i=1[mi,−ni], where n1 ≤ · · · ≤ ns,
m1 ≤ · · · ≤ ms. Since G is positive, we may assume, with no loss of generality, that
m1 > n1. Thus, [m1,−n1] ≥ Dn1 . As for [mi,−ni] with i > 1, if mi ≥ ni then
[mi,−ni] ≥ 0 and dropping the term [mi,−ni] gives a smaller G. We may therefore
assume mi < ni for all i > 1, whence by lemma 3,

G = [m1,−n1] −
s∑

i=2

[ni,−mi] > Dm1 − k · Dm1+1 > +1+ε,

for some positive integer k.

Now we may complete our analysis, by comparing [m1, . . . , mr] and ∗N .

Theorem 4 : Consider the game [m1, . . . , mr], where the mi’s are all non-zero integers.
(i) If r is even, then [m1, . . . , mr] + (∗N) is fuzzy when N > 0.
(ii) If r is odd, then −1

2
< [m1, . . . , mr] + (∗N) < +1

2
when N > 0.

In particular, we see that in partial Nim, ∗1 is already “remote”.

Proof. (i) Indeed, G = [m1, . . . , mr], if positive, lies strictly between +1+ε and +1−ε.
Since both of these bounds are incomparable with ∗N , so is G.

(ii) Consider G = [m1, . . . , mr] + 1
2

+ (∗N). If it were Left’s turn, he can easily secure
a win by moving mr → 1

2
. On the other hand, if it were Right’s turn, he cannot afford

to move [mi] → [mi + 1] (for some mi < −1) or Left can win as before. Hence his only
chance is mi → −1

2
, which results in the game

[m1, . . . , m̂i, . . . , mr] + (∗N)

which is a win for the next player by part (i). Hence, Right loses and G > 0. Replacing
[m1, . . . , mr] by [−m1, . . . ,−mr], we get the other inequality.

With this theorem, our analysis for partial Nim is complete.

Examples : Let us add ∗N (N > 0) to the games in the previous example.

1. (3,3,9), ((2,1)), *N. The outcome is still fuzzy, i.e. first player wins.

2. (1,2,6), ((3,3,3,5)), *N. As before, Left wins.

3. (1), ((8,4,6)), *N. The game is now −1
2
∗ N + [4, 2, 3] < 0. Right wins.

4. (1,2,6,10), ((3,5,5,4,4,8)), *N. The resulting game is [2, 2, 4,−1,−3,−5]+∗N which
is fuzzy. First player wins.

5. (1,3,12), ((5,5,8,4,2)), *N. The game [4, 2, 1,−6] + (∗N) is fuzzy - first player wins.

6. (3,3,4,8), ((6,10,6)), *N. The sum is now 1
2
∗ N + [3, 3, 5,−2,−4] which is positive.

Left wins.
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7. (3,3,8,8), ((6,10,6)), *N. The game 1
2
∗ N + [3, 3, 5,−4,−4] is also positive - Left

wins.

5. Other Variants of Partial Nim & Future Work

It is natural to consider exploring other variants of Partial Nim. For example, what if
we had altered the rules for this version: in a bLue (resp. Red) pile, Left (resp. Right)
can take any number of stones, while Right (resp. Left) can only take an odd number?

This variant turns out to be easy.

Theorem 5 : Let Bn be this game for a bLue pile of n stones.
(i) If n = 2m, then Bn = ↑ + ↑2 + · · ·+ ↑m.
(ii) If n = 2m + 1, then Bn = ↑ + ↑2 + · · ·+ ↑m + ∗.

Proof. Omitted, left as an exercise to the reader.

It may also be fruitful to examine partial variants of well-known games such as Kayles,
Dawson’s Chess or Treblecross. We hope that these can yield interesting new results.
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