PARITY THEOREMS FOR STATISTICS ON PERMUTATIONS AND CATALAN WORDS

Mark Shattuck
Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300, USA
shattuck@math.utk.edu

Received: 2/11/05, Accepted: 4/3/05, Published: 4/20/05

Abstract

We establish parity theorems for statistics on the symmetric group S_{n}, the derangements D_{n}, and the Catalan words C_{n}, giving both algebraic and bijective proofs. For the former, we evaluate q-generating functions at $q=-1$; for the latter, we define appropriate signreversing involutions. Most of the statistics involve counting inversions or finding the major index of various words.

Keywords: Permutation statistic, inversion, major index, derangement, Catalan numbers.

1. Introduction

We'll use the following notational conventions: $\mathbb{N}:=\{0,1,2, \ldots\}, \mathbb{P}:=\{1,2, \ldots\},[0]:=$ \varnothing, and $[n]:=\{1, \ldots, n\}$ for $n \in \mathbb{P}$. Empty sums take the value 0 and empty products the value 1 , with $0^{0}:=1$. The letter q denotes an indeterminate, with $0_{q}:=0, n_{q}:=$ $1+q+\cdots+q^{n-1}$ for $n \in \mathbb{P}, 0_{q}^{!}:=1, n_{q}^{!}:=1_{q} 2_{q} \cdots n_{q}$ for $n \in \mathbb{P}$, and $\binom{n}{k}_{q}:=n_{q}^{!} / k_{q}^{!}(n-k)_{q}^{!}$ for $n \in \mathbb{N}$ and $0 \leqslant k \leqslant n$. The binomial coefficient $\binom{n}{k}$ is equal to zero if k is a negative integer or if $0 \leqslant n<k$.

Let Δ be a finite set of discrete structures and $I: \Delta \rightarrow N$, with generating function

$$
\begin{equation*}
G(I, \Delta ; q):=\sum_{\delta \in \Delta} q^{I(\delta)}=\sum_{k}|\{\delta \in \Delta: I(\delta)=k\}| q^{k} . \tag{1.1}
\end{equation*}
$$

Of course, $G(I, \Delta ; 1)=|\Delta|$. If $\Delta^{+}:=\{\delta \in \Delta: I(\delta)$ is even $\}$ and $\Delta^{-}:=\{\delta \in \Delta: I(\delta)$ is odd $\}$, then $G(I, \Delta ;-1)=\left|\Delta^{+}\right|-\left|\Delta^{-}\right|$. Hence if $G(I, \Delta ;-1)=0$, the set Δ is "balanced"
with respect to the parity of I. For example, setting $q=-1$ in the binomial theorem,

$$
\begin{equation*}
(1+q)^{n}=\sum_{S \subseteq[n]} q^{|S|}=\sum_{k=0}^{n}\binom{n}{k} q^{k} \tag{1.2}
\end{equation*}
$$

yields the familiar result that a finite nonempty set has as many subsets of odd cardinality as it has subsets of even cardinality.

When $G(I, \Delta ;-1)=0$ and hence $\left|\Delta^{+}\right|=\left|\Delta^{-}\right|$, it is instructive to identify an I-parity changing involution of Δ. For the statistic $|S|$ in (1.2), the map

$$
S \mapsto \begin{cases}S \cup\{1\}, & \text { if } 1 \notin S ; \\ S-\{1\}, & \text { if } 1 \in S,\end{cases}
$$

furnishes such an involution. More generally, if $G(I, \Delta ;-1)=\left|\Delta^{+}\right|-\left|\Delta^{-}\right|=c$, it suffices to identify a subset Δ^{*} of Δ of cardinality $|c|$ contained completely within Δ^{+}or Δ^{-}and then to define an I-parity changing involution on $\Delta-\Delta^{*}$. The subset Δ^{*} thus captures both the sign and magnitude of $G(I, \Delta ;-1)$. Evaluation of q-generating functions as in (1.1) at $q=-1$ has yielded parity theorems for statistics on set partitions [9, 13], lattice paths [10], domino arrangements [11], and Laguerre configurations [10].

Since each member of $\Delta-\Delta^{*}$ is paired with another of opposite I-parity, we have $|\Delta| \equiv\left|\Delta^{*}\right|(\bmod 2)$. Thus, the I-parity changing involutions described above also yield combinatorial proofs of congruences of the form $a_{n} \equiv b_{n}(\bmod 2)$. Shattuck [9] has, for example, given such a combinatorial proof of the congruence

$$
S(n, k) \equiv\binom{n-\lfloor k / 2\rfloor-1}{n-k} \quad(\bmod 2)
$$

for Stirling numbers of the second kind, answering a question posed by Stanley [12, p. 46, Exercise 17b].

In $\S 2$ below, we establish parity theorems for several permutation statistics defined on all of S_{n}, algebraically by evaluating q-generating functions at $q=-1$ and combinatorially by identifying appropriate parity changing involutions. In $\S 3$, we analyze the parity of some statistics on D_{n}, the set of derangements of [n] (i.e., permutations of [n] having no fixed points).

Shattuck and Wagner [10] derive a parity theorem for the number of inversions in binary words of length n with k 1's. In $\S 4$, we obtain comparable results for C_{n}, the set of binary words of length $2 n$ with n 1's and with no initial segment containing more 1's than 0's (termed Catalan words).

Recall that the inversion and major index statistics for a word $w=w_{1} w_{2} \cdots w_{m}$ in some alphabet are given by

$$
\operatorname{maj}(w):=\sum_{i \in D(w)} i, \quad \text { where } D(w):=\left\{1 \leq i \leq m-1: w_{i}>w_{i+1}\right\}
$$

and

$$
\operatorname{inv}(w):=\mid\left\{(i, j): i<j \text { and } w_{i}>w_{j}\right\} \mid
$$

2. Permutation Statistics

2.1 Some Balanced Permutation Statistics

Let S_{n} be the set of permutations of $[n]$. A function $f: S_{n} \rightarrow \mathbb{N}$ is called a permutation statistic. Two important permutation statistics are $i n v$ and $m a j$, which record the number of inversions and the major index, respectively, of a permutation $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n}$, expressed as a word. The statistics $i n v$ and maj have the same q-generating function over S_{n} :

$$
\begin{equation*}
\sum_{\sigma \in S_{n}} q^{i n v(\sigma)}=n_{q}^{!}=\sum_{\sigma \in S_{n}} q^{m a j(\sigma)} \tag{2.1}
\end{equation*}
$$

[12, Corollary 1.3.10] and [1, Corollary 3.8].
Substituting $q=-1$ into (2.1) reveals that $n_{-1}^{!}=0$ if $n \geq 2$, and hence inv and maj are both balanced if $n \geq 2$. Interchanging σ_{1} and σ_{2} in $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n} \in S_{n}$ changes the parity of both inv and maj and thus furnishes an appropriate involution. Note that switching the elements 1 and 2 in σ changes the inv-parity, but not necessarily the maj-parity.

Now express $\sigma \in S_{n}$ in the standard cycle form

$$
\sigma=\left(\alpha_{1}\right)\left(\alpha_{2}\right) \cdots,
$$

where $\alpha_{1}, \alpha_{2}, \ldots$ are the cycles of σ, ordered by increasing smallest elements with each cycle $\left(\alpha_{i}\right)$ written with its smallest element in the first position. Let $S_{n, k}$ denote the set of permutations of [n] with k cycles and $c(n, k):=\left|S_{n, k}\right|$, the signless Stirling number of the first kind. The $c(n, k)$ are connection constants in the polynomial identities

$$
\begin{equation*}
q(q+1) \cdots(q+n-1)=\sum_{k=0}^{n} c(n, k) q^{k} \tag{2.2}
\end{equation*}
$$

Setting $q=-1$ in (2.2) reveals that there are as many permutations of $[n]$ with an even number of cycles as there are with an odd number of cycles if $n \geq 2$. Alternatively, breaking apart or merging α_{1} and α_{2} as shown below, leaving the other cycles undisturbed, changes the parity of the number of cycles:

$$
\alpha_{1}=(1 \cdots 2 \cdots), \ldots \leftrightarrow \alpha_{1}=(1 \cdots), \alpha_{2}=(2 \cdots), \ldots
$$

This involution also shows that the statistic recording the number of cycles of σ with even cardinality is balanced if $n \geq 2$.

Given $\sigma=\left(\alpha_{1}\right)\left(\alpha_{2}\right) \cdots$, expressed in standard cycle form, let

$$
w(\sigma):=\sum_{i}(i-1)\left|\alpha_{i}\right| .
$$

Edelman, Simion, and White [4] show that

$$
\begin{equation*}
\sum_{\sigma \in S_{n}} x^{|\sigma|} q^{w(\sigma)}=\prod_{i=0}^{n-1}\left(x q^{i}+i\right) \tag{2.3}
\end{equation*}
$$

where $|\sigma|$ denotes the number of cycles. Setting $x=1$ in (2.3) yields

$$
\begin{equation*}
\sum_{\sigma \in S_{n}} q^{w(\sigma)}=\prod_{i=0}^{n-1}\left(q^{i}+i\right) \tag{2.4}
\end{equation*}
$$

another q-generalization of $n!$.
Setting $q=-1$ in (2.4) shows that the w statistic is balanced if $n \geq 2$. Alternatively, if the last cycle has cardinality greater than one, break off the last member and form a 1-cycle with it; if the last cycle contains a single member, place it at the end of the penultimate cycle.

2.2. An Unbalanced Permutation Statistic

Carlitz [2] defines the statistic $i n v_{c}$ on S_{n} as follows: express $\sigma \in S_{n}$ in standard cycle form; then remove parentheses and count inversions in the resulting word to obtain $i n v_{c}(\sigma)$. As an illustration, for the permutation $\sigma \in S_{7}$ given by 3241756, we have $i n v_{c}(\sigma)=3$, the number of inversions in the word 1342576.

Let

$$
\begin{equation*}
c_{q}(n, k):=\sum_{\sigma \in S_{n, k}} q^{i n v_{c}(\sigma)} \tag{2.5}
\end{equation*}
$$

where $S_{n, k}$ is the set of permutations of $[n]$ with k cycles. Then $c_{q}(n, 0)=\delta_{n, 0}, c_{q}(0, k)=$ $\delta_{0, k}$, and

$$
\begin{equation*}
c_{q}(n, k)=c_{q}(n-1, k-1)+(n-1)_{q} c_{q}(n-1, k), \forall n, k \in \mathbb{P} \tag{2.6}
\end{equation*}
$$

since n may go in a cycle by itself or come directly after any member of $[n-1]$ within a cycle.

Using (2.6), it is easy to show that

$$
\begin{equation*}
x\left(x+1_{q}\right) \cdots\left(x+(n-1)_{q}\right)=\sum_{k=0}^{n} c_{q}(n, k) x^{k} . \tag{2.7}
\end{equation*}
$$

Setting $x=1$ in (2.7) gives

$$
\begin{equation*}
c_{q}(n):=\sum_{k=0}^{n} c_{q}(n, k)=\sum_{\sigma \in S_{n}} q^{i n v_{c}(\sigma)}=\prod_{j=0}^{n-1}\left(1+j_{q}\right) . \tag{2.8}
\end{equation*}
$$

Theorem 2.1. For all $n \in N$,

$$
\begin{equation*}
c_{-1}(n):=\sum_{\sigma \in S_{n}}(-1)^{i n v_{c}(\sigma)}=2^{\lfloor n / 2\rfloor} . \tag{2.9}
\end{equation*}
$$

Proof. Put $q=-1$ in (2.8) and note that

$$
\left.j_{q}\right|_{q=-1}= \begin{cases}0, & \text { if } \mathrm{j} \text { is even } \\ 1, & \text { if } \mathrm{j} \text { is odd }\end{cases}
$$

Alternatively, with S_{n}^{+}, S_{n}^{-}denoting the members of S_{n} with even or odd $i n v_{c}$ values, respectively, we have $c_{-1}(n)=\left|S_{n}^{+}\right|-\left|S_{n}^{-}\right|$. To prove (2.9), it thus suffices to identify a subset S_{n}^{*} of S_{n}^{+}such that $\left|S_{n}^{*}\right|=2^{\lfloor n / 2\rfloor}$ along with an inv c_{c}-parity changing involution of $S_{n}-S_{n}^{*}$.

First assume n is even. In this case, the set S_{n}^{*} consists of those permutations expressible in standard cycle form as a product of 1-cycles and the transpositions ($2 i-1,2 i$), $1 \leq i \leq n / 2$. Note that $S_{n}^{*} \subseteq S_{n}^{+}$with zero $i n v_{c}$ value for each of its $2^{n / 2}$ members.

Before giving the involution on $S_{n}-S_{n}^{*}$, we make a definition: given $\sigma=\left(\alpha_{1}\right)\left(\alpha_{2}\right) \cdots \in$ S_{m} in standard cycle form and $j, 1 \leq j \leq m$, let $\sigma_{[j]}$ be the permutation of [j] (in standard cycle form) obtained by writing the members of $[j]$ in the order as they appear within the cycles of σ (e.g., if $\sigma=(163)(25)(4)(7) \in S_{7}$ and $j=4$, then $\sigma_{[4]}=(13)(2)(4)$ and $\left.\sigma_{[7]}=\sigma\right)$.

Suppose now $\sigma \in S_{n}-S_{n}^{*}$ is expressed in standard cycle form and that i_{0} is the smallest integer $i, 1 \leq i \leq n / 2$, for which $\sigma_{[2 i]} \in S_{2 i}-S_{2 i}^{*}$. Then it must be the case for σ that
(i) neither $2 i_{0}-1$ nor $2 i_{0}$ starts a cycle, or
(ii) exactly one of $2 i_{0}-1,2 i_{0}$ starts a cycle with $2 i_{0}-1$ and $2 i_{0}$ not belonging to the same cycle.

Switching $2 i_{0}-1$ and $2 i_{0}$ within σ, written in standard cycle form, changes the $i n v_{c}$ value by one, and the resulting map is thus a parity changing involution of $S_{n}-S_{n}^{*}$.

If n is odd, let $S_{n}^{*} \subseteq S_{n}^{+}$consist of those permutations expressible as a product of 1 -cycles and the transpositions $(2 i, 2 i+1), 1 \leq i \leq \frac{n-1}{2}$. Switch $2 i_{0}$ and $2 i_{0}+1$ within $\sigma \in S_{n}-S_{n}^{*}$, where i_{0} is the smallest $i, 1 \leq i \leq \frac{n-1}{2}$, for which $\sigma_{[2 i+1]} \in S_{2 i+1}-S_{2 i+1}^{*}$.

The preceding parity theorem has the refinement
Theorem 2.2. For all $n \in N$,

$$
\begin{equation*}
c_{-1}(n, k):=\sum_{\sigma \in S_{n, k}}(-1)^{i n v_{c}(\sigma)}=\binom{\lfloor n / 2\rfloor}{ n-k}, \quad 0 \leq k \leq n . \tag{2.10}
\end{equation*}
$$

Proof. Set $q=-1$ in (2.7) to get

$$
\sum_{k=0}^{n} c_{-1}(n, k) x^{k}=x^{\lceil n / 2\rceil}(x+1)^{\lfloor n / 2\rfloor}=\sum_{k=\lceil n / 2\rceil}^{n}\binom{\lfloor n / 2\rfloor}{ n-k} x^{k} .
$$

Or let $S_{n, k}^{ \pm}:=S_{n, k} \cap S_{n}^{ \pm}$and $S_{n, k}^{*}:=S_{n, k} \cap S_{n}^{*}$. Then $S_{n, k}^{*} \subseteq S_{n, k}^{+}$and its cardinality agrees with the right-hand side of (2.10). The restriction of the map used for Theorem 2.1 to $S_{n, k}-S_{n, k}^{*}$ is again an involution and inherits the parity changing property.

Remark. The bijection of Theorem 2.2 also proves combinatorially that

$$
\begin{equation*}
c(n, k) \equiv\binom{\lfloor n / 2\rfloor}{ n-k} \quad(\bmod 2), \quad 0 \leqslant k \leqslant n \tag{2.11}
\end{equation*}
$$

since off of a set of cardinality $\binom{\lfloor n / 2\rfloor}{ n-k}$, each permutation $\sigma \in S_{n, k}$ is paired with another of opposite $i n v_{c}$-parity. The congruences in (2.11) can also be obtained by taking mod 2 the polynomial identities in (2.2) (cf. [12, p. 46, Exercise 17c]).

3. Some Statistics for Derangements

A permutation σ of $[n]$ having no fixed points (i.e., $i \in[n]$ such that $\sigma(i)=i$) is called a derangement. Let D_{n} denote the set of derangements of $[n]$ and $d_{n}:=\left|D_{n}\right|$. A typical inclusion-exclusion argument gives the well known formula

$$
\begin{equation*}
d_{n}=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}, \quad \forall n \in \mathbb{N} . \tag{3.1}
\end{equation*}
$$

Given $\sigma \in D_{n}$, express it in the form

$$
\sigma=\left(\alpha_{1}\right)\left(\alpha_{2}\right) \cdots,
$$

where $\alpha_{1}, \alpha_{2}, \ldots$ are the cycles of σ arranged as follows:
(i) the cycles $\alpha_{1}, \alpha_{2}, \ldots$ are ordered by increasing second smallest elements;
(ii) each cycle $\left(\alpha_{i}\right)$ is written with the second smallest element in the last position.

Garsia and Remmel [6] term this the ordered cycle factorization (OCF for brief) of σ.
Define the statistic $i n v_{o}$ on D_{n} as follows: write out the cycles of $\sigma \in D_{n}$ in OCF form; then remove parentheses and count inversions in the resulting word to obtain inv $v_{o}(\sigma)$. As an illustration, for the derangement $\sigma \in D_{7}$ given by 4321756, we have $i n v_{o}(\sigma)=3$, the number of inversions in the word 2314576 .

The statistic $i n v_{o}$ is due to Garsia and Remmel [6], who show that the generating function

$$
\begin{equation*}
D_{q}(n):=\sum_{\sigma \in D_{n}} q^{i n v_{o}(\sigma)}=n_{q}^{!} \sum_{k=0}^{n} \frac{(-1)^{k}}{k_{q}^{!}}, \quad \forall n \in \mathbb{N}, \tag{3.2}
\end{equation*}
$$

which generalizes (3.1).
Theorem 3.1. For all $n \in \mathbb{N}$,

$$
D_{-1}(n)= \begin{cases}1, & \text { if } n \text { is even } \tag{3.3}\\ 0, & \text { if } n \text { is odd }\end{cases}
$$

Proof. Formula (3.3) is an immediate consequence of (3.2), for

$$
\left.\sum_{k=0}^{n} \frac{(-1)^{k} n_{q}^{!}}{k_{q}^{!}}\right|_{q=-1}=\left.\sum_{k=0}^{n}(-1)^{k} \prod_{i=k+1}^{n} i_{q}\right|_{q=-1}=(-1)^{n-1} n_{-1}+(-1)^{n}
$$

as

$$
j_{-1}= \begin{cases}0, & \text { if } j \text { is even } \\ 1, & \text { if } j \text { is odd }\end{cases}
$$

Alternatively, let $\sigma=\left(\alpha_{1}\right)\left(\alpha_{2}\right) \cdots \in D_{n}$ be expressed in OCF form, first assuming n is odd. Locate the leftmost cycle of σ containing at least three members and interchange the first two members of this cycle. Now assume n is even. If σ has a cycle of length greater than two, proceed as in the odd case. If all cycles of σ are transpositions and $\sigma \neq(1,2)(3,4) \cdots(n-1, n)$, let i_{0} be the smallest integer i for which the transposition $(2 i-1,2 i)$ fails to occur in σ. Switch $2 i_{0}-1$ and $2 i_{0}$ in σ, noting that $2 i_{0}-1$ and $2 i_{0}$ must both start cycles. Thus whenever n is even, every $\sigma \in D_{n}$ is paired with another of opposite $i n v_{o}$-parity except for $(1,2)(3,4) \cdots(n-1, n)$, which has $i n v_{o}$ value zero.

Now consider the generating function $d_{q}(n)$ resulting when one restricts inv to D_{n}, i.e.,

$$
\begin{equation*}
d_{q}(n):=\sum_{\sigma \in D_{n}} q^{i n v(\sigma)} \tag{3.4}
\end{equation*}
$$

We have been unable to find a simple formula for $d_{q}(n)$ which generalizes (3.1) or a recurrence satisfied by $d_{q}(n)$ that generalizes one for d_{n}. However, we do have the following parity result.

Theorem 3.2. For all $n \in \mathbb{N}$,

$$
\begin{equation*}
d_{-1}(n)=(-1)^{n-1}(n-1) . \tag{3.5}
\end{equation*}
$$

Proof. Equivalently, we show that the numbers $d_{-1}(n)$ satisfy

$$
\begin{equation*}
d_{-1}(n)=-d_{-1}(n-1)+(-1)^{n-1}, \quad \forall n \in \mathbb{P}, \tag{3.6}
\end{equation*}
$$

with $d_{-1}(0)=1$. Let $n \geqslant 2, \sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n} \in D_{n}$, and $D_{n}^{*} \subseteq D_{n}$ consist of those derangements σ for which $\sigma_{1}=2$ and $\sigma_{2} \geqslant 3$. Define an $i n v$-parity changing involution f on $D_{n}-D_{n}^{*}-\{n 12 \cdots n-1\}$ as follows:
(i) if $\sigma_{2} \geqslant 3$, whence $\sigma_{1} \geqslant 3$, switch 1 and 2 in σ to obtain $f(\sigma)$;
(ii) if $\sigma_{2}=1$, let k_{0} be the smallest integer $k, 1 \leqslant k \leqslant\left\lfloor\frac{n-1}{2}\right\rfloor$, such that $\sigma_{2 k} \sigma_{2 k+1} \neq$ $(2 k-1)(2 k)$; switch $2 k_{0}$ and $2 k_{0}+1$ if $\sigma_{2 k_{0}}=2 k_{0}-1$ or switch $2 k_{0}-1$ and $2 k_{0}$ if $\sigma_{2 k_{0}} \geqslant 2 k_{0}+1$ to obtain $f(\sigma)$.

Thus,

$$
\begin{equation*}
d_{-1}(n):=\sum_{\sigma \in D_{n}}(-1)^{i n v(\sigma)}=\sum_{\sigma \in D_{n}^{*} \cup\{n 12 \cdots n-1\}}(-1)^{i n v(\sigma)} \tag{3.7}
\end{equation*}
$$

One can regard members σ of D_{n}^{*} as 2 followed by a derangement of $[n-1]$ since within the terminal segment $\sigma^{\prime}:=\sigma_{2} \sigma_{3} \cdots \sigma_{n}$, we must have $\sigma_{2} \neq 1$ and $\sigma_{k} \neq k$ for all $k \geqslant 3$. Thus,

$$
\sum_{\sigma^{\prime}: \sigma \in D_{n}^{*}}(-1)^{i n v\left(\sigma^{\prime}\right)}=d_{-1}(n-1),
$$

from which

$$
\begin{equation*}
\sum_{\sigma \in D_{n}^{*}}(-1)^{i n v(\sigma)}=-d_{-1}(n-1), \tag{3.8}
\end{equation*}
$$

since the initial 2 adds an inversion. The recurrence (3.6) follows immediately from (3.7) and (3.8) upon adding the contribution of $(-1)^{n-1}$ from the singleton $\{n 12 \cdots n-1\}$.

Now consider the generating function $r_{q}(n)$ resulting when one restricts maj to D_{n}, i.e.,

$$
\begin{equation*}
r_{q}(n):=\sum_{\sigma \in D_{n}} q^{\operatorname{maj}(\sigma)} \tag{3.9}
\end{equation*}
$$

We were unable to find a simple formula for $r_{q}(n)$ which generalizes (3.1). Yet when $q=-1$ we have

Theorem 3.3. For all $n \in \mathbb{N}$,

$$
r_{-1}(n)= \begin{cases}(-1)^{n / 2}, & \text { if } n \text { is even } \tag{3.10}\\ 0, & \text { if } n \text { is odd }\end{cases}
$$

Proof. First verify (3.10) for $0 \leqslant n \leqslant 3$. Let $n \geqslant 4$ and $D_{n}^{*} \subseteq D_{n}$ consist of those derangements starting with 2143 when expressed as a word. We define a maj-parity changing involution of $D_{n}-D_{n}^{*}$ below. Note that for derangements of the form $\sigma=$ $2143 \sigma_{5} \cdots \sigma_{n}$, the subword $\sigma_{5} \cdots \sigma_{n}$ is itself a derangement on $n-4$ elements. Thus for $n \geqslant 4$,

$$
r_{-1}(n):=\sum_{\sigma \in D_{n}}(-1)^{\operatorname{maj}(\sigma)}=\sum_{\sigma \in D_{n}^{*}}(-1)^{\operatorname{maj}(\sigma)}=r_{-1}(n-4),
$$

which proves (3.10).
We now define a maj-parity changing involution f of $D_{n}-D_{n}^{*}$ when $n \geqslant 4$. Let $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n} \in D_{n}-D_{n}^{*}$ be expressed as a word. If possible, pair σ with $\sigma^{\prime}=f(\sigma)$ according to (I) and (II) below:
(I) first, if both $\sigma_{1} \neq 2$ and $\sigma_{2} \neq 1$, then switch σ_{1} and σ_{2} within σ to obtain σ^{\prime};
(II) if (I) cannot be implemented (i.e., $\sigma_{1}=2$ or $\sigma_{2}=1$) but $\sigma_{3} \neq 4$ and $\sigma_{4} \neq 3$, then switch σ_{3} and σ_{4} within σ to obtain σ^{\prime}.

We now define f for the cases that remain. To do so, consider $S_{\sigma}:=\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4} \cap[4]$, where $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n} \in D_{n}-D_{n}^{*}$ is of a form not covered by rules (I) and (II) above. We consider cases depending upon $\left|S_{\sigma}\right|$. If $\left|S_{\sigma}\right|=2$ or if $\left|S_{\sigma}\right|=4$, first multiply σ by the transposition (34) and then exchange the letters in the third and fourth positions to obtain σ^{\prime}. This corresponds to the pairings
i) $\sigma=a 1 b 3 \ldots 4 \ldots \leftrightarrow \sigma^{\prime}=a 14 b \ldots 3 \ldots$;
ii) $\sigma=2 a b 3 \ldots 4 \ldots \leftrightarrow \sigma^{\prime}=2 a 4 b \ldots 3 \ldots$;
iii) $\sigma=2341 \ldots \leftrightarrow \sigma^{\prime}=2413 \ldots$;
iv) $\sigma=4123 \ldots \leftrightarrow \sigma^{\prime}=3142 \ldots$,
where $a, b \geqslant 5$.
If $\left|S_{\sigma}\right|=3$, then pair according to one of six cases shown below where $a \geqslant 5$, leaving the other letters undisturbed:
i) $\sigma=314 a \ldots \leftrightarrow \sigma^{\prime}=41 a 3 \ldots$;
ii) $\sigma=234 a \ldots \leftrightarrow \sigma^{\prime}=24 a 3 \ldots$;
iii) $\sigma=a 123 \ldots \leftrightarrow \sigma^{\prime}=2 a 13 \ldots$;
iv) $\sigma=a 142 \ldots \leftrightarrow \sigma^{\prime}=2 a 41 \ldots$;
v) $\sigma=21 a 3 \ldots 4 \ldots \leftrightarrow \sigma^{\prime}=214 a \ldots 3 \ldots$;
vi) $\sigma=a 143 \ldots 2 \ldots \leftrightarrow \sigma^{\prime}=2 a 43 \ldots 1 \ldots$

It is easy to verify that σ and σ^{\prime} have opposite maj-parity in all cases.

4. Statistics for Catalan Words

The Catalan numbers c_{n} are defined by the closed form

$$
\begin{equation*}
c_{n}=\frac{1}{n+1}\binom{2 n}{n}, \quad n \in \mathbb{N} \tag{4.1}
\end{equation*}
$$

as well as by the recurrence

$$
\begin{equation*}
c_{n+1}=\sum_{j=0}^{n} c_{j} c_{n-j}, \quad c_{0}=1 \tag{4.2}
\end{equation*}
$$

If one defines the generating function

$$
\begin{equation*}
f(x)=\sum_{n \geqslant 0} c_{n} x^{n} \tag{4.3}
\end{equation*}
$$

then (4.2) is equivalent to

$$
\begin{equation*}
f(x)=1+x f(x)^{2} \tag{4.4}
\end{equation*}
$$

Due to (4.2), the Catalan numbers enumerate many combinatorial structures, among them the set C_{n} consisting of words $w=w_{1} w_{2} \cdots w_{2 n}$ of $n 1$'s and $n 0$'s for which no initial segment contains more 1's than 0's (termed Catalan words). In this section, we'll look at two q-analogues of the Catalan numbers, one of Carlitz which generalizes (4.4) and another of MacMahon which generalizes (4.1), when $q=-1$. These q-analogues arise as generating functions for statistics on C_{n}.

If

$$
\begin{equation*}
\tilde{C}_{q}(n):=\sum_{w \in C_{n}} q^{i n v(w)}, \tag{4.5}
\end{equation*}
$$

then

$$
\begin{equation*}
\tilde{C}_{q}(n+1)=\sum_{k=0}^{n} q^{(k+1)(n-k)} \tilde{C}_{q}(k) \tilde{C}_{q}(n-k), \quad \tilde{C}_{q}(0)=1, \tag{4.6}
\end{equation*}
$$

upon decomposing a Catalan word $w \in C_{n+1}$ into $w=0 w_{1} 1 w_{2}$ with $w_{1} \in C_{k}, w_{2} \in C_{n-k}$ for some $k, 0 \leqslant k \leqslant n$, and noting that the number of inversions of w is given by

$$
\operatorname{inv}(w)=\operatorname{inv}\left(w_{1}\right)+\operatorname{inv}\left(w_{2}\right)+(k+1)(n-k) .
$$

Taking reciprocal polynomials of both sides of (4.6) and writing

$$
\begin{equation*}
C_{q}(n)=q^{\binom{n}{2}} \tilde{C}_{q^{-1}}(n) \tag{4.7}
\end{equation*}
$$

yields the recurrence [5]

$$
\begin{equation*}
C_{q}(n+1)=\sum_{k=0}^{n} q^{k} C_{q}(k) C_{q}(n-k), \quad C_{q}(0)=1 \tag{4.8}
\end{equation*}
$$

If one defines the generating function

$$
\begin{equation*}
f(x)=\sum_{n \geqslant 0} C_{q}(n) x^{n} \tag{4.9}
\end{equation*}
$$

then (4.8) is equivalent to the functional equation $[3,5]$

$$
\begin{equation*}
f(x)=1+x f(x) f(q x) \tag{4.10}
\end{equation*}
$$

which generalizes (4.4).
Theorem 4.1. For all $n \in \mathbb{N}$,

$$
C_{-1}(n)= \begin{cases}\delta_{n, 0}, & \text { if } n \text { is even } \tag{4.11}\\ (-1)^{\frac{n-1}{2}} c_{\frac{n-1}{2}}, & \text { if } n \text { is odd }\end{cases}
$$

Proof. Setting $q=-1$ in (4.10) gives

$$
\begin{equation*}
f(x)=1+x f(x) f(-x) \tag{4.12}
\end{equation*}
$$

Putting $-x$ for x in (4.12), solving the resulting system in $f(x)$ and $f(-x)$, and noting $f(0)=1$ yields

$$
\begin{aligned}
f(x) & =\sum_{n \geqslant 0} C_{-1}(n) x^{n} \\
& =\frac{(2 x-1)+\sqrt{4 x^{2}+1}}{2 x}=1+\sum_{n \geqslant 1}(-1)^{n-1} \frac{1}{n}\binom{2 n-2}{n-1} x^{2 n-1}
\end{aligned}
$$

which implies (4.11).
Alternatively, note that

$$
C_{-1}(n)=(-1)^{\binom{n}{2}} \sum_{w \in C_{n}}(-1)^{i n v(w)}
$$

by (4.5) and (4.7). So (4.11) is equivalent to

$$
\sum_{w \in C_{n}}(-1)^{i n v(w)}= \begin{cases}\delta_{n, 0}, & \text { if } n \text { is even } \tag{4.13}\\ c_{\frac{n-1}{2}}, & \text { if } n \text { is odd }\end{cases}
$$

To prove (4.13), let $C_{n}^{+}, C_{n}^{-} \subseteq C_{n}$ consist of the Catalan words with even or odd inv values, respectively, and $C_{n}^{*} \subseteq C_{n}$ consist of those words $w=w_{1} w_{2} \cdots w_{2 n}$ for which

$$
\begin{equation*}
w_{2 i} w_{2 i+1}=00 \text { or } 11, \quad 1 \leqslant i \leqslant n-1 . \tag{4.14}
\end{equation*}
$$

Clearly, $C_{n}^{*} \subseteq C_{n}^{+}$with cardinality matching the right-hand side of (4.13). Suppose $w \in C_{n}-C_{n}^{*}$ and that i_{0} is the smallest index for which (4.14) fails to hold. Switch $w_{2 i_{0}}$ and $w_{2 i_{0}+1}$ in w. The resulting map is a parity changing involution of $C_{n}-C_{n}^{*}$, which proves (4.13) and hence (4.11).

Another q-Catalan number arises as the generating function for the major index statistic on C_{n} [8]. If

$$
\begin{equation*}
\tilde{c}_{q}(n):=\sum_{w \in C_{n}} q^{m a j(w)} \tag{4.15}
\end{equation*}
$$

then there is the closed form (see [5], [8, p. 215])

$$
\begin{equation*}
\tilde{c}_{q}(n)=\frac{1}{(n+1)_{q}}\binom{2 n}{n}_{q}, \quad \forall n \in \mathbb{N}, \tag{4.16}
\end{equation*}
$$

which generalizes (4.1).
Theorem 4.2. For all $n \in \mathbb{N}$,

$$
\begin{equation*}
\tilde{c}_{-1}(n)=\binom{n}{\lfloor n / 2\rfloor} . \tag{4.17}
\end{equation*}
$$

Proof. If n is even, then by (4.16),

$$
\begin{aligned}
& \tilde{c}_{-1}(n)= \lim _{q \rightarrow-1} \tilde{c}_{q}(n)=\lim _{q \rightarrow-1} \frac{1}{(n+1)_{q}} \prod_{i=0}^{n-1} \frac{(2 n-i)_{q}}{(n-i)_{q}} \\
&=\prod_{\substack{i=0 \\
i \text { even }}}^{n-2} \lim _{q \rightarrow-1}\left(\frac{q^{2 n-i}-1}{q^{n-i}-1}\right)=\prod_{\substack{i=0 \\
i \text { even }}}^{n-2} \frac{2 n-i}{n-i}=\prod_{\substack{i=0 \\
i \text { even }}}^{n-2} \frac{n-i / 2}{n / 2-i / 2}=\binom{n}{n / 2},
\end{aligned}
$$

with the odd case handled similarly.
Alternatively, let $C_{n}^{+}, C_{n}^{-} \subseteq C_{n}$ consist of the Catalan words with even or odd major index value, respectively, and $C_{n}^{*} \subseteq C_{n}$ consist of those words $w=w_{1} w_{2} \cdots w_{2 n}$ which satisfy the following two requirements:
(i) one can express w as $w=x_{1} x_{2} \cdots x_{n}$, where $x_{i}=00,11$, or $01,1 \leqslant i \leqslant n$;
(ii) for each $i, x_{i}=01$ only if the number of 00 's in the initial segment $x_{1} x_{2} \cdots x_{i-1}$ equals the number of 11 's. (A word in C_{n}^{*} may start with either 01 or 00 .)

Clearly, $C_{n}^{*} \subseteq C_{n}^{+}$and below it is shown that $\left|C_{n}^{*}\right|=\binom{n}{\lfloor n / 2\rfloor}$. Suppose $w=w_{1} w_{2} \cdots w_{2 n} \in$ $C_{n}-C_{n}^{*}$ and that i_{0} is the smallest integer $i, 1 \leqslant i \leqslant n$, such that one of the following two conditions holds:
(i) $w_{2 i-1} w_{2 i}=10$, or
(ii) $w_{2 i-1} w_{2 i}=01$ and the number of 0 's in the initial segment $w_{1} w_{2} \cdots w_{2 i-2}$ is strictly greater than the number of 1 's.

Switching $w_{2 i_{0}-1}$ and $w_{2 i_{0}}$ in w changes the major index by an odd amount and the resulting map is a parity changing involution of $C_{n}-C_{n}^{*}$.

We now show $\left|C_{n}^{*}\right|=\binom{n}{\lfloor n / 2\rfloor}$ by defining a bijection between C_{n}^{*} and the set $\Lambda(n)$ of (minimal) lattice paths from $(0,0)$ to $(\lfloor n / 2\rfloor, n-\lfloor n / 2\rfloor)$. Given $w=x_{1} x_{2} \cdots x_{n} \in C_{n}^{*}$ as described in (i) and (ii) above, we construct a lattice path $\lambda_{w} \in \Lambda(n)$ as follows. Let $j_{1}<j_{2}<\ldots$ be the set of indices j, possibly empty and denoted $S(w)$, for which $x_{j}=01$, with $j_{0}:=0$. For $s \geqslant 1$, let step j_{s} in λ_{w} be a V (vertical step) if s is odd and an H (horizontal step) if s is even.

Suppose now $i \in[n]-S(w)$ and that $t, t \geqslant 0$, is the greatest integer such that $j_{t}<i$. If t is even, put a V (resp., H) for the $i^{\text {th }}$ step of λ_{w} if $x_{i}=11$ (resp., 00). If t is odd, put a V (resp., H) for the $i^{\text {th }}$ step of λ_{w} if $x_{i}=00$ (resp., 11), which now specifies λ_{w} completely. The map $w \mapsto \lambda_{w}$ is seen to be a bijection between C_{n}^{*} and $\Lambda(n)$; note that $S(w)$ corresponds to the steps of λ_{w} in which it either rises above the line $y=x$ or returns to $y=x$ from above.

Note that the preceding supplies a combinatorial proof of the congruence $\frac{1}{n+1}\binom{2 n}{n} \equiv$ $\binom{n}{\lfloor n / 2\rfloor}(\bmod 2)$ for $n \in \mathbb{N}$ since off of a set of cardinality $\binom{n}{\lfloor n / 2\rfloor}$, each Catalan word $w \in C_{n}$ is paired with another of opposite maj-parity.

Let $P_{n} \subseteq S_{n}$ consist of those permutations $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n}$ avoiding the pattern 312, i.e., there are no indices $i<j<k$ such that $\sigma_{j}<\sigma_{k}<\sigma_{i}$ (termed Catalan permutations).

Knuth [7, p. 238] describes a bijection g between P_{n} and C_{n} in which

$$
\operatorname{inv}(\sigma)=\binom{n}{2}-\operatorname{inv}(g(\sigma)), \quad \forall \sigma \in P_{n}
$$

and hence

$$
\begin{equation*}
C_{q}(n):=\sum_{w \in C_{n}} q^{\binom{n}{2}-i n v(w)}=\sum_{\sigma \in P_{n}} q^{i n v(\sigma)} \tag{4.18}
\end{equation*}
$$

By (4.11) and (4.18), we then have the parity result

$$
\sum_{\sigma \in P_{n}}(-1)^{i n v(\sigma)}= \begin{cases}\delta_{n, 0}, & \text { if } n \text { is even } \tag{4.19}\\ (-1)^{\frac{n-1}{2}} c_{\frac{n-1}{2}}, & \text { if } n \text { is odd }\end{cases}
$$

The composite map $g^{-1} \circ h \circ g$, where h is the involution establishing (4.13), furnishes an appropriate involution for (4.19).

References

[1] G. Andrews, The theory of partitions, Encyclopedia of Mathematics and Applications, Vol. II, Addison-Wesley (1976).
[2] L. Carlitz, Generalized Stirling numbers, Combinatorial Analysis Notes, Duke University (1968), 1-7.
[3] L. Carlitz and R. Scoville, A note on weighted sequences, Fib. Quart. 13 (1975), 303-306.
[4] P. Edelman, R. Simion, and D. White, Partition statistics on permutations, Discrete Math. 99 (1992), 63-68.
[5] J. Fürlinger and J. Hofbauer, q-Catalan numbers, J. Combin. Theory, Ser. A, 40 (1985), 248-264.
[6] A. Garsia and J. Remmel, A combinatorial interpretation of q-derangement and q-Laguerre numbers, Europ. J. Combinatorics 1 (1980), 47-59.
[7] D. Knuth, The Art of Computer Programming: Fundamental Algorithms, Vol. I, Addison-Wesley (1968).
[8] P. MacMahon, Combinatorial Analysis, Vol. II, Cambridge Univ. Press, 1915-1916. Reprinted, Chelsea, New York, 1960.
[9] M. Shattuck, Bijective proofs of parity theorems for partition statistics, J. Integer Seq. 8 (2005), Art. 5.1.5.
[10] M. Shattuck and C. Wagner, Parity theorems for statistics on lattice paths and Laguerre configurations, Research Report, Department of Mathematics, University of Tennessee (2004).
[11] M. Shattuck and C. Wagner, Parity theorems for statistics on domino arrangements, Elect. J. Combin., to appear.
[12] R. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth and Brooks/Cole, 1986.
[13] C. Wagner, Partition statistics and q-Bell numbers $(q=-1)$, J. Integer Seq. 7 (2004), Art. 4.1.1.

