
ON SYMMETRIC AND ANTISYMMETRIC BALANCED BINARY
SEQUENCES

Shalom Eliahou
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B.P. 699, 62228 Calais cedex, France
hachez.d@wanadoo.fr

Received: 12/20/04, Accepted: 3/18/05, Published: 3/28/05

Abstract

Let X = (x1, . . . , xn) be a finite binary sequence of length n, i.e., xi = ±1 for all i. The
derived sequence of X is the binary sequence ∂X = (x1x2, . . . , xn−1xn) of length n − 1, and
the derived triangle of X is the collection ∆X of all derived sequences ∂iX for 0 ≤ i ≤ n−1.
We say that X is balanced if its derived triangle ∆X contains as many +1’s as −1’s. This
concept was introduced by Steinhaus in 1963. It is known that balanced binary sequences
occur in every length n ≡ 0 or 3 mod 4, and in none other. In this paper, we solve the
problem of determining all possible lengths of symmetric and of antisymmetric balanced
binary sequences. We prove that (1) there exists a symmetric balanced binary sequence of
length n if and only if n ≡ 0, 3 or 7 mod 8, and (2) there exists an antisymmetric balanced
binary sequence of length n if and only if n ≡ 4 mod 8.

1. Introduction

Let X = (x1, x2, . . . , xn) be a binary sequence of length n, i.e., a sequence with xi = ±1 for
all i. We define the derived sequence ∂X of X as ∂X = (y1, . . . , yn−1) where yi = xixi+1 for
all i. By convention, we agree that ∂X = ∅ whenever n = 0 or 1, where ∅ stands for the
empty binary sequence of length n = 0. More generally, for k ≥ 0, we denote by ∂kX the
kth derived sequence of X, defined recursively as usual by ∂0X = X and ∂kX = ∂

(
∂k−1X

)
for k ≥ 1.

We denote by ∆X the collection X, ∂X, . . . , ∂n−1X of the iterated derived sequences
of X. This collection may be pictured as a triangle, as in the following example: if X =
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(1, 1,−1, 1,−1, 1, 1), abbreviated as + + − + − + +, then ∆X =

+ + − + − + +
+ −−−−+
− + + + −
− + +−
− + −
−−
+

Notation 1.1 Let X = (x1, . . . , xn) be a binary sequence of length n. We denote by σ(X)
the sum of the xi, i.e., σ(X) =

∑n
i=1 xi. We also denote by σ∆(X) the sum of the elements

in ∆(X), i.e., σ∆(X) =
∑n−1

i=0 σ
(
∂iX

)
.

Definition 1.2 The binary sequence X = (x1, . . . , xn) is said to be balanced if its derived
triangle ∆(X) contains as many +1’s as −1’s. In other words, X is balanced if σ∆(X) = 0.

This concept was introduced by Steinhaus in [3]. The author observed there that no
binary sequence X of length n ≡ 1 or 2 mod 4 may be balanced. Indeed, in that case the
total number of terms in ∆(X), namely

(
n+1

2

)
, is odd, and so is σ∆(X).

Steinhaus asked in [3] whether balanced binary sequences occurred in every length n ≡ 0
or 3 mod 4. This was answered positively by Harborth in 1972 [2]. More recently, a new
solution was proposed in [1], through the construction of strongly balanced binary sequences
in every length n ≡ 0 or 3 mod 4. (A binary sequence of length n is strongly balanced if its
initial segment of length k is balanced for all k ≡ n mod 4.)

In this paper, we shall deal with balanced binary sequences having one of the special
properties defined below. First we introduce a

Notation 1.3 Let X = (x1, . . . , xn) be a binary sequence. We denote by X the reversed
sequence X = (xn, . . . , x1).

Definition 1.4 The sequence X = (x1, . . . , xn) is said to be symmetric if X = X, i.e., if
xn+1−i = xi for all 1 ≤ i ≤ n. It is said to be antisymmetric if X = −X, i.e., if xn+1−i = −xi

for all 1 ≤ i ≤ n. Finally, X is said to be zero-sum if σ(X) =
∑n

i=1 xi = 0.

In Section 5 of [1], we stated a couple of problems related to balanced sequences. Here,
we shall address two of them:

1. Do there exist infinitely many symmetric balanced binary sequences?

2. Do there exist infinitely many zero-sum balanced binary sequences?
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The second problem is due to M. Kervaire. The interest for zero-sum balanced binary
sequences X lies in the fact that their derived sequences ∂X are also balanced. We shall
show here that such sequences occur in every length n ≡ 4 mod 8, by constructing suitable
antisymmetric ones. In a forthcoming paper, an independent construction will provide zero-
sum balanced binary sequences in every length n ≡ 0 mod 4, thus giving one more solution
to Steinhaus’ original problem.

2. Statements of results

The purpose of the present paper is to answer positively both problems above. Our answer
to the first one is embodied in the following result.

Theorem 2.1 There exists a symmetric balanced binary sequence of length n ≥ 1 if and
only if n ≡ 0, 3 or 7 mod 8.

As for the second question, we shall answer it by producing infinitely many antisymmetric
balanced binary sequences. Clearly, any antisymmetric binary sequence X is zero-sum. In
fact, as in the symmetric case, we shall determine all their possible lengths.

Theorem 2.2 There exists an antisymmetric balanced binary sequence of length n ≥ 1 if
and only if n ≡ 4 mod 8.

Corollary 2.3 There exists a zero-sum balanced binary sequence of every length n ≡ 4 mod
8.

As shown in Section 4, there is a strong relationship between the symmetric and the
antisymmetric case. This relationship allows us to deduce Theorem 2.2 from Theorem 2.1,
and reads as follows.

Proposition 2.4 Let X be a binary sequence of length n. Then, X is antisymmetric and
balanced if and only if n ≡ 4 mod 8 and ∂(X) is symmetric and balanced.

The existence statement of Theorem 2.1 is established by suitable constructions, described
in Section 5 and proved valid in Section 6.

Finally, observe that Theorems 2.1 and 2.2 together produce balanced binary sequences
in every length n ≡ 0 or 3 mod 4, thereby solving again Steinhaus’ original problem.

3. The symmetric case

In this section, we establish one part of Theorem 2.1, namely the necessity of the condition
n ≡ 0, 3 or 7 mod 8 for the length n of a symmetric balanced binary sequence. We start
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with a lemma on the value mod 4 of the sum of a symmetric binary sequence.

Lemma 3.1 Let Z = (z1, . . . , zm) be a symmetric binary sequence of length m.

(1) If m is even, then σ(Z) ≡ m mod 4.

(2) If m is odd, then σ(Z) ≡ m + zh − 1 mod 4, where h = �m/2� = (m + 1)/2.

Proof. (1) Assume m = 2h. Then Z = (z1, . . . , zh, zh, . . . , z1). Thus, σ(Z) = 2
∑h

i=1 zi. As
zi ≡ 1 mod 2 for all i, it follows that

∑h
i=1 zi ≡ h mod 2, whence σ(Z) ≡ 2h ≡ m mod 4.

(2) Assume m = 2h − 1. Then Z = (z1, . . . , zh−1, zh, zh−1, . . . , z1). Thus, σ(Z) = zh +
2
∑h−1

i=1 zi. We have
∑h−1

i=1 zi ≡ h − 1 mod 2, whence σ(Z) ≡ zh + 2(h − 1) mod 4. It follows
that σ(Z) ≡ m + zh − 1 mod 4, as claimed. �

We are now ready to state and prove the main result of this section.

Proposition 3.2 Let X = (x1, . . . , xn) be a symmetric binary sequence of length n. Assume
that X is balanced.

(1) If n is even, then n ≡ 0 mod 8.

(2) If n is odd, then n ≡ −2xh + 1 mod 8, where h = �n/2�. In other words, n ≡ −1 or
3 mod 8, depending on whether xh = 1 or −1, respectively.

Proof. As X is balanced, we have 0 = σ∆(X) =
∑n−1

i=0 σ
(
∂iX

)
. We start by evaluating the

individual summands σ
(
∂iX

)
mod 4.

Claim σ
(
∂iX

)
≡ n − i mod 4, for all 1 ≤ i ≤ n − 1.

Clearly, ∂iX is symmetric of length n − i, for all 1 ≤ i ≤ n − 1.

• The case n even: if i is even, then n − i is also even and the claim follows from (1) of
Lemma 3.1. If i is odd, then n − i is also odd; let then y denote the middle term of
∂iX, at position �(n− i)/2�. Since i ≥ 1, ∂iX is the derived sequence of ∂i−1X. Given
that ∂i−1X is symmetric, it follows that y = 1, as y is the product of the two equal
middle terms in ∂i−1X. Thus, by (2) of Lemma 3.1 we have σ

(
∂iX

)
≡ n− i + y − 1 ≡

n − i mod 4, as claimed.

• The case n odd: if i is odd, then n − i is even, and the claim directly follows from
(1) of Lemma 3.1. If i is even, then i ≥ 2, and it follows from (2) of Lemma 3.1 that
σ
(
∂iX

)
≡ n − i + ai − 1 mod 4, where ai denotes the middle term of ∂iX. But again,

ai = 1, as ∂iX is the derived sequence of ∂i−1X. The claim follows in this case as well.

We are ready to conclude the proof of the Proposition. Note that the claim implies that
σ∆(X) ≡ σ(X) + (n − 1)n/2 mod 4.
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(1) Assume n is even. We have σ(X) ≡ n mod 4 by (1) of Lemma 3.1, and thus σ∆(X) ≡
n(n + 1)/2 mod 4. Since σ∆(X) = 0 by assumption, it follows that n ≡ 0 mod 8, as desired.

(2) Assume n is odd. Let n = 2h − 1. By (2) of Lemma 3.1, we have σ(X) ≡ n +
xh − 1 mod 4, where xh is the middle term of X. It then follows from the claim that
σ∆(X) ≡ n(n+1)/2+xh−1 mod 4. Since σ∆(X) = 0, we get that n(n+1) ≡ 2(1−xh) mod 8.
As n is odd, we have n2 ≡ 1 mod 8, whence 1 + n ≡ 2(1− xh) mod 8. The desired statement
follows. �

4. From the symmetric to the antisymmetric case

There is a strong relationship between symmetric and antisymmetric balanced binary se-
quences, as we show here.

Proposition 4.1 Let X be a binary sequence of length n. Then, X is antisymmetric and
balanced if and only if n ≡ 4 mod 8 and ∂(X) is symmetric and balanced.

Proof.

(⇒) If X is antisymmetric, then n is even. It easily follows that ∂(X) is symmetric, of odd
length n − 1, and with middle term equal to −1. Now X is balanced and zero-sum,
i.e., σ∆(X) = σ(X) = 0 . It follows that ∂(X) is also balanced, since σ∆(∂X) =
σ∆(X)−σ(X) = 0. By (2) of Proposition 3.2, it follows that the length n− 1 of ∂(X)
is congruent 3 mod 8. Thus, n ≡ 4 mod 8.

(⇐) If n ≡ 4 mod 8 and ∂(X) is symmetric, balanced, of length n − 1, it follows from (2)
of Proposition 3.2 that the middle term of ∂(X) is equal to −1. Therefore, the two
primitives of ∂(X), namely X and −X, are antisymmetric. (Indeed, if

∂(X) = (b1, b2, . . . , bh−1, y, bh−1, . . . , b2, b1),

then X = (a, ab1, ab1b2, . . . , ab1b2 · · · bh−1, ab1b2 · · · bh−1y, . . . , ab1b2y, ab1y, ay) for some
a = ±1, an antisymmetric sequence if y = −1.) In particular, σ(X) = 0. Hence, X is
also balanced. �

As a consequence, we see that Theorem 2.2 directly follows from Theorem 2.1. Indeed,
Theorem 2.1 asserts in particular the existence of a symmetric balanced binary sequence of
length n for every n ≡ 3 mod 8. Taking primitives of these sequences and using Proposi-
tion 4.1, it follows that there exist antisymmetric balanced binary sequences of length n + 1
for every n + 1 ≡ 4 mod 8, and in no other lengths. This is the content of Theorem 2.2.
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5. Constructions

We now provide constructions of symmetric balanced binary sequences in every length n ≡ 0,
3 or 7 mod 8. We also describe antisymmetric balanced binary sequences of every length
n ≡ 4 mod 8.

Case 1 n ≡ 0, 7 mod 8.

Let s0 = +−−−−−+++++−. Note that s0 is antisymmetric of length 12. That is, we
have s0 = −s0. Next, let s = (s0, s0), the concatenation of s0 and s0. Then s is symmetric,
of length 24. As s plays a key role in our constructions, here it is in its full extent:

s = + −−−−− + + + + + −− + + + + + −−−−− + .

Writing n = 24k + r, we shall describe constructions depending on r = 0, 8, 16, and then
on r = −1, 7, 15. This will of course cover all lengths n ≡ 0 or 7 mod 8.

Construction 5.1 Let s = +−−−−−+ + + + +−−+ + + + +−−−−−+ . For every
integer k ≥ 0, the following binary sequences are symmetric and balanced. We denote by sk

the concatenation of s with itself k times.

In length 24k : sk.

In length 24k + 8 : tk = + − + + sk + + − +.

In length 24k + 16 : uk = −− + + + − + + sk + + − + + + −−.

In length 24k − 1 (k ≥ 1) : ∂
(
sk

)
.

In length 24k + 7 : + + − + ∂
(
sk

)
+ − + +.

In length 24k + 15 : + − + + + + − + ∂
(
sk

)
+ − + + + + − +.

Case 2 n ≡ 3 mod 8.

Construction 5.2 We start by defining a doubly infinite periodic sequence w = (wi)i∈Z of
period 12. Denote π : Z → Z/12Z the canonical projection. Let

p = (p0, p1, . . . , p11) = − + + + + − + − + + ++

of length 12, understood as indexed over Z/12Z. Note, for later use, the following key
property of p:

pπ(i) = pπ(−i) ∀i ∈ Z.
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Define the sequence w = (wi)i∈Z by wi = pπ(i) for all i ∈ Z. For any indices i < j in Z,
let w[i, j] denote the finite subsequence w[i, j] = (wi, wi+1, . . . , wj) of w, of length j − i + 1.

We are now ready to define balanced sequences with the desired properties. For all k ∈ N,
let

vk = w[−4k − 1, 4k + 1].

We claim that, for every k ≥ 0, the binary sequence vk is symmetric, balanced, of length
8k + 3.

The symmetry of vk easily follows from the property pπ(i) = pπ(−i) for all i ∈ Z noted
above. The fact that vk is balanced is proved in Section 6.

As an illustration, here are the sequences vk for small values of k. We have v0 = + − +,
v1 = −+++v0+++−, v2 = ++−+v1+−++, v3 = +−++v2++−+, v4 = −+++v3+++−
and so on, that is

v0 = + − +,

v1 = − + + + + − + + + + −,

v2 = + + − + − + + + + − + + + + − + − + +,

v3 = + − + + + + − + − + + + + − + + + + − + − + + + + − +,

v4 = − + + + + − + + + + − + − + + + + − + + + + − + − + + + + − + + + + −.

Case 3 n ≡ 4 mod 8.

Finally, in order to construct antisymmetric balanced binary sequences of every length
n ≡ 4 mod 8, we use Proposition 4.1 together with the sequences vk defined in Construc-
tion 5.2 above.

Construction 5.3 For every k ≥ 0, let wk denote one of the two binary primitives of vk,

that is, binary sequences such that ∂wk = vk. Since vk is symmetric and balanced, it follows
from Proposition 4.1 that wk is antisymmetric, balanced, of length n = 8k + 4. To be more
explicit, observe that if vk = (x1, . . . , xn), where n = 8k + 3, then its two primitives are
wk = (a, ax1, ax1x2, . . . , ax1 · · · xn) with a = 1 or −1.

6. Proofs

We prove here that the constructions given in Section 5 are valid, in the sense that the binary
sequences obtained there are indeed balanced. (Their symmetry or antisymmetry properties
have already been discussed.)
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The case of Construction 5.1 in length 24k.

Let us recall the notations given in Section 5. We first consider the sequence s0 =
+ − − − − − + + + + +−, which is an antisymmetric balanced binary sequence of length
12. We then define s = (s0, s0), which is symmetric of length 24. As easily checked, s is
balanced. So Construction 5.1 is valid for k = 1.

Let k be a positive integer with k ≥ 2. We want to prove that the binary sequence sk is
a symmetric balanced binary sequence of length 24k. By construction, it is clear that sk is
symmetric of length 24k; it remains to prove that sk is balanced. This will come from the
following remarkably simple structure of the derived triangle ∆sk:

More specifically, we will prove that there exist two squares of length 12, denoted C0 and
C1, such that the derived triangle ∆sk is the assembly of k triangles ∆s0, k triangles ∆s0,
and the components C0 and C1, as depicted in the figure (representing the case k = 3).

It turns out that the squares C0 and C1 are zero-sum, i.e., σ(C0) = σ(C1) = 0. This is
easy to check on the pictures of C0 and C1 given in the Appendix. On the other hand, s0

and s0 are balanced and thus σ(∆s0) = σ(∆s0) = 0. These facts together with the claimed
structure of ∆sk immediately imply σ(∆sk) = 0, as desired.

In order to prove that ∆sk does have this structure, we need to introduce the following
notations.

Notation 6.1

• xp,q denotes the qth digit in the pth row of ∆sk, for all 1 ≤ p ≤ n−p+1 and 1 ≤ q ≤ n.
In particular, the first row of ∆sk, that is sk itself, is constituted by the elements
x1,1, x1,2, . . . , x1,24k, and the left side of the triangle ∆sk consists of x1,1, x2,1, . . . , x24k,1.
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The basic defining property of the triangle ∆sk thus reads xp+1,q = xp,qxp,q+1 for all
p, q ≥ 1.

• For all integers i, j, m, d+
i,j(m) (resp. d−

i,j(m)) represents the diagonal (resp. the
antidiagonal) of length m going down from xi,j in ∆sk. In other words, we have:
d+

i,j(m) = (xi,j, xi+1,j, . . . , xi+m−1,j) and d−
i,j(m) = (xi,j, xi+1,j−1, . . . , xi+m−1,j−m+1).

• For all integers i, j, m, we denote by Ci,j(m) the square of side of length m whose four
vertices are xi,j, xi+m−1,j−m+1, xi+2(m−1),j−m+1 and xi+m−1,j.

• The basic squares C0 and C1 are defined as C0 = C2,12 and C1 = C14,12.

The claimed structure of ∆sk is embodied in the following assertion.

Claim We have:

• ∀p ∈ {1, 2, . . . , 2k − 1}, C2,12p(12) = C0, and

• ∀q ∈ {1, 2, . . . , 2k − 2},∀p ∈ {1, 2, . . . , 2k − q − 1}, C12q+2,12p(12) = C1.

The first part of the Claim easily follows from

Observation 1 The square Ci,j(m) is completely determined by the antidiagonal d−
i−1,j(m)

and the diagonal d+
i−1,j+1(m).

This is a straightforward consequence of the basic property xp+1,q = xp,qxp,q+1 in the
derived triangle ∆sk.

In the sequel, the triangles ∆s0 and ∆s0 will be denoted by ∆ and ∆, respectively.

Let us consider the squares C0 = C2,12(12) and C2,24(12). According to Observation 1,
C0 (resp. C2,24(12)) is completely determined by the SE side of ∆ (resp. ∆) and the SW
side of ∆ (resp. ∆). But it can be easily checked in ∆s2 that the squares C0 and C2,24(12)
are equal. Hence, the SE side of ∆ and the SW side of ∆ determine exactly the same square
as the SE side of ∆ and the SW side of ∆.

In other words, by an easy induction on p using this property and the structure of sk, we
obtain: ∀p ∈ {1, 2, . . . , 2k − 1}, C2,12p(12) = C0. This concludes the proof of the first part
of the Claim.

Remark As s0 is the sequence obtained by reversing s0, we have x1,12 = x1,13; hence the
North vertex of C0, namely x2,12, is equal to 1. On the other hand, it is obvious that the
derived triangle ∆ is the mirror image of ∆, so we derive from Observation 1 that C0 is
symmetric with respect to its vertical axis.

We now want to prove the second part of the Claim. We will first prove that every square
of the form C14,12p(12), with 2 ≤ p ≤ 2k − 2, is equal to C1.
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Indeed, according to the first part of the Claim, we know that all the squares of the form
C14,12p(12) are determined by the SE and the SW sides of two squares C0. So, by Observa-
tion 1, we obtain that all the squares C14,12p(12) are equal to C14,12(12) = C1.

Remark As C0 is symmetric with respect to its vertical axis, we have: x14,12 = x13,12x13,13 =
(x13,12)

2 = 1, and C1 is symmetric with respect to its vertical axis, too. In particular, the
sequence forming the SW side of C1 is equal to the sequence forming its SE side.

We have proved: ∀p ∈ {2, 3, . . . , 2k − 2}, C14,12p(12) = C1. Here is the key observation
which will enable us to finish the proof of the Claim:

Observation 2 The South sides of C1 are equal to the South sides of C0, as sequences.

This can be checked directly in the pictures of C0 and C1 in the Appendix.

As a consequence, the SE and the SW sides of C1 determine the same square as the SE
and the SW sides of C0, namely C1.

Let us now consider the squares of the “third level” in ∆sk, i.e., the squares of the form
C26,12p(12), with 1 ≤ p ≤ 2k − 3. As they are all determined by the SE and the SW sides of
two squares C1, we deduce from Observation 2 that they are all equal to C1.

By an easy induction on q using the same arguments, it can be proved that all the squares
of the form C12q+2,12p(12), with 2 ≤ q ≤ 2k − 2 and 1 ≤ p ≤ 2k − q − 1, are equal to C1.

The Claim is now proved, giving the structure of ∆sk and concluding the validity of
Construction 5.1 in length 24k.

The case of Construction 5.1 in length 24k + 8.

For every k ∈ N, we consider the following symmetric binary sequence of length 24k + 8:
tk = + − + + sk + + − +. We want to prove that, for every k ∈ N, tk is balanced. The
case k = 0 can easily be proved by inspection: it suffices to build the derived triangle of the
corresponding sequence of length 8 and check that its sum is 0.

Suppose now that k is positive. Schematically, enlarging ∆sk into ∆tk can be seen as
adding two diagonal strips of width 4 on both sides of ∆sk: one NW/SE diagonal strip on
its left, denoted Dk

l , and one NE/SW diagonal strip on its right, denoted Dk
r . As we already

have proved that ∆sk has sum 0, it just remains to check that Dk
l and Dk

r both have sum 0.
The fact that tk is balanced will follow.

First of all, tk is a symmetric sequence and ∆sk is symmetric with respect to its vertical
axis. So ∆tk is also symmetric with respect to its vertical axis. In particular, the strip Dk

l is
the mirror image of the strip Dk

r . Hence it suffices to prove that Dk
r has sum 0, and it will

follow immediately that the sequence tk is balanced.

Actually, we want to prove that ∆tk has the following periodic structure:
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More specifically, we will prove that the diagonal strip Dk
r is made of one trapezoid T0,

of 2k− 1 parallelograms P0 and of one square c0 of side of length 4. Let us recall the notions
introduced in [1]:

Notation 6.2
• For i ≡ 1 mod 4 and j ≡ 1 mod 4, 1 ≤ i ≤ j, Ti,j denotes the trapezoid of digits whose

four vertices are x1,j, x1,j+3, xi+3,j+1−i and xi,j+1−i.

• For all integers i, j such that 1 ≤ i ≤ j, Pi,j denotes the parallelogram of digits of
width 4 and length 12 whose four vertices are xi,j, xi+3,j, xi+14,j−11 and xi+11,j−11.

Let us now consider the derived triangle of t1 and define the trapezoid T0 = T13,29, the
parallelogram P0 = P14,16, and the square c0 = C26,4(4).

∗ T0 := T13,29 = + + − +
+ + − −

− + − +
+ − − −

− − + +
+ + − +

− + − −
− − − +

+ + + −
+ + + −

− + + −
+ − + −

+ − − −
− + +

− +
−

∗ P0 := P14,16 = +
+ −

− − +
+ + − −

+ + − +
− + − −

− − − +
+ + + −

+ + + −
− + + −

+ − + −
+ − − −

− + +
− +

−
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∗ c0 := C26,4(4) = +
− −

+ + +
− + + −

− + −
− −

+

Denoting by the symbol + the NE/SW concatenation, here is the key formula we shall prove:

Claim ∀k ≥ 1, Dk
r = T0 + (2k − 1)P0 + c0.

As it can be checked in the definitions of these three quadrilaterals, each one is of sum 0.
Hence, from the Claim and the symmetric structure of ∆tk, we are done since, for all k ≥ 1,
we have

σ∆(tk) = σ(Dk
l ) + σ(∆sk) + σ(Dk

r ) − σ(c0)
= σ(∆sk) + 2σ(Dk

r ) − σ(c0)
= σ(∆sk) + 2σ(T0) + 2(2k − 1)σ(P0) + σ(c0)
= 0.

Let us now prove the Claim. To this end, the next observation (see also [1]) will be useful.

Observation 3 The trapezoid Ti,j is completely determined by its North side and by the
antidiagonal d−

1,j−1(i), which consists of the 12 digits adjacent to its West side. In the
same way, the parallelogram Pi,j is completely determined by the diagonal of length 4 going
down from xi−1,j−1 and by the antidiagonal of length 12 going down from xi−1,j, namely by
d+

i−1,j+1(4) and d−
i−1,j(12).

Let k ≥ 2. Observation 3 applied to the trapezoid T13,24k+5 in ∆tk gives that T13,24k+5

is completely determined by its North side, i.e., the digits + + −+, and the antidiagonal
d−

1,24k+4(13), namely the SE side of ∆. But this is also the case of the trapezoid T0 in ∆t1,
so we deduce that T13,24k+5 = T0.

We now apply the second part of Observation 3 to the parallelogram P14,24k−8 in ∆tk: it
is completely determined by the South side of the trapezoid T13,24k+5 = T0 and by the SE
side of the square C0 (see the proof for Construction 5.1 in length 24k). As it is also the
case of the parallelogram P0 in ∆t1, we obtain the following equality: P14,24k−8 = P0.

We need one last observation to conclude.

Observation 4 The South side of P0 is equal to the South side of T0.

This can be checked directly in the definitions of T0 and P0.
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The parallelogram under P14,24k−8 = P0 in the diagonal strip Dk
r , namely P26,24k−20,

is completely determined by the South side of P0 and the SE side of the square C1. By
Observation 2, the South sides of C1 are equal to the South sides of C0. Hence, using
Observation 4, we derive that P26,24k−20 is completely determined by the South side of T0

and the SE side of the square C0, which means that we have: P26,24k−20 = P0.

Using this last argument repeatedly, we prove that the strip Dk
r contains 2k − 1 paral-

lelograms P0. Finally, we obtain that the last square of side 4 in the strip Dk
r is completely

determined by the South side of a parallelogram P0 and the South side of its mirror image;
hence it is equal to c0.

We have now proved the Claim, concluding the validity of Construction 5.1 in length
24k + 8.

The case of Construction 5.1 in length 24k + 16.

We shall prove that, for every k ∈ N, the derived triangle of the sequence uk = −− + +
tk + + −− has the following periodic structure:

Let D̃k
r (resp. D̃k

l ) denote the NE/SW diagonal strip (resp. the NW/SE diagonal strip)
we add to the right (resp. to the left) of ∆tk to enlarge ∆tk into ∆vk. By considerations of
symmetry, we know that D̃k

l is the mirror image of D̃k
r .

We want to prove that the strip D̃k
r is made of one trapezoid T1, of k parallelograms P1

and k − 1 parallelograms P2, and of two squares of side 4, namely c0 and another square c1.
In symbols, we want to prove this equality:

∀k ≥ 1, D̃k
r = T1 + P1 + (P2 + P1) + . . . + (P2 + P1)︸ ︷︷ ︸

(k−1) times

+c1 + c0.
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This can be proved using Observations 1 and 3, and the special form of the strip Dk
r . The

method is exactly the same as in length 24k + 8, except that two different parallelograms
alternate to form the strip D̃k

r , namely P1 and P2. We shall not give all the details, only the
properties of the quadrilaterals forming the strip D̃k

r which enable us to prove its periodic
structure.

Writing explicitly T1 and P2, one notes that their South sides are equal. But the South
side of T1 and the East side of P0 determine P1, and the South side of P1 and the East side
of P0 determine P2. So the third parallelogram in the strip D̃k

r will be equal to P1, and so
on. Finally, the last parallelogram of the strip will be P1.

Hence the first square of D̃k
r is determined by the South side of P1 and the SE side of

c0; it is equal to c1. But the SW side of c1 is equal to the South side of P0, so the last
square of D̃k

r is determined by the South sides of c1 and it is equal to c0 (see the proof for
Construction 5.1 in length 24k + 8).

It remains to check that the quadrilaterals T1, P1, P2 and c1 all have sum 0, and this is
straightforward. As we already proved that, for every k ∈ N, the sequence tk is balanced,
it follows immediately from the structure of ∆uk that the sequence uk is also balanced, for
every k ∈ N.

The case of Construction 5.1 in length n ≡ 7 mod 8.

Let k be a positive integer. We know that the sequence sk is balanced and zero-sum, i.e.,
σ∆(sk) = σ(sk) = 0. It follows that ∂(sk) is also balanced, since σ∆(∂sk) = σ∆(sk)−σ(sk) =
0. Moreover, the derived triangle of ∂sk is obtained from ∆sk by removing its first line, and
thus has a similar structure as ∆sk.

The proof in length n ≡ 7 mod 8 is similar to the proof in length n ≡ 0 mod 8. We only
give the global structure in length 24k + 15, which also displays the structure of the derived
triangles in lengths 24k − 1 and 24k + 7:
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The case of Construction 5.2 in length n ≡ 3 mod 8.

By an easy yet tedious induction on i, one can prove that the strips we add to ∆v3i to
obtain ∆v3i+1, ∆v3i+2 and then ∆v3(i+1), have the following periodic form:

In this picture, ∆0, ∆1 and ∆2 represent triangles of side of length 3, whereas b0, b1, b2, c0, c1

and c2 are squares of side 4. Here are their pictures:

∗ ∆0 = ∆1 = + + −
+ −

−

∗ ∆2 = ∆2 = + − +
− −

+

∗ b0 = b2 = +
+ +

− + +
− − + −

+ − −
− +

−

∗ b1 = b1 = +
− −

+ + +
− + + −

− + −
− −

+
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∗ c0 = c0 = +
+ +

− + −
+ − − +

− + −
− −

+

∗ c1 = c2 = +
− −

− + +
+ − + +

− − +
+ −

−

The claimed structure follows from the symmetry of the triangles and of the above
squares, and the following easily checked property: for all j ∈ Z/3Z, cj+2 is completely
determined by the SE side of cj and the SW side of cj+1. Graphically, this property may be
pictured as follows:

This concludes the proof of the validity of the constructions in Section 5. �
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Appendix: Pictures of ∆, C0 and C1 in the proof of Construction 5.1.

∗ ∆ := ∆s0 = + − − − − − + + + + + −
− + + + + − + + + + −

− + + + − − + + + −
− + + − + − + + −

− + − − − − + −
− − + + + − −

+ − + + − +
− − + − −

+ − − +
− + −

− −
+

∗ C0 := C2,12(12) = +
− −

+ + +
− + + −

+ − + − +
− − − − − −

− + + + + + −
+ − + + + + − +

+ − − + + + − − +
− − + − + + − + − −

+ + − − − + − − − + +
+ + − + + − − + + − + +

+ − − + − + − + − − +
− + − − − − − − + −

− − + + + + + − −
+ − + + + + − +

− − + + + − −
+ − + + − +

− − + − −
+ − − +

− + −
− −

+
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∗ C1 := C14,12(12) = +
+ +

− + −
+ − − +

+ − + − +
− − − − − −

− + + + + + −
+ − + + + + − +

+ − − + + + − − +
− − + − + + − + − −

+ + − − − + − − − + +
+ + − + + − − + + − + +

+ − − + − + − + − − +
− + − − − − − − + −

− − + + + + + − −
+ − + + + + − +

− − + + + − −
+ − + + − +

− − + − −
+ − − +

− + −
− −

+

Acknowledgment. The first author gratefully acknowledges partial support from the Fonds
National Suisse de la Recherche Scientifique during the preparation of this paper. He also thanks
Michel Kervaire and Pierre de la Harpe for their interest in this work.

References

[1] Eliahou, Shalom and Hachez, Delphine, On a problem of Steinhaus concerning binary sequences, Ex-
perimental Mathematics 13, No.2 (2004) 215-229.

[2] Harborth, Heiko, Solution of Steinhaus’s Problem with Plus and Minus Signs, J. Comb. Th. (A) 12
(1972) 253-259.

[3] Steinhaus, Hugo, “One Hundred Problems in Elementary Mathematics”, Pergamon, Elinsford, N.Y.
(1963) 47-48.


