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Abstract

Let a and b be positive integers such that a < b and (a,b) # (1,1). We prove that there exists
a 6-coloring of the positive integers that does not contain a monochromatic (a, b)-triple, that
is, a triple (z,y, z) of positive integers such that y = az+d and z = bz + 2d for some positive
integer d. This confirms a conjecture of Landman and Robertson.

1. Introduction

In 1916, Schur [13] proved that for every finite coloring of the positive integers there is a
monochromatic solution to x +y = 2. In 1927, van der Waerden [15] proved that every
finite coloring of the positive integers contains arbitrarily long monochromatic arithmetic
progressions. Rado’s 1933 thesis [12] was a seminal work in Ramsey theory, generalizing the
earlier theorems of Schur and van der Waerden. Rado called a linear homogenous equation
a1y + ... + a,z, = 0 (a;’s are nonzero integers) r-regular if every r-coloring of N contains
a monochromatic solution to that equation. An equation is regular if it is r-regular for
all positive integers r. Rado’s theorem for a linear homogeneous equation states that an
equation is regular if and only if a non-empty subset of a;’s sums to 0. Rado also made a
conjecture [12] that further differentiates between those linear homogeneous equations that
are regular and those that are not.

Conjecture 1 (Rado’s Boundedness Conjecture, 1933) For every positive integer n, there
exists an integer k := k(n) such that every linear homogeneous equation a;x1+. ..+ a,x, =0
that is k-regular must be reqular as well.
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This outstanding conjecture has remained open except in the trivial cases (n = 1,2) until
recently, when the first author and Kleitman settled the first nontrivial case n = 3 [4], [9].
They proved that k(3) < 24.

Van der Waerden’s theorem has been strengthened and generalized in numerous other
ways [1], [2], [6], [7], [8], [11], [14]. In this note, we consider one of the generalizations,
proposed by Landman and Robertson in [10].

Let a and b be positive integers such that a < b. A triple (z,y, z) of positive integers is
called an (a, b)-triple if there exists a positive integer d such that y = ax+d and z = bx + 2d.
The degree of reqularity of an (a, b)-triple, denoted by dor(a, b), is the largest positive integer
r, if it exists, such that for every r-coloring of the positive integers there is a monochromatic
(a,b)-triple. If no such r exists, that is, for every finite coloring of the positive integers
there is a monochromatic (a, b)-triple, then set dor(a,b) = co. Note that van der Waerden’s
theorem for 3-term arithmetic progressions is equivalent to dor(1,1) = oc.

Landman and Robertson proved that dor(a,b) = 1 if and only if b = 2a. They also
showed that dor(a,2a — 1) = 2 for a > 2. For small values of a and b, they provide few
additional results:

dor(1,3) <3, dor(2,2) <5, dor(2,5) <3, dor(2,6) < 3,
dor(3,3) <5, dor(3,4) <5, dor(3,8) <3, dor(3,9) < 3.
Finally, they conjectured that if (a,b) # (1,1), then dor(a,b) is finite [10], [11].

We confirm and further strengthen their conjecture.
Theorem 1 If (a,b) # (1,1), then dor(a,b) < 6.

Our proof that dor(a, b) is finite uses Rado’s theorem for a homogenous linear equation.
Proving a specific upper bound of 6, regardless of parameters a and b, relies on the above
mentioned proof of Fox and Kleitman [4].

2. Proof of Theorem 1

First, notice that if (z,y, z) is an (a, b)-triple, then (z,y, z) satisfies the equation
—(b—2a)r —2y+ 2z =0.

By Rado’s theorem [12], this equation is regular if and only if b € {2a — 2,2a — 1,2a + 1}.
Therefore, if b — 2a ¢ {—2,—1,1}, then dor(a, b) is finite. Moreover, since k(3) < 24 [4], if
b—2a ¢ {—2,—1,2}, then dor(a,b) < 23. As mentioned in the introduction, Landman and
Robertson [10] proved that dor(a,2a — 1) = 2 for a > 2.

For the remaining cases, we use Lemma 1, which is stated and proved next.
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Lemma 1 Let o and 3 be real numbers such that 1 < a < 3. Set r = [log, B]. Then
every r-coloring of the positive integers contains integers x and y of the same color with
ar <y < fBx. Moreover, there is an (r + 1)-coloring of the positive integers that contains
no integers x and y of the same color with ax <y < [uz.

Proof. Consider a coloring of N without x and y of the same color with az < y < pz.
Since r = [log, ], then "1 < B. Let 2, > 3 ;_50a%/(3 —a"~') be a positive integer. For
i > 1, set x4 = [az;]. We have ax; < x;41 < ax; + 1. Repeatedly using the inequality
Ti1 < ax; + 1, we obtain z, < o ta; + Z;;% a. Since we appropriately chose 1, the last
inequality yields z, < Bx;. Hence, ax; < z; < fx; for 1 <i < j <r,sox,...,z, must all
have different colors. Therefore, the number of colors is at least r + 1.

Next, we construct a coloring of the positive integers by the elements of Z,,; such that
there do not exist x and y of the same color with ax < y < Bx. For every nonnegative integer
n, integers in the interval [a™, o™ ) receive color n (mod r + 1). Within each interval, every
pair of integers x and y have the same color, but y < ax. For monochromatic  and y from
different intervals, with y > x, we have y > o"x > [x. Therefore, this (r 4 1)-coloring of the
integers has no monochromatic x and y such that ax <y < fz. a

Now, we continue with the proof of Theorem 1. We have two cases.
Case 1. b=2a+ 1.

In this case, we have y = ax + d and z = (2a + 1)z + 2d. Therefore, 2y < z < (%)y
Using Lemma 1 and noting a > 1, we obtain

1
dor(a,2a + 1) < [log,(2+ —)| = 2.
a

Hence, for all positive integers a, we have dor(a,2a + 1) = 2.
Case 2. b= 2a — 2.

Since b must be a positive integer, then a > 2. As mentioned in the introduction,
Landman and Robertson [10] proved that dor(2,2) < 5. If @ > 2, then y = ax + d and
z = (2a — 2)x + 2d. So, (*2)y < z < 2y. Using Lemma 1 and a > 3, we obtain

dor(a,2a — 2) < [log, = 2].

We have 2 — 2 > /2 when a > 3. Therefore, 2 < dor(a,2a —2) < 3 for a = 3 and
dor(a,2a — 2) = 2 for a > 3.

At this stage, we have dor(a,b) < 24, whenever (a,b) # (1,1). Next, we improve the
upper bound using some sophisticated tools from the paper of Fox and Kleitman [4]. For
the sake of completeness and clarity, we repeat some of their analysis that applies in our
context. We need the following bit of notation.
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Definition: Let p be a prime number. For every integer n, let v,(n) denote the largest
power of p that divides n. If n =0, let v,(n) = +o0.

Notice that v,(mims) = v,(m1) + v,(m2) for every prime p, and integers m; and mo.
The following straightforward lemma (Lemma 3 in [4]) gives basic properties of the function
vp, which we will repeatedly use.

Lemma 2 If my, my, mg are integers with v,(my) < v,(me2) < vy(msz) and vy(my) <
vp(my +ma+mg3), then v,(my) = v,(ma). Furthermore, if vy(ms) < v,(mq +ma+ms), then
also v,(my +mg) = vy(ms).

Recall that if (x,y, z) is an (a, b)-triple, then (x,y, z) satisfies the equation (b — 2a)z +
2y—2=0. Let t, =b—2a, t, =2, and t, = —1 denote the coefficients of z, y, and z in this
equation, respectively. We have three cases to consider, depending on t,.

Case A. t, is a multiple of 4.

Clearly, we have vy(t;) > va(t,) =1 > v5(t,) = 0. Let S = {va(t,), va(ty), va(ts) —va(ty)},
and let I'(9) be the undirected Cayley graph of the group (Z, +) with generators being the
elements of S. Since every vertex of I'(S) has degree 2|S|, there exists a proper (greedy)
(|S]+1)-coloring x’ of its vertices. This result is “folklore” and we refer the reader to Lemma
2 in [4] for details. Now, define x(n) = x/(va(n)), for every n € N. We claim that in the
4-coloring x of N there are no z, y, and z, all of the same color and vy(t,z + t,y + t.2) >
min{vy(t,x), v2(tyy), v2(t.2)}. Indeed, otherwise (by Lemma 2) we have vy(t,z) = va(t,y);
or va(t,x) = wvo(t,2); or va(tyy) = va(t,z). This implies vo(y) — vo(x) = va(ty) — va(ty); or
v9(2) —vo(z) = va(ty); or va(2) —va(y) = va(t,). However, this contradicts that x’ is a proper
coloring of T'(S) and wvy(x), v2(y), and vy(z) are all of the same color.

Since v3(0) = +o00, by definition, and since there are no z, y, z, all of the same color
and vy (t,x + tyy + t.2) > min{vs(t,x), v2(tyy), v2(t.2)}, then, in particular, there are no
monochromatic solutions to t,z +t,y +t,2 =0 (i.e. (b—2a)xr+2y—2z=0) in x. Case A is
equivalent to Lemma 4 (with p = 2) in [4].

Case B. t, has an odd prime factor p.!

In this case we have v,(t,) > v,(t,) = v,(t;) = 0. Let d = v,(t;). We construct a
6-coloring x that is a product of a 2-coloring x; and a 3-coloring x,. For n € N define
xi1(n) = L%d")j (mod 2). The coloring xi(n) colors intervals of v, values of length d,
open on one side, periodically in 2 colors with period 2. Let I" be the undirected Cayley
graph on Z, \ {0} such that (u,v) is an edge of I' if and only if v —2v =0 (mod p) or
2u—v =0 (mod p). Since every vertex of I" has degree 2, there exists a proper 3-coloring
X, : V(T) — {0,1,2}. For n € N define x2(n) = x4(m mod p), where n = mp*™. Finally,
for n € N define x(n) = (x1(n), x2(n)).

!Note that Cases A and B overlap. However, it is only important that Cases A, B, and C cover all the
possibilities.
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We claim that in the 6-coloring x of N there are no x, y, and z, all of the same color and
vp(tex+t,y+t.2) > max{v,(t,x), v,(tyy), vy(t.2) }. Indeed, otherwise (by Lemma 2) we have
Up(taw) = vp(tyy) < vp(to2); or vp(taw) = vp(t:2) < vp(tyy); or vp(tyy) = vp(t.2) < vp(taw).
If vy(tzx) = vp(tyy), then d + v,(z) = v,(y), hence, x1(z) # xi1(y), which contradicts
x(x) = x(y). If v,(tyx) = vy(t.2), then d + vy(x) = v,(2), hence, x1(x) # x1(z), which
contradicts x(x) = x(z). So, assume that v,(t,y) = v,(t.2) < v,(t,z). Recalling our
coeflicients, we obtain v,(y) = v,(2) < d + v,(z). By (the second part of) Lemma 2, we also
have v,(2y — 2) = d+v,(z). Let e denote the common value of v,(y) and v,(z). Let y = y'p°
and z = 2'p®. Since x2(y) = x2(z), then x5(y' mod p) = x4(2' mod p), hence, 2y — 2" £ 0
(mod p). However, this implies v,(2y — z) = e, s0 v,(y) = v,(2) = € = d + v,(x). It follows
from here that x;(z) is different from x;(y) and x1(z), which contradicts x(z) = x(y) = x(2).

Since v,(0) = +o00 and there are no z, y, z, all of the same color and v,(t,x +t,y+t,2) >
max{v,(t,x), v,(t,y), vp(t.2)}, then, in particular, there are no monochromatic solutions to
tyx +t,y+t.z=0 (e (b—2a)r+2y—2z=0)in x. Case B is essentially equivalent to
Lemma 6 (with s = 1) in [4].

Notice that one can define y, to be a 2-coloring in the proof above, as long as the order
of 2 mod p is even.

Case C. t, € {—2,-1,1,2}

Case t, = —1 is taken care of in [10], as mentioned before, while cases t, = 1 and
t, = —2 correspond to Cases 1 and 2, respectively. The only remaining case is t, = 2.2 In
this case, we have y = axr + d and z = (2a + 2)z + 2d. Therefore, 2y < z < 4y. Using
Lemma 1, we obtain dor(a,2a + 2) < [log,4] = 2. Hence, for all positive integers a, we
have dor(a,2a + 2) = 2. O

3. Concluding remarks

As a consequence of our proof, we obtained
dor(1,3) =2, dor(2,5) = 2, dor(2,6) = 2,

dor(3,3) < 3, dor(3,4) < 3, dor(3,8) = 2.

These results improve the corresponding entries in the table provided by Landman and
Robertson [10] for small values of a and b.

After submission, we learned that Frantzikinakis, Landman, and Robertson [5] indepen-
dently showed that dor(a, b) is finite unless (a,b) = (1,1).

2The equation is not regular in this case, however this possibility is not covered by Cases A and B of the
improved upper bound analysis.
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