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Radoš Radoičić
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Abstract

Let a and b be positive integers such that a ≤ b and (a, b) "= (1, 1). We prove that there exists
a 6-coloring of the positive integers that does not contain a monochromatic (a, b)-triple, that
is, a triple (x, y, z) of positive integers such that y = ax+d and z = bx+2d for some positive
integer d. This confirms a conjecture of Landman and Robertson.

1. Introduction

In 1916, Schur [13] proved that for every finite coloring of the positive integers there is a
monochromatic solution to x + y = z. In 1927, van der Waerden [15] proved that every
finite coloring of the positive integers contains arbitrarily long monochromatic arithmetic
progressions. Rado’s 1933 thesis [12] was a seminal work in Ramsey theory, generalizing the
earlier theorems of Schur and van der Waerden. Rado called a linear homogenous equation
a1x1 + . . . + anxn = 0 (ai’s are nonzero integers) r-regular if every r-coloring of N contains
a monochromatic solution to that equation. An equation is regular if it is r-regular for
all positive integers r. Rado’s theorem for a linear homogeneous equation states that an
equation is regular if and only if a non-empty subset of ai’s sums to 0. Rado also made a
conjecture [12] that further differentiates between those linear homogeneous equations that
are regular and those that are not.

Conjecture 1 (Rado’s Boundedness Conjecture, 1933) For every positive integer n, there
exists an integer k := k(n) such that every linear homogeneous equation a1x1+ . . .+anxn = 0
that is k-regular must be regular as well.
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This outstanding conjecture has remained open except in the trivial cases (n = 1, 2) until
recently, when the first author and Kleitman settled the first nontrivial case n = 3 [4], [9].
They proved that k(3) ≤ 24.

Van der Waerden’s theorem has been strengthened and generalized in numerous other
ways [1], [2], [6], [7], [8], [11], [14]. In this note, we consider one of the generalizations,
proposed by Landman and Robertson in [10].

Let a and b be positive integers such that a ≤ b. A triple (x, y, z) of positive integers is
called an (a, b)-triple if there exists a positive integer d such that y = ax+d and z = bx+2d.
The degree of regularity of an (a, b)-triple, denoted by dor(a, b), is the largest positive integer
r, if it exists, such that for every r-coloring of the positive integers there is a monochromatic
(a, b)-triple. If no such r exists, that is, for every finite coloring of the positive integers
there is a monochromatic (a, b)-triple, then set dor(a, b) = ∞. Note that van der Waerden’s
theorem for 3-term arithmetic progressions is equivalent to dor(1, 1) = ∞.

Landman and Robertson proved that dor(a, b) = 1 if and only if b = 2a. They also
showed that dor(a, 2a − 1) = 2 for a ≥ 2. For small values of a and b, they provide few
additional results:

dor(1, 3) ≤ 3, dor(2, 2) ≤ 5, dor(2, 5) ≤ 3, dor(2, 6) ≤ 3,

dor(3, 3) ≤ 5, dor(3, 4) ≤ 5, dor(3, 8) ≤ 3, dor(3, 9) ≤ 3.

Finally, they conjectured that if (a, b) "= (1, 1), then dor(a, b) is finite [10], [11].

We confirm and further strengthen their conjecture.

Theorem 1 If (a, b) "= (1, 1), then dor(a, b) < 6.

Our proof that dor(a, b) is finite uses Rado’s theorem for a homogenous linear equation.
Proving a specific upper bound of 6, regardless of parameters a and b, relies on the above
mentioned proof of Fox and Kleitman [4].

2. Proof of Theorem 1

First, notice that if (x, y, z) is an (a, b)-triple, then (x, y, z) satisfies the equation

−(b − 2a)x − 2y + z = 0.

By Rado’s theorem [12], this equation is regular if and only if b ∈ {2a − 2, 2a − 1, 2a + 1}.
Therefore, if b − 2a "∈ {−2,−1, 1}, then dor(a, b) is finite. Moreover, since k(3) ≤ 24 [4], if
b − 2a "∈ {−2,−1, 2}, then dor(a, b) ≤ 23. As mentioned in the introduction, Landman and
Robertson [10] proved that dor(a, 2a − 1) = 2 for a ≥ 2.

For the remaining cases, we use Lemma 1, which is stated and proved next.
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Lemma 1 Let α and β be real numbers such that 1 < α < β. Set r = 'logα β(. Then
every r-coloring of the positive integers contains integers x and y of the same color with
αx ≤ y ≤ βx. Moreover, there is an (r + 1)-coloring of the positive integers that contains
no integers x and y of the same color with αx ≤ y ≤ βx.

Proof. Consider a coloring of N without x and y of the same color with αx ≤ y ≤ βx.
Since r = 'logα β(, then αr−1 < β. Let x1 >

∑r−2
k=0 αk/(β − αr−1) be a positive integer. For

i > 1, set xi+1 = 'αxi(. We have αxi ≤ xi+1 < αxi + 1. Repeatedly using the inequality
xi+1 < αxi + 1, we obtain xr < αr−1x1 +

∑r−2
k=0 αk. Since we appropriately chose x1, the last

inequality yields xr < βx1. Hence, αxi ≤ xj ≤ βxi for 1 ≤ i < j ≤ r, so x1, . . . , xr must all
have different colors. Therefore, the number of colors is at least r + 1.

Next, we construct a coloring of the positive integers by the elements of Zr+1 such that
there do not exist x and y of the same color with αx ≤ y ≤ βx. For every nonnegative integer
n, integers in the interval [αn, αn+1) receive color n (mod r +1). Within each interval, every
pair of integers x and y have the same color, but y < αx. For monochromatic x and y from
different intervals, with y > x, we have y > αrx ≥ βx. Therefore, this (r +1)-coloring of the
integers has no monochromatic x and y such that αx ≤ y ≤ βx. !

Now, we continue with the proof of Theorem 1. We have two cases.

Case 1. b = 2a + 1.

In this case, we have y = ax + d and z = (2a + 1)x + 2d. Therefore, 2y < z < (2a+1
a )y.

Using Lemma 1 and noting a ≥ 1, we obtain

dor(a, 2a + 1) ≤ 'log2(2 +
1

a
)( = 2.

Hence, for all positive integers a, we have dor(a, 2a + 1) = 2.

Case 2. b = 2a − 2.

Since b must be a positive integer, then a ≥ 2. As mentioned in the introduction,
Landman and Robertson [10] proved that dor(2, 2) ≤ 5. If a > 2, then y = ax + d and
z = (2a − 2)x + 2d. So, (2a−2

a )y < z < 2y. Using Lemma 1 and a ≥ 3, we obtain

dor(a, 2a − 2) ≤ 'log2− 2
a
2(.

We have 2 − 2
a >

√
2 when a > 3. Therefore, 2 ≤ dor(a, 2a − 2) ≤ 3 for a = 3 and

dor(a, 2a − 2) = 2 for a > 3.

At this stage, we have dor(a, b) < 24, whenever (a, b) "= (1, 1). Next, we improve the
upper bound using some sophisticated tools from the paper of Fox and Kleitman [4]. For
the sake of completeness and clarity, we repeat some of their analysis that applies in our
context. We need the following bit of notation.
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Definition: Let p be a prime number. For every integer n, let vp(n) denote the largest
power of p that divides n. If n = 0, let vp(n) = +∞.

Notice that vp(m1m2) = vp(m1) + vp(m2) for every prime p, and integers m1 and m2.
The following straightforward lemma (Lemma 3 in [4]) gives basic properties of the function
vp, which we will repeatedly use.

Lemma 2 If m1, m2, m3 are integers with vp(m1) ≤ vp(m2) ≤ vp(m3) and vp(m1) <
vp(m1 +m2 +m3), then vp(m1) = vp(m2). Furthermore, if vp(m3) < vp(m1 +m2 +m3), then
also vp(m1 + m2) = vp(m3).

Recall that if (x, y, z) is an (a, b)-triple, then (x, y, z) satisfies the equation (b − 2a)x +
2y− z = 0. Let tx = b− 2a, ty = 2, and tz = −1 denote the coefficients of x, y, and z in this
equation, respectively. We have three cases to consider, depending on tx.

Case A. tx is a multiple of 4.

Clearly, we have v2(tx) > v2(ty) = 1 > v2(tz) = 0. Let S = {v2(tx), v2(ty), v2(tx)−v2(ty)},
and let Γ(S) be the undirected Cayley graph of the group (Z, +) with generators being the
elements of S. Since every vertex of Γ(S) has degree 2|S|, there exists a proper (greedy)
(|S|+1)-coloring χ′ of its vertices. This result is “folklore” and we refer the reader to Lemma
2 in [4] for details. Now, define χ(n) = χ′(v2(n)), for every n ∈ N. We claim that in the
4-coloring χ of N there are no x, y, and z, all of the same color and v2(txx + tyy + tzz) >
min{v2(txx), v2(tyy), v2(tzz)}. Indeed, otherwise (by Lemma 2) we have v2(txx) = v2(tyy);
or v2(txx) = v2(tzz); or v2(tyy) = v2(tzz). This implies v2(y) − v2(x) = v2(tx) − v2(ty); or
v2(z)−v2(x) = v2(tx); or v2(z)−v2(y) = v2(ty). However, this contradicts that χ′ is a proper
coloring of Γ(S) and v2(x), v2(y), and v2(z) are all of the same color.

Since v2(0) = +∞, by definition, and since there are no x, y, z, all of the same color
and v2(txx + tyy + tzz) > min{v2(txx), v2(tyy), v2(tzz)}, then, in particular, there are no
monochromatic solutions to txx + tyy + tzz = 0 (i.e. (b− 2a)x + 2y − z = 0) in χ. Case A is
equivalent to Lemma 4 (with p = 2) in [4].

Case B. tx has an odd prime factor p.1

In this case we have vp(tx) > vp(ty) = vp(tz) = 0. Let d = vp(tx). We construct a
6-coloring χ that is a product of a 2-coloring χ1 and a 3-coloring χ2. For n ∈ N define
χ1(n) ≡ +vp(n)

d , (mod 2). The coloring χ1(n) colors intervals of vp values of length d,
open on one side, periodically in 2 colors with period 2. Let Γ be the undirected Cayley
graph on Zp \ {0} such that (u, v) is an edge of Γ if and only if u − 2v ≡ 0 (mod p) or
2u − v ≡ 0 (mod p). Since every vertex of Γ has degree 2, there exists a proper 3-coloring
χ′

2 : V (Γ) → {0, 1, 2}. For n ∈ N define χ2(n) = χ′
2(m mod p), where n = mpvp(n). Finally,

for n ∈ N define χ(n) = (χ1(n), χ2(n)).

1Note that Cases A and B overlap. However, it is only important that Cases A, B, and C cover all the
possibilities.
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We claim that in the 6-coloring χ of N there are no x, y, and z, all of the same color and
vp(txx+tyy+tzz) > max{vp(txx), vp(tyy), vp(tzz)}. Indeed, otherwise (by Lemma 2) we have
vp(txx) = vp(tyy) ≤ vp(tzz); or vp(txx) = vp(tzz) ≤ vp(tyy); or vp(tyy) = vp(tzz) ≤ vp(txx).
If vp(txx) = vp(tyy), then d + vp(x) = vp(y), hence, χ1(x) "= χ1(y), which contradicts
χ(x) = χ(y). If vp(txx) = vp(tzz), then d + vp(x) = vp(z), hence, χ1(x) "= χ1(z), which
contradicts χ(x) = χ(z). So, assume that vp(tyy) = vp(tzz) ≤ vp(txx). Recalling our
coefficients, we obtain vp(y) = vp(z) ≤ d + vp(x). By (the second part of) Lemma 2, we also
have vp(2y− z) = d+ vp(x). Let e denote the common value of vp(y) and vp(z). Let y = y′pe

and z = z′pe. Since χ2(y) = χ2(z), then χ′
2(y

′ mod p) = χ′
2(z

′ mod p), hence, 2y′ − z′ "≡ 0
(mod p). However, this implies vp(2y − z) = e, so vp(y) = vp(z) = e = d + vp(x). It follows
from here that χ1(x) is different from χ1(y) and χ1(z), which contradicts χ(x) = χ(y) = χ(z).

Since vp(0) = +∞ and there are no x, y, z, all of the same color and vp(txx+ tyy+ tzz) >
max{vp(txx), vp(tyy), vp(tzz)}, then, in particular, there are no monochromatic solutions to
txx + tyy + tzz = 0 (i.e. (b − 2a)x + 2y − z = 0) in χ. Case B is essentially equivalent to
Lemma 6 (with s = 1) in [4].

Notice that one can define χ2 to be a 2-coloring in the proof above, as long as the order
of 2 mod p is even.

Case C. tx ∈ {−2,−1, 1, 2}

Case tx = −1 is taken care of in [10], as mentioned before, while cases tx = 1 and
tx = −2 correspond to Cases 1 and 2, respectively. The only remaining case is tx = 2.2 In
this case, we have y = ax + d and z = (2a + 2)x + 2d. Therefore, 2y < z < 4y. Using
Lemma 1, we obtain dor(a, 2a + 2) ≤ 'log2 4( = 2. Hence, for all positive integers a, we
have dor(a, 2a + 2) = 2. !

3. Concluding remarks

As a consequence of our proof, we obtained

dor(1, 3) = 2, dor(2, 5) = 2, dor(2, 6) = 2,

dor(3, 3) ≤ 3, dor(3, 4) ≤ 3, dor(3, 8) = 2.

These results improve the corresponding entries in the table provided by Landman and
Robertson [10] for small values of a and b.

After submission, we learned that Frantzikinakis, Landman, and Robertson [5] indepen-
dently showed that dor(a, b) is finite unless (a, b) = (1, 1).

2The equation is not regular in this case, however this possibility is not covered by Cases A and B of the
improved upper bound analysis.
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