ON THE DEGREE OF REGULARITY OF GENERALIZED VAN DER WAERDEN TRIPLES

Jacob Fox
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
licht@mit.edu
Radoš Radoičić
Department of Mathematics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
rados@math.rutgers.edu

Received: 6/9/05, Accepted: 11/28/05, Published: 12/13/05

Abstract

Let a and b be positive integers such that $a \leq b$ and $(a, b) \neq(1,1)$. We prove that there exists a 6 -coloring of the positive integers that does not contain a monochromatic (a, b)-triple, that is, a triple (x, y, z) of positive integers such that $y=a x+d$ and $z=b x+2 d$ for some positive integer d. This confirms a conjecture of Landman and Robertson.

1. Introduction

In 1916, Schur [13] proved that for every finite coloring of the positive integers there is a monochromatic solution to $x+y=z$. In 1927, van der Waerden [15] proved that every finite coloring of the positive integers contains arbitrarily long monochromatic arithmetic progressions. Rado's 1933 thesis [12] was a seminal work in Ramsey theory, generalizing the earlier theorems of Schur and van der Waerden. Rado called a linear homogenous equation $a_{1} x_{1}+\ldots+a_{n} x_{n}=0$ (a_{i} 's are nonzero integers) r-regular if every r-coloring of \mathbb{N} contains a monochromatic solution to that equation. An equation is regular if it is r-regular for all positive integers r. Rado's theorem for a linear homogeneous equation states that an equation is regular if and only if a non-empty subset of a_{i} 's sums to 0 . Rado also made a conjecture [12] that further differentiates between those linear homogeneous equations that are regular and those that are not.

Conjecture 1 (Rado's Boundedness Conjecture, 1933) For every positive integer n, there exists an integer $k:=k(n)$ such that every linear homogeneous equation $a_{1} x_{1}+\ldots+a_{n} x_{n}=0$ that is k-regular must be regular as well.

This outstanding conjecture has remained open except in the trivial cases ($n=1,2$) until recently, when the first author and Kleitman settled the first nontrivial case $n=3$ [4], [9]. They proved that $k(3) \leq 24$.

Van der Waerden's theorem has been strengthened and generalized in numerous other ways [1], [2], [6], [7], [8], [11], [14]. In this note, we consider one of the generalizations, proposed by Landman and Robertson in [10].

Let a and b be positive integers such that $a \leq b$. A triple (x, y, z) of positive integers is called an (a, b)-triple if there exists a positive integer d such that $y=a x+d$ and $z=b x+2 d$. The degree of regularity of an (a, b)-triple, denoted by $\operatorname{dor}(a, b)$, is the largest positive integer r, if it exists, such that for every r-coloring of the positive integers there is a monochromatic (a, b)-triple. If no such r exists, that is, for every finite coloring of the positive integers there is a monochromatic (a, b)-triple, then set $\operatorname{dor}(a, b)=\infty$. Note that van der Waerden's theorem for 3 -term arithmetic progressions is equivalent to $\operatorname{dor}(1,1)=\infty$.

Landman and Robertson proved that $\operatorname{dor}(a, b)=1$ if and only if $b=2 a$. They also showed that $\operatorname{dor}(a, 2 a-1)=2$ for $a \geq 2$. For small values of a and b, they provide few additional results:

$$
\begin{aligned}
& \operatorname{dor}(1,3) \leq 3, \operatorname{dor}(2,2) \leq 5, \operatorname{dor}(2,5) \leq 3, \operatorname{dor}(2,6) \leq 3, \\
& \operatorname{dor}(3,3) \leq 5, \operatorname{dor}(3,4) \leq 5, \operatorname{dor}(3,8) \leq 3, \operatorname{dor}(3,9) \leq 3
\end{aligned}
$$

Finally, they conjectured that if $(a, b) \neq(1,1)$, then $\operatorname{dor}(a, b)$ is finite [10], [11].
We confirm and further strengthen their conjecture.

Theorem 1 If $(a, b) \neq(1,1)$, then $\operatorname{dor}(a, b)<6$.

Our proof that dor (a, b) is finite uses Rado's theorem for a homogenous linear equation. Proving a specific upper bound of 6 , regardless of parameters a and b, relies on the above mentioned proof of Fox and Kleitman [4].

2. Proof of Theorem 1

First, notice that if (x, y, z) is an (a, b)-triple, then (x, y, z) satisfies the equation

$$
-(b-2 a) x-2 y+z=0
$$

By Rado's theorem [12], this equation is regular if and only if $b \in\{2 a-2,2 a-1,2 a+1\}$. Therefore, if $b-2 a \notin\{-2,-1,1\}$, then $\operatorname{dor}(a, b)$ is finite. Moreover, since $k(3) \leq 24$ [4], if $b-2 a \notin\{-2,-1,2\}$, then $\operatorname{dor}(a, b) \leq 23$. As mentioned in the introduction, Landman and Robertson [10] proved that $\operatorname{dor}(a, 2 a-1)=2$ for $a \geq 2$.

For the remaining cases, we use Lemma 1, which is stated and proved next.

Lemma 1 Let α and β be real numbers such that $1<\alpha<\beta$. Set $r=\left\lceil\log _{\alpha} \beta\right\rceil$. Then every r-coloring of the positive integers contains integers x and y of the same color with $\alpha x \leq y \leq \beta x$. Moreover, there is an $(r+1)$-coloring of the positive integers that contains no integers x and y of the same color with $\alpha x \leq y \leq \beta x$.

Proof. Consider a coloring of \mathbb{N} without x and y of the same color with $\alpha x \leq y \leq \beta x$. Since $r=\left\lceil\log _{\alpha} \beta\right\rceil$, then $\alpha^{r-1}<\beta$. Let $x_{1}>\sum_{k=0}^{r-2} \alpha^{k} /\left(\beta-\alpha^{r-1}\right)$ be a positive integer. For $i>1$, set $x_{i+1}=\left\lceil\alpha x_{i}\right\rceil$. We have $\alpha x_{i} \leq x_{i+1}<\alpha x_{i}+1$. Repeatedly using the inequality $x_{i+1}<\alpha x_{i}+1$, we obtain $x_{r}<\alpha^{r-1} x_{1}+\sum_{k=0}^{r-2} \alpha^{k}$. Since we appropriately chose x_{1}, the last inequality yields $x_{r}<\beta x_{1}$. Hence, $\alpha x_{i} \leq x_{j} \leq \beta x_{i}$ for $1 \leq i<j \leq r$, so x_{1}, \ldots, x_{r} must all have different colors. Therefore, the number of colors is at least $r+1$.

Next, we construct a coloring of the positive integers by the elements of \mathbb{Z}_{r+1} such that there do not exist x and y of the same color with $\alpha x \leq y \leq \beta x$. For every nonnegative integer n, integers in the interval $\left[\alpha^{n}, \alpha^{n+1}\right)$ receive color $n(\bmod r+1)$. Within each interval, every pair of integers x and y have the same color, but $y<\alpha x$. For monochromatic x and y from different intervals, with $y>x$, we have $y>\alpha^{r} x \geq \beta x$. Therefore, this $(r+1)$-coloring of the integers has no monochromatic x and y such that $\alpha x \leq y \leq \beta x$.

Now, we continue with the proof of Theorem 1. We have two cases.
Case 1. $b=2 a+1$.
In this case, we have $y=a x+d$ and $z=(2 a+1) x+2 d$. Therefore, $2 y<z<\left(\frac{2 a+1}{a}\right) y$. Using Lemma 1 and noting $a \geq 1$, we obtain

$$
\operatorname{dor}(a, 2 a+1) \leq\left\lceil\log _{2}\left(2+\frac{1}{a}\right)\right\rceil=2
$$

Hence, for all positive integers a, we have $\operatorname{dor}(a, 2 a+1)=2$.
Case 2. $b=2 a-2$.
Since b must be a positive integer, then $a \geq 2$. As mentioned in the introduction, Landman and Robertson [10] proved that $\operatorname{dor}(2,2) \leq 5$. If $a>2$, then $y=a x+d$ and $z=(2 a-2) x+2 d$. So, $\left(\frac{2 a-2}{a}\right) y<z<2 y$. Using Lemma 1 and $a \geq 3$, we obtain

$$
\operatorname{dor}(a, 2 a-2) \leq\left\lceil\log _{2-\frac{2}{a}} 2\right\rceil
$$

We have $2-\frac{2}{a}>\sqrt{2}$ when $a>3$. Therefore, $2 \leq \operatorname{dor}(a, 2 a-2) \leq 3$ for $a=3$ and $\operatorname{dor}(a, 2 a-2)=2$ for $a>3$.

At this stage, we have $\operatorname{dor}(a, b)<24$, whenever $(a, b) \neq(1,1)$. Next, we improve the upper bound using some sophisticated tools from the paper of Fox and Kleitman [4]. For the sake of completeness and clarity, we repeat some of their analysis that applies in our context. We need the following bit of notation.

Definition: Let p be a prime number. For every integer n, let $v_{p}(n)$ denote the largest power of p that divides n. If $n=0$, let $v_{p}(n)=+\infty$.

Notice that $v_{p}\left(m_{1} m_{2}\right)=v_{p}\left(m_{1}\right)+v_{p}\left(m_{2}\right)$ for every prime p, and integers m_{1} and m_{2}. The following straightforward lemma (Lemma 3 in [4]) gives basic properties of the function v_{p}, which we will repeatedly use.

Lemma 2 If m_{1}, m_{2}, m_{3} are integers with $v_{p}\left(m_{1}\right) \leq v_{p}\left(m_{2}\right) \leq v_{p}\left(m_{3}\right)$ and $v_{p}\left(m_{1}\right)<$ $v_{p}\left(m_{1}+m_{2}+m_{3}\right)$, then $v_{p}\left(m_{1}\right)=v_{p}\left(m_{2}\right)$. Furthermore, if $v_{p}\left(m_{3}\right)<v_{p}\left(m_{1}+m_{2}+m_{3}\right)$, then also $v_{p}\left(m_{1}+m_{2}\right)=v_{p}\left(m_{3}\right)$.

Recall that if (x, y, z) is an (a, b)-triple, then (x, y, z) satisfies the equation $(b-2 a) x+$ $2 y-z=0$. Let $t_{x}=b-2 a, t_{y}=2$, and $t_{z}=-1$ denote the coefficients of x, y, and z in this equation, respectively. We have three cases to consider, depending on t_{x}.

Case A. t_{x} is a multiple of 4 .
Clearly, we have $v_{2}\left(t_{x}\right)>v_{2}\left(t_{y}\right)=1>v_{2}\left(t_{z}\right)=0$. Let $S=\left\{v_{2}\left(t_{x}\right), v_{2}\left(t_{y}\right), v_{2}\left(t_{x}\right)-v_{2}\left(t_{y}\right)\right\}$, and let $\Gamma(S)$ be the undirected Cayley graph of the group $(\mathbb{Z},+)$ with generators being the elements of S. Since every vertex of $\Gamma(S)$ has degree $2|S|$, there exists a proper (greedy) $(|S|+1)$-coloring χ^{\prime} of its vertices. This result is "folklore" and we refer the reader to Lemma 2 in [4] for details. Now, define $\chi(n)=\chi^{\prime}\left(v_{2}(n)\right)$, for every $n \in \mathbb{N}$. We claim that in the 4 -coloring χ of \mathbb{N} there are no x, y, and z, all of the same color and $v_{2}\left(t_{x} x+t_{y} y+t_{z} z\right)>$ $\min \left\{v_{2}\left(t_{x} x\right), v_{2}\left(t_{y} y\right), v_{2}\left(t_{z} z\right)\right\}$. Indeed, otherwise (by Lemma 2) we have $v_{2}\left(t_{x} x\right)=v_{2}\left(t_{y} y\right)$; or $v_{2}\left(t_{x} x\right)=v_{2}\left(t_{z} z\right)$; or $v_{2}\left(t_{y} y\right)=v_{2}\left(t_{z} z\right)$. This implies $v_{2}(y)-v_{2}(x)=v_{2}\left(t_{x}\right)-v_{2}\left(t_{y}\right)$; or $v_{2}(z)-v_{2}(x)=v_{2}\left(t_{x}\right)$; or $v_{2}(z)-v_{2}(y)=v_{2}\left(t_{y}\right)$. However, this contradicts that χ^{\prime} is a proper coloring of $\Gamma(S)$ and $v_{2}(x), v_{2}(y)$, and $v_{2}(z)$ are all of the same color.

Since $v_{2}(0)=+\infty$, by definition, and since there are no x, y, z, all of the same color and $v_{2}\left(t_{x} x+t_{y} y+t_{z} z\right)>\min \left\{v_{2}\left(t_{x} x\right), v_{2}\left(t_{y} y\right), v_{2}\left(t_{z} z\right)\right\}$, then, in particular, there are no monochromatic solutions to $t_{x} x+t_{y} y+t_{z} z=0$ (i.e. $\left.(b-2 a) x+2 y-z=0\right)$ in χ. Case A is equivalent to Lemma 4 (with $p=2$) in [4].

Case B. t_{x} has an odd prime factor $p .{ }^{1}$
In this case we have $v_{p}\left(t_{x}\right)>v_{p}\left(t_{y}\right)=v_{p}\left(t_{z}\right)=0$. Let $d=v_{p}\left(t_{x}\right)$. We construct a 6 -coloring χ that is a product of a 2 -coloring χ_{1} and a 3 -coloring χ_{2}. For $n \in \mathbb{N}$ define $\chi_{1}(n) \equiv\left\lfloor\frac{v_{p}(n)}{d}\right\rfloor(\bmod 2)$. The coloring $\chi_{1}(n)$ colors intervals of v_{p} values of length d, open on one side, periodically in 2 colors with period 2 . Let Γ be the undirected Cayley graph on $\mathbb{Z}_{p} \backslash\{0\}$ such that (u, v) is an edge of Γ if and only if $u-2 v \equiv 0(\bmod p)$ or $2 u-v \equiv 0 \quad(\bmod p)$. Since every vertex of Γ has degree 2 , there exists a proper 3 -coloring $\chi_{2}^{\prime}: V(\Gamma) \rightarrow\{0,1,2\}$. For $n \in \mathbb{N}$ define $\chi_{2}(n)=\chi_{2}^{\prime}(m \bmod p)$, where $n=m p^{v_{p}(n)}$. Finally, for $n \in \mathbb{N}$ define $\chi(n)=\left(\chi_{1}(n), \chi_{2}(n)\right)$.

[^0]We claim that in the 6-coloring χ of \mathbb{N} there are no x, y, and z, all of the same color and $v_{p}\left(t_{x} x+t_{y} y+t_{z} z\right)>\max \left\{v_{p}\left(t_{x} x\right), v_{p}\left(t_{y} y\right), v_{p}\left(t_{z} z\right)\right\}$. Indeed, otherwise (by Lemma 2) we have $v_{p}\left(t_{x} x\right)=v_{p}\left(t_{y} y\right) \leq v_{p}\left(t_{z} z\right)$; or $v_{p}\left(t_{x} x\right)=v_{p}\left(t_{z} z\right) \leq v_{p}\left(t_{y} y\right)$; or $v_{p}\left(t_{y} y\right)=v_{p}\left(t_{z} z\right) \leq v_{p}\left(t_{x} x\right)$. If $v_{p}\left(t_{x} x\right)=v_{p}\left(t_{y} y\right)$, then $d+v_{p}(x)=v_{p}(y)$, hence, $\chi_{1}(x) \neq \chi_{1}(y)$, which contradicts $\chi(x)=\chi(y)$. If $v_{p}\left(t_{x} x\right)=v_{p}\left(t_{z} z\right)$, then $d+v_{p}(x)=v_{p}(z)$, hence, $\chi_{1}(x) \neq \chi_{1}(z)$, which contradicts $\chi(x)=\chi(z)$. So, assume that $v_{p}\left(t_{y} y\right)=v_{p}\left(t_{z} z\right) \leq v_{p}\left(t_{x} x\right)$. Recalling our coefficients, we obtain $v_{p}(y)=v_{p}(z) \leq d+v_{p}(x)$. By (the second part of) Lemma 2, we also have $v_{p}(2 y-z)=d+v_{p}(x)$. Let e denote the common value of $v_{p}(y)$ and $v_{p}(z)$. Let $y=y^{\prime} p^{e}$ and $z=z^{\prime} p^{e}$. Since $\chi_{2}(y)=\chi_{2}(z)$, then $\chi_{2}^{\prime}\left(y^{\prime} \bmod p\right)=\chi_{2}^{\prime}\left(z^{\prime} \bmod p\right)$, hence, $2 y^{\prime}-z^{\prime} \not \equiv 0$ $(\bmod p)$. However, this implies $v_{p}(2 y-z)=e$, so $v_{p}(y)=v_{p}(z)=e=d+v_{p}(x)$. It follows from here that $\chi_{1}(x)$ is different from $\chi_{1}(y)$ and $\chi_{1}(z)$, which contradicts $\chi(x)=\chi(y)=\chi(z)$.

Since $v_{p}(0)=+\infty$ and there are no x, y, z, all of the same color and $v_{p}\left(t_{x} x+t_{y} y+t_{z} z\right)>$ $\max \left\{v_{p}\left(t_{x} x\right), v_{p}\left(t_{y} y\right), v_{p}\left(t_{z} z\right)\right\}$, then, in particular, there are no monochromatic solutions to $t_{x} x+t_{y} y+t_{z} z=0$ (i.e. $\left.(b-2 a) x+2 y-z=0\right)$ in χ. Case B is essentially equivalent to Lemma 6 (with $s=1$) in [4].

Notice that one can define χ_{2} to be a 2-coloring in the proof above, as long as the order of $2 \bmod p$ is even.

Case C. $t_{x} \in\{-2,-1,1,2\}$
Case $t_{x}=-1$ is taken care of in [10], as mentioned before, while cases $t_{x}=1$ and $t_{x}=-2$ correspond to Cases 1 and 2 , respectively. The only remaining case is $t_{x}=2 .^{2}$ In this case, we have $y=a x+d$ and $z=(2 a+2) x+2 d$. Therefore, $2 y<z<4 y$. Using Lemma 1, we obtain $\operatorname{dor}(a, 2 a+2) \leq\left\lceil\log _{2} 4\right\rceil=2$. Hence, for all positive integers a, we have $\operatorname{dor}(a, 2 a+2)=2$.

3. Concluding remarks

As a consequence of our proof, we obtained

$$
\begin{aligned}
& \operatorname{dor}(1,3)=2, \operatorname{dor}(2,5)=2, \operatorname{dor}(2,6)=2 \\
& \operatorname{dor}(3,3) \leq 3, \operatorname{dor}(3,4) \leq 3, \operatorname{dor}(3,8)=2
\end{aligned}
$$

These results improve the corresponding entries in the table provided by Landman and Robertson [10] for small values of a and b.

After submission, we learned that Frantzikinakis, Landman, and Robertson [5] independently showed that $\operatorname{dor}(a, b)$ is finite unless $(a, b)=(1,1)$.

[^1]
References

[1] V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden's and Szemerédi's theorems, J. Amer. Math. Soc. 9 (1996) 725-753.
[2] T. C. Brown, R. L. Graham, and B. M. Landman, On the set of common differences in van der Waerden's theorem on arithmetic progressions, Canad. Math. Bull. 42 (1999), 25-36.
[3] T. C. Brown, B. M. Landman, and M. Mishna, Monochromatic homothetic copies of $\{1,1+s, 1+s+t\}$, Canadian Math. Bull. 40 (1997), 149-157.
[4] J. Fox and D. Kleitman, On Rado's Boundedness Conjecture, Journal of Combinatorial Theory, Series A, accepted.
[5] N. Frantzikinakis, B. Landman, A. Robertson, On the degree of regularity of generalized van der Waerden triples, Advances in Applied Math., accepted.
[6] H. Furstenberg, Recurrences in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, Princeton, 1981.
[7] T. Gowers, A new proof of Szemerédi's theorem, Geometric and Functional Analysis, 11 (2001) 465-588.
[8] R. L. Graham, B. L. Rothschild, and J. Spencer, Ramsey Theory. John Wiley \& Sons Inc., New York, 1990.
[9] N. Hindman, I. Leader, and D. Strauss, Open problems in partition regularity, Combinatorics, Probability, and Computing, 12 (2003) 571-583.
[10] B. M. Landman and A. Robertson, On generalized van der Waerden triples, Discrete Mathematics 256 (2002) 279-290.
[11] B. M. Landman and A. Robertson, Ramsey theory on the integers. Student Mathematical Library, 24. American Mathematical Society, Providence, RI, 2004. (Research Problem 5.4, p. 159.)
[12] R. Rado, Studien zur Kombinatorik, Math. Zeit. 36 (1933) 242-280.
[13] I. Schur, Uber die Kongruenze $x^{m}+y^{m} \equiv z^{m}(\bmod p)$, Jber. Deutsch. Math.-Verein. 25 (1916), 114-117.
[14] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199-245.
[15] B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk. 15 (1927), 212-216.

[^0]: ${ }^{1}$ Note that Cases A and B overlap. However, it is only important that Cases A, B, and C cover all the possibilities.

[^1]: ${ }^{2}$ The equation is not regular in this case, however this possibility is not covered by Cases A and B of the improved upper bound analysis.

