PYTHAGOREAN PRIMES AND PALINDROMIC CONTINUED FRACTIONS

Arthur T. Benjamin
Department of Mathematics, Harvey Mudd College, Claremont, CA 91711
benjamin@math.hmc.edu
Doron Zeilberger
Department of Mathematics, Rutgers University, Piscataway, NJ 08854-8019
zeilberg@math.rutgers.edu

Received: 4/12/05, Revised: 11/23/05, Accepted: 11/29/05, Published: 12/9/05

Abstract

In this note, we prove that every prime of the form $4 m+1$ is the sum of the squares of two positive integers in a unique way. Our proof is based on elementary combinatorial properties of continued fractions. It uses an idea by Henry J. S. Smith ([3], [5], and [6]) most recently described in [4] (which provides a new proof of uniqueness and reprints Smith's paper in the original Latin). Smith's proof makes heavy use of nontrivial properties of determinants. Our purely combinatorial proof is self-contained and elementary.

For $n \geq 1$ and positive integers a_{0}, \ldots, a_{n}, let $\left[a_{0}, \ldots, a_{n}\right]$ denote the finite continued fraction

$$
\begin{equation*}
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots \cdot+\frac{1}{a_{n}}}}}, \tag{1}
\end{equation*}
$$

which simplifies to a unique rational number $r / s>1$ in lowest terms. Conversely, for every rational number $r / s>1$, there is a unique continued fraction $\left[a_{0}, \ldots, a_{n}\right]=r / s$ where $a_{0} \geq 1, \ldots a_{n-1} \geq 1$, and $a_{n} \geq 2$. (It happens that r / s has one other continued fraction representation, namely $\left[a_{0}, \ldots, a_{n-1}, a_{n}-1,1\right]$, but we will not use this.)

Continued fractions have a simple combinatorial interpretation, which we describe here. For positive numbers a_{0}, \ldots, a_{n}, define the continuant $K\left(a_{0}, \ldots, a_{n}\right)$ to be the number of ways to tile a strip of length n with dominoes (of length two) and stackable squares (of length one). For $1 \leq i \leq n$, if cell i is covered by a square, then the number of squares that may be
stacked on the i th cell is at most a_{i}; if cell i is covered by a domino, then nothing is stacked on top of that domino.

For example, $K(3,7,15)=333$ since a strip of length three can be tiled as "dominosquare" in 15 ways (by choosing how many squares to stack on the third cell), as "squaredomino" in 3 ways (by choosing how many squares to stack on the first cell), or as "square-square-square" in $3 \times 7 \times 15=315$ ways (by choosing how many squares to stack on each cell). Thus for nonnegative integers a and b,

$$
\begin{equation*}
K(a)=a, \quad K(a, b)=a b+1 . \tag{2}
\end{equation*}
$$

For example, $K(7,15)=106$. For the empty set, we define $K()=1$. For $n \geq 2$,

$$
\begin{equation*}
K\left(a_{0}, \ldots, a_{n}\right)=a_{n} K\left(a_{0}, \ldots, a_{n-1}\right)+K\left(a_{0}, \ldots, a_{n-2}\right), \tag{3}
\end{equation*}
$$

since the first term counts tilings that end with a stack of squares and the second term counts those that end with a domino. More generally, observe that for $n \geq 1$ and $0 \leq \ell \leq n-1$,

$$
\begin{equation*}
K\left(a_{0}, \ldots, a_{n}\right)=K\left(a_{0}, \ldots, a_{\ell}\right) K\left(a_{\ell+1}, \ldots, a_{n}\right)+K\left(a_{0}, \ldots, a_{\ell-1}\right) K\left(a_{\ell+2}, \ldots, a_{n}\right) \tag{4}
\end{equation*}
$$

The first summand counts tilings that do not have a domino covering cells ℓ and $\ell+1$, while the second summand counts those that do.

Finally, we observe that for any nonnegative a_{0}, \ldots, a_{n},

$$
\begin{equation*}
K\left(a_{n}, \ldots, a_{0}\right)=K\left(a_{0}, \ldots, a_{n}\right) \tag{5}
\end{equation*}
$$

since any length n tiling that satisfies the conditions on the right (at most a_{i} squares stacked on cell i) can be reversed to satisfy the tiling conditions on the left (at most a_{n-i} squares stacked on cell i), and vice versa.

Using the initial conditions and recurrence in equations (2) and (3), it follows that

$$
\begin{equation*}
\left[a_{0}, \ldots, a_{n}\right]=\frac{K\left(a_{0}, \ldots, a_{n}\right)}{K\left(a_{1}, \ldots, a_{n}\right)} \tag{6}
\end{equation*}
$$

in lowest terms. (See [1], [2] for more details.) That is, if the continued fraction $\left[a_{0}, \ldots, a_{n}\right]=$ $\frac{p_{n}}{q_{n}}$, in lowest terms, then $p_{n}=K\left(a_{0}, \ldots, a_{n}\right)$ and $q_{n}=K\left(a_{1}, \ldots, a_{n}\right)$. Thus, for example, the continued fraction $[3,7,15]=K(3,7,15) / K(7,15)=333 / 106$.

Now suppose that $p=4 m+1$ is prime. We shall consider the continued fraction expansions of the numbers $p / 1, p / 2, \ldots, p /(2 m)$. For each j between 1 and $2 m$, we have $p / j>2$ and is in lowest terms. Thus $p / j=\left[a_{0}, \ldots, a_{n}\right]$ where $a_{0} \geq 2$ and $a_{n} \geq 2$. By equations (6) and (5),

$$
p=K\left(a_{0}, \ldots, a_{n}\right)=K\left(a_{n}, \ldots, a_{0}\right)
$$

Thus $\left[a_{n}, \ldots, a_{0}\right]$ also has numerator p, and since $a_{n} \geq 2,\left[a_{n}, \ldots, a_{0}\right]=p / i$ for some i between 1 and $2 m$. Thus each fraction p / j can be paired up with its "reversed" fraction p / i.

Now $p / 1=[p]$ is palindromic; it is its own reversal. Thus since $2 m$ is even, there must be at least one other fraction p / j^{*} that is palindromic. That is, for some j^{*} between 2 and $2 m$,

$$
\left[a_{0}, \ldots, a_{n^{*}}\right]=p / j^{*}=\left[a_{n^{*}}, \ldots, a_{0}\right] .
$$

For example, when $p=5,5 / 1=[5]$ and $5 / 2=[2,2]$ are both palindromic. When $p=13$, $13 / 1=[13], 13 / 2=[6,2], 13 / 3=[4,3], 13 / 4=[3,4], 13 / 5=[2,1,1,2], 13 / 6=[2,6]$; so $13 / 1$ and $13 / 5$ are palindromic.

We claim that n^{*} must be even. For suppose, to the contrary, that $n^{*}=2 \ell+1$, for some $\ell \geq 0$. Then $p / j^{*}=\left[a_{0}, \ldots, a_{\ell}, a_{\ell+1}, a_{\ell}, \ldots, a_{0}\right]$. Thus by applying equations (6), (4), and (5), we have

$$
\begin{aligned}
p & =K\left(a_{0}, \ldots, a_{\ell}, a_{\ell+1}, a_{\ell}, \ldots, a_{0}\right) \\
& =K\left(a_{0}, \ldots, a_{\ell}\right) K\left(a_{\ell+1}, \ldots, a_{0}\right)+K\left(a_{0}, \ldots, a_{\ell-1}\right) K\left(a_{\ell}, \ldots, a_{0}\right) \\
& =K\left(a_{0}, \ldots, a_{\ell}\right)\left[\left(K\left(a_{0}, \ldots, a_{\ell+1}\right)+K\left(a_{0}, \ldots, a_{\ell-1}\right)\right] .\right.
\end{aligned}
$$

But then p is composite (both factors are at least two, since $a_{0} \geq 2$), which is a contradiction.
Thus $n^{*}=2 \ell$ for some $\ell \geq 1$. Consequently, $p / j^{*}=\left[a_{0}, \ldots, a_{l}, a_{l}, \ldots, a_{0}\right]$, and

$$
\begin{aligned}
p & =K\left(a_{0}, \ldots, a_{\ell}, a_{\ell}, \ldots, a_{0}\right) \\
& =K\left(a_{0}, \ldots, a_{\ell}\right) K\left(a_{\ell}, \ldots, a_{0}\right)+K\left(a_{0}, \ldots, a_{\ell-1}\right) K\left(a_{\ell-1}, \ldots, a_{0}\right) \\
& =\left(K\left(a_{0}, \ldots, a_{\ell}\right)\right)^{2}+\left(K\left(a_{0}, \ldots, a_{\ell-1}\right)\right)^{2}
\end{aligned}
$$

is the sum of two squares, as desired.
For example, when $p=13$, the palindromic $13 / 5$ leads to

$$
13=K(2,1,1,2)=K(2,1) K(1,2)+K(2) K(2)=3^{2}+2^{2} .
$$

For a larger example, when $p=1069$, the palindromic $1069 / 249=[4,3,2,2,3,4]$ leads to

$$
1069=K(4,3,2,2,3,4)=(K(4,3,2))^{2}+(K(4,3))^{2}=30^{2}+13^{2} .
$$

Following the strategy in [4], we combinatorially prove uniqueness of the sum of squares using one more elementary fact about continued fractions: If $\left[a_{0}, \ldots, a_{n}\right]=p_{n} / q_{n}$ in lowest terms, then for $n \geq 2$,

$$
\frac{p_{n}}{q_{n}}-\frac{p_{n-1}}{q_{n-1}}=\frac{(-1)^{n}}{q_{n} q_{n-1}} .
$$

Equivalently, $p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n}$, or by equation (6), for $n \geq 2$,

$$
\begin{equation*}
K\left(a_{0}, \ldots, a_{n}\right) K\left(a_{1}, \ldots, a_{n-1}\right)-K\left(a_{0}, \ldots, a_{n-1}\right) K\left(a_{1}, \ldots, a_{n}\right)=(-1)^{n} \tag{7}
\end{equation*}
$$

For a direct combinatorial proof of equation (7), see [1] or [2].

Now suppose that $p=r^{2}+s^{2}$ and $p=u^{2}+v^{2}$ for positive integers $r>s$ and $u>v$. Since p is prime, $\operatorname{gcd}(r, s)=1=\operatorname{gcd}(u, v)$. Thus r / s and u / v are fractions in lowest terms, and there exist unique positive integers r_{0}, \ldots, r_{t} and u_{0}, \ldots, u_{w} such that $r / s=\left[r_{0}, \ldots, r_{t}\right]$ and $u / v=\left[u_{0}, \ldots, u_{w}\right]$, where $r_{t} \geq 2$ and $u_{w} \geq 2$.

Hence, by equation (6),

$$
\frac{r}{s}=\frac{K\left(r_{0}, \ldots, r_{t}\right)}{K\left(r_{1}, \ldots, r_{t}\right)}
$$

in lowest terms. Now by equations (4) and (5),

$$
p=r^{2}+s^{2}=K\left(r_{t}, \ldots, r_{0}\right) K\left(r_{0}, \ldots, r_{t}\right)+K\left(r_{t}, \ldots, r_{1}\right) K\left(r_{1}, \ldots, r_{t}\right)=K\left(r_{t}, \ldots, r_{0}, r_{0}, \ldots, r_{t}\right) .
$$

Now let $x=K\left(r_{t}, \ldots, r_{0}, r_{0}, \ldots, r_{t-1}\right)$. By equation (3),

$$
p=K\left(r_{t}, \ldots, r_{0}, r_{0}, \ldots, r_{t}\right)=x r_{t}+K\left(r_{t}, \ldots, r_{0}, r_{0}, \ldots, r_{t-2}\right) \geq 2 x+1
$$

Thus $2 \leq x \leq(p-1) / 2$. Also, by equation (7),

$$
\begin{aligned}
K\left(r_{t}, \ldots, r_{0}, r_{0}, \ldots, r_{t}\right) K\left(r_{t-1}, \ldots,\right. & r_{0}, \\
& \left.r_{0}, \ldots, r_{t-1}\right) \\
& -K\left(r_{t}, \ldots, r_{0}, r_{0}, \ldots, r_{t-1}\right) K\left(r_{t-1}, \ldots, r_{0}, r_{0}, \ldots, r_{t}\right)
\end{aligned}
$$

equals $(-1)^{2 t}=1$. Hence, $p K\left(r_{t-1}, \ldots, r_{0}, r_{0}, \ldots, r_{t-1}\right)-x^{2}=1$, and therefore x satisfies $x^{2} \equiv-1(\bmod p)$.

By the same argument, we also have $u / v=K\left(u_{0} \ldots, u_{w}\right) / K\left(u_{1} \ldots, u_{w}\right)$ in lowest terms, $p=K\left[u_{w}, \ldots, u_{0}, u_{0}, \ldots, u_{w}\right]$, and $y=K\left(u_{w}, \ldots, u_{0}, u_{0}, \ldots, u_{w-1}\right)$ satisfies $2 \leq y \leq(p-$ $1) / 2$ and $y^{2} \equiv-1(\bmod p)$.

Thus $x^{2} \equiv y^{2}(\bmod p)$, and so p divides $x^{2}-y^{2}=(x+y)(x-y)$. Since p is prime it follows that $x \equiv y$ or $x \equiv-y(\bmod p)$. But since x and y are both between 2 and $(p-1) / 2$, we must have $x=y$. But then, by equation (6), the continued fraction

$$
\begin{aligned}
{\left[r_{t}, \ldots, r_{0}, r_{0}, \ldots, r_{t}\right] } & =\frac{K\left(r_{t}, \ldots, r_{0}, r_{0}, \ldots r_{t}\right)}{K\left(r_{t-1}, \ldots, r_{0}, r_{0}, \ldots r_{t}\right)}=\frac{p}{x}=\frac{p}{y} \\
& =\frac{K\left(u_{w}, \ldots, u_{0}, u_{0}, \ldots u_{w}\right)}{K\left(u_{w-1}, \ldots, u_{0}, u_{0}, \ldots u_{w}\right)}=\left[u_{w}, \ldots, u_{0}, u_{0}, \ldots, u_{w}\right]
\end{aligned}
$$

and by the uniqueness of finite continued fraction representations (with $r_{t} \geq 2$ and $u_{w} \geq 2$), we must have $t=w$ and $r_{i}=u_{i}$ for all $1 \leq i \leq t$. Consequently,

$$
\frac{r}{s}=\left[r_{0}, \ldots, r_{t}\right]=\left[u_{0}, \ldots, u_{w}\right]=\frac{u}{v}
$$

in lowest terms. Thus $r=u$ and $s=v$ as desired.
In summary, every prime number $p=4 m+1$ is the unique sum of two squares as follows. Let x be the unique solution to $x^{2} \equiv-1(\bmod p)$, where $2 \leq x \leq 2 m$. [By Wilson's

Theorem, x will be the smallest positive integer congruent to $\pm(2 m)!(\bmod p)$. We note that if a is any quadratic nonresidue of p, then x can be efficiently calculated. From Euler's criterion, $a^{(p-1) / 2} \equiv-1(\bmod p)$. Thus we can set x equal to the smallest positive integer congruent to $\left.\pm a^{(p-1) / 4}(\bmod p).\right]$ Then p / x has palindromic continued fraction representation $\left[r_{t}, \ldots, r_{0}, r_{0}, \ldots, r_{t}\right]$, and $\left[r_{0}, \ldots, r_{t}\right]=r / s$, where $r^{2}+s^{2}=p$.

References

[1] Arthur T. Benjamin and Jennifer J. Quinn, Proofs that Really Count: The Art of Combinatorial Proof, MAA, Washington, DC, 2003.
[2] Arthur T. Benjamin, Jennifer J. Quinn, and Francis Edward Su, Counting on Continued Fractions, Mathematics Magazine, Vol 73, No. 2, pp. 98-104, 2000.
[3] G. Chrystal, Algebra: an elementary text-book for the higher classes of secondary schools and for colleges, Part II, page 499, reprinted by Chelsea, N.Y., N.Y., 1964.
[4] F. W. Clarke, W. N. Everitt, L. L. Littlejohn, and S. J. R. Vorster, H. J. S. Smith and the Fermat Two Squares Theorem, Amer. Math. Monthly 106 (1999) 652-665.
[5] L. E. Dickson, History of the Theory of Numbers, Vol. II, American Mathematical Society, Providence, pp. 240-241.
[6] Henry J. S. Smith, De Compositione Numerorum Primorum 4 $4+1$ Ex Duobus Quardatis, Crelle's Journal V. 50 (1855), 91-92.

