TWO q-IDENTITIES FROM THE THEORY OF FOUNTAINS AND HISTOGRAMS PROVED WITH A TRI-DIAGONAL DETERMINANT

Helmut Prodinger ${ }^{1}$
The John Knopfmacher Centre for Applicable Analysis and Number Theory, School of Mathematics, University of the Witwatersrand, P. O. Wits, 2050 Johannesburg, South Africa
helmut@maths.wits.ac.za

Received: 8/27/04, Accepted: 2/3/05, Published: 2/8/05

Abstract

Two identities required in the theory of fountains and histograms are easily proved by expanding a tri-diagonal determinant (reminiscent of Schur's) in two different ways.

We consider the following infinite tri-diagonal determinant (elements not displayed are zero)

$$
\operatorname{Schur}(x):=\left|\begin{array}{cccccccc}
1 & \overbrace{0 \ldots 0}^{p-2} & & & x q^{1} & & & \ldots \\
-1 & 1 & & 0 \ldots 0 & & x q^{2} & & \ldots \\
& -1 & 1 & & 0 \ldots 0 & & & \\
& & 1 & 1 & & 0 \ldots 0 & & \\
& & & \ddots & \ddots & \ddots & & \\
& & & & & & &
\end{array}\right| .
$$

Schur, when providing his proof of the Rogers-Ramanujan identities in 1917 [3] used a similar determinant; since I am advocating that Schur's work deserves to be better known, I use the name $\operatorname{Schur}(x)$. This short note shows that two identities that were required in the study of fountains and histograms [1] are most easily proved by expanding the determinant in two different ways.

Expanding the determinant with respect to the first column ("top-recursion") we get

$$
\operatorname{Schur}(x)=\operatorname{Schur}(x q)+(-1)^{p} x q \operatorname{Schur}\left(x q^{p}\right) .
$$

[^0]Setting

$$
\operatorname{Schur}(x)=\sum_{n \geq 0} a_{n} x^{n}
$$

we get, upon comparing coefficients,

$$
a_{n}=q^{n} a_{n}+(-1)^{p} q^{1+p(n-1)} a_{n-1}=\frac{(-1)^{p} q^{1+p(n-1)}}{1-q^{n}}
$$

Since $a_{0}=1$, iteration leads to

$$
a_{n}=\frac{q^{n+p\binom{n}{2}}(-1)^{p n}}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n}\right)}
$$

Therefore

$$
\begin{aligned}
\operatorname{Schur}\left((-q)^{p-1}\right) & =\sum_{n \geq 0} \frac{(-1)^{n} q^{n+p\binom{n}{2}}}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n}\right)} q^{(p-1) n} \\
& =\sum_{n \geq 0} \frac{(-1)^{n} q^{p\binom{n+1}{2}}}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n}\right)}
\end{aligned}
$$

Now consider the finite determinants $\operatorname{Schur}_{n}(x)$, obtained from $\operatorname{Schur}(x)$ by taking the first n rows and columns. Expanding this determinant with respect to the last row ("bottomrecursion") we get

$$
\operatorname{Schur}_{n}(x)=\operatorname{Schur}_{n-1}(x)+(-1)^{p} x q^{n-p+1} \operatorname{Schur}_{n-p}(x)
$$

In particular,

$$
\operatorname{Schur}_{n}\left((-q)^{p-1}\right)=\operatorname{Schur}_{n-1}\left((-q)^{p-1}\right)-q^{n} \operatorname{Schur}_{n-p}\left((-q)^{p-1}\right)
$$

and $\operatorname{Schur}_{j}\left((-q)^{p-1}\right)=1$ for $j=0, \ldots, p-1$. The quantities $\operatorname{Schur}_{n}\left((-q)^{p-1}\right)$ were called E_{n} in [1] (with matching initial conditions $E_{j}=1$ for $j=0, \ldots, p-1$). Whence we proved

$$
\lim _{m \rightarrow \infty} E_{m}=\sum_{n \geq 0} \frac{(-1)^{n} q^{p\binom{n+1}{2}}}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n}\right)}
$$

Merlini and Sprugnoli had asked for a direct proof, which was given in [2], by showing an explicit form for E_{m}. The present proof avoids this and is thus simpler.

A second (similar) formula was also requested, namely

$$
\lim _{m \rightarrow \infty} D_{m}=\sum_{n \geq 0} \frac{(-1)^{n} q^{n+p\binom{n}{2}}}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n}\right)}
$$

for $D_{n}=D_{n-1}-q^{n} D_{n-p}$ and (different) initial values $D_{j}=1-\sum_{i=1}^{j} q^{i}$ for $j=0, \ldots, p-1$. This follows immediately by setting $D_{n}=\operatorname{Schur}_{n+p-1}\left((-1)^{p-1}\right)$.

References

[1] D. Merlini and R. Sprugnoli, Fountains and histograms, J. Algorithms 44 (2002), no. 1, 159-176.
[2] P. Paule and H. Prodinger, Fountains, histograms, and q-identities, Discrete Mathematics and Theoretical Computer Science 6 (2003), 101-106.
[3] I. Schur. Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche. S.-B. Preuss. Akad. Wiss. Phys.-Math. Kl., 1917, 302-321, reprinted in I. Schur, Gesammelte Abhandlungen, vol. 2, pp. 117-136, Springer, 1973.

[^0]: ${ }^{1}$ Dedicated to Kathy Driver for six years of loyal support.
 Thanks are due to a friendly referee who pointed out some trouble with signs.

