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Abstract

The multiplicative acceleration of the 2-dimensional Selmer algorithm is considered. Its
behavior is more or less unknown and no general result on convergence is known. In this
paper we show that periodic expansions do in fact converge and the coordinates of the
limit point are rational functions of the largest eigenvalue of the periodicity matrix. Some
comparisons are made with the Jacobi-Perron algorithm (Remark1) and the triangle sequence
(Section 3).

Keywords: Multidimensional continued fractions, periodic expansions
Mathematics Subject Classification (2000): 11K55, 11J13, 11J70, 28D05.

1. Introduction

Recently a renewed interest on multidimensional continued fractions has been observed. A
survey of recent literature is given in Schweiger ([5],[6]).

Special attention has been paid to 2-dimensional algorithms. The most well known
example is the Jacobi-Perron algorithm. Choose integers b0, b1, b0 such that b0 ≥ b1 >
0, b0 ≥ b2 > 0 and define

k1 := [
b2

b1
], k2 := [

b0

b1
]

and
κ(b0, b1, b2) := (b1, b2 − k1b1, b0 − k2b1).

This can be transformed into a 2-dimensional map as follows. We use the projection

π(b0, b1, b2) :=

(
b1

b0
,
b2

b0

)
.
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Then there is a unique map K such that π ◦ κ = K ◦ π. The map K is given piecewise on a
suitable subset of the unit square as

K(x1, x2) = (
x2

x1
− k1,

1

x1
− k2)

and is therefore an obvious generalization of the map connected with regular continued
fractions.

Selmer [7] proposed the following algorithm. Choose integers b0 ≥ b1 ≥ b2 > 0 and define

σ(b0, b1, b2) := (b0 − b2, b1, b2) =: (c0, c1, c2).

Then there is a permutation π such that cπ0 ≥ cπ1 ≥ cπ2. We use again the projection

π(b0, b1, b2) := (
b1

b0
,
b2

b0
).

Then we arrive at the following map on B2 := {(x1, x2) : 0 ≤ x2 ≤ x1 ≤ 1}.

S(x1, x2) = (
x1

1 − x2
,

x2

1 − x2
), 0 < x1 < 1, x1 + x2 < 1

S(x1, x2) = (
1 − x2

x1
,
x2

x1
), 1 ≤ x1 + x2, 0 ≤ x2 ≤

1

2

S(x1, x2) = (
x2

x1
,
1 − x2

x1
), 1 ≤ x1 + x2,

1

2
≤ x2 ≤ 1.

A remarkable property about the Selmer algorithm is the fact that for almost all w ∈ B2

there is an n = n(w) such that for all m ≥ n, Smw ∈ {(x1, x2) ∈ B2 : 1 ≤ x1 + x2} (see [5]).

It is natural to consider the multiplicative acceleration of the algorithm, i.e., we perform
in the first step

τ(b0, b1, b2) := (b0 − kb2, b1, b2), k : [
b0

b1
], k ≥ 1.

The second step is to reorder again. In a similar way as before this leads to the map

T (x1, x2) = (
x2

x1
,
1 − kx2

x1
), k(x) := [

1

x2
].

The time-1-partition has the cells

B(k) := {x ∈ B2 : k(x) = k} = {x ∈ B2 :
1

k + 1
< x2 ≤

1

k
}.

Then we see that
TB(k) = {x ∈ B2 : kx1 + x2 ≥ 1}.

Therefore no cylinder is full and TB(k) is not a union of cylinders of rank 1.
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2. Periodic Expansions for Multiplicative Selmer Algorithm

Let k1, k2, ... be a sequence of natural numbers. Then we define

B(−2)
0 = B(−2)

1 := 0, B(−2)
2 := 1

B(−1)
0 := 1, B(−1)

1 = B(−1)
2 := 0

B(0)
0 = B(0)

2 := 0, B(0)
1 := 1

and by recursion
B(s+1)

i := ks+1B
(s−1)
i + B(s−2)

i , i = 0, 1, 2, s ≥ 0.

If we introduce matrices

β(k) :=




0 k 1
1 0 0
0 1 0





then we see that the relations

β(s)(k1, ..., ks) := β(k1)...β(ks) =




B(s−1)

0 B(s)
0 B(s−2)

0

B(s−1)
1 B(s)

1 B(s−2)
1

B(s−1)
2 B(s)

2 B(s−2)
2





hold. If y = T sx and ki = k(T i−1x), 1 ≤ i ≤ s, then we find that

xi =
B(s−1)

i + y1B
(s)
i + y2B

(s−2)
i

B(s−1)
0 + y1B

(s)
0 + y2B

(s−2)
0

, i = 1, 2.

Theorem 1 Assume that the algorithm of x = (x1, x2) eventually becomes periodic with
period length p. Then x1 and x2 are rational functions in ρ, where ρ denotes the largest
eigenvalue of the characteristic polynomial of the periodicity matrix β(p). Therefore x1 and
x2 belong to a number field of degree ≤ 3.

Proof. Clearly, we can assume that the expansion is purely periodic with period length p.
Let

Γ := β(p)(k1, ..., kp) =:




B(p−1)

0 B(p)
0 B(p−2)

0

B(p−1)
1 B(p)

1 B(p−2)
1

B(p−1)
2 B(p)

2 B(p−2)
2



 .

Note that

Γk =




B(kp−1)

0 B(kp)
0 B(kp−2)

0

B(kp−1)
1 B(kp)

1 B(kp−2)
1

B(kp−1)
2 B(kp)

2 B(kp−2)
2



 .
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Then the characteristic polynomial of Γ is given as

χΓ(t) := det(t1 − Γ) = t3 − At2 + Bt − 1.

If α, β, ρ are the eigenvalues we order them in a way such that |α| ≤ |β| < ρ. The Frobenius-
Perron theorem says that 1 < ρ. Therefore min(|α|, |β|) < 1. Since αβρ = 1 the case
α = β cannot occur. If the polynomial χΓ(t) has a multiple root then it would be reducible.
Therefore if χΓ(t) = (x−β)2(x−ρ) then ρ would be a rational number which satisfies |ρ| = 1,
a contradiction. !

The difficulty for the present algorithm has two reasons. There is no convergence result
known and max(B(s)

0 , B(s)−1
0 ) can be B(s)

0 or B(s−1)
0 .

We first note that

B(p−1)
0 + B(p)

1 + B(p−2)
2 = A = ρ + β + α

and
ρβα = 1.

The Cayley-Hamilton Theorem (which was proved also by Perron in [4]) implies that

Γ3 − AΓ2 + BΓ− 1 = 0.

We multiply this equation with Γkβ(k1, ..., kj) and see that for the entries of the matrices
the relations

B((3+k)p+j)
i − AB((2+k)p+j)

i + BB((1+k)p+j)
i − B(kp+j)

i = 0, 0 ≤ i ≤ 2, 0 ≤ j < p

hold. The difference equation

a((3 + k)p) − Aa((2 + k)p) + Ba((1 + k)p) − a(kp) = 0

has the general solution
a(kp) = dρk + bβk + aαk.

Remember that the case α = β does not occur in our situation. The numbers a, b, d are
uniquely defined by the initial conditions

a(0) = d + b + a

a(p) = dρ + bβ + aα

a(2p) = dρ2 + bβ2 + aα2.

Therefore we find

B(kp+j)
i = d(i, j)ρk + b(i, j)βk + a(i, j)αk.
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Note further that from the recursion relations

B(s+2)
i = ks+2B

(s)
i + B(s−1)

i

B(s+3)
i = ks+3B

(s+1)
i + B(s)

i

follows that if B(s)
i & ρk then B(s+j)

i & ρk, j ≥ 2. Therefore, if d(i, j) '= 0 for some j then
d(i, j) '= 0 for all j, 0 ≤ j < p.

Now we know that

B(kp−1)
0 + B(pk)

1 + B(kp−2)
2 = ρk + βk + αk.

As noted before if y = T sx then we find that

xi =
B(s−1)

i + y1B
(s)
i + y2B

(s−2)
i

B(s−1)
0 + y1B

(s)
0 + y2B

(s−2)
0

, i = 1, 2.

But y = T sx ∈ {x ∈ B2 : 1
ks+1+1 < x2 ≤ 1

ks+1
}.

Therefore
1

ks+1 + 1
≤ B(s−1)

i + B(s)
i + B(s−2)

i

B(s−1)
0 + B(s)

0 + B(s−2)
0

≤ ks+1 + 1, i = 1, 2.

If we take M = max(k1, ..., kp) + 1 then we obtain

1

M
≤ B(s−1)

i + B(s)
i + B(s−2)

i

B(s−1)
0 + B(s)

0 + B(s−2)
0

≤ M, i = 1, 2.

This implies that d(i, j) '= 0 for all i = 1, 2 and j =, 1, ..., p − 1.

From this we imply that

lim
k→∞

B(kp)
1

B(kp)
0

=
d(1, 0)

d(0, 0)
=: z1, lim

k→∞

B(kp)
2

B(kp)
0

=
d(2, 0)

d(0, 0)
=: z2

exist. The equation

Γk




1
x1

x2



 = λk




1
x1

x2





shows that
B(kp−1)

0 + x1B
(pk)
0 + x2B

(kp−2)
0 = λk

for some positive eigenvalue of the periodicity matrix Γ. Since B(kp−1)
0 ∼ ρk we see that

λ = ρ. Observe that z = (z1, z2) is a periodic point with the same expansion. Hence z = x.
We can calculate x1 and x2 as rational functions in ρ from the equation

Γ




1
x1

x2



 = ρ




1
x1

x2.
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Remark 1 It is well known that a similar theorem holds true for the Jacobi-Perron algorithm
([4]). But there are some important differences.

(1) The characteristic polynomial is irreducible for the Jacobi-Perron algorithm but in our
case the characteristic polynomial can be reducible. Let p = 1 and k1 = k. Then χΓ(t) =
t3 −kt− 1. For k = 2 we see that β = −1. Note further that for k ≥ 3 we find β < −1. Here
(x1, x2) = (1

ρ ,
1
ρ2 ).

(2) The Jacobi-Perron algorithm has periodic expansions of every (primitive) period p ≥ 1.
For the multiplicative Selmer algorithm period p = 2 does not occur. Suppose that x =
(x1, x2) has period 2. In this case we get x = ( 1

λ(λ−k2) ,
1
λ) for some eigenvalue λ. Therefore

we get Tx = ( 1
λ(λ−k1) ,

1
λ). Then k1 = [λ] = k2. However, period p = 3 can occur. Let

k1 = 2, k2 = 3, k3 = 5. Then we obtain ρ = 6.92167. The condition 0 ≤ x2 ≤ x1 ≤ 1 is
satisfied since k1 + 1 < ρ, k2 + 1 < ρ, k3 + 1 < ρ.

Theorem 2 For periodic algorithms with α '= β we obtain the estimates

|B(pg)
0 xi − B(pg)

i | ) |β|g, i = 1, 2

but there is at least one index i such that

max(|B(pg)
0 xi − B(pg)

i |, |B(pg+2)
0 xi − B(pg+2)

i |) & |β|g

holds for infinitely many values of g.

Proof. Since the quantities B(pg)
0 xi − B(pg)

i obey the same recursion relation we find

B(pg)
0 xi − B(pg)

i = k(i, 0)ρg + m(i, 0)βg + n(i, 0)αg, i = 1, 2.

As we have just shown

lim
k→∞

B(kp)
1

B(kp)
0

= x1, lim
k→∞

B(kp)
2

B(kp)
0

= x2

and since B(pg)
0 ∼ ρg we get k(1, 0) = k(2, 0) = 0. Hence for j = 1 and j = 2 we find

B(pg)
0 xi − B(pg)

i = m(i, 0)βg + n(i, 0)αg, i = 1, 2.

This shows that the first part of the theorem is true.

Now we will prove the second part of Theorem 2. In a similar way as before we find

B(pg+2)
0 xi − B(pg+2)

i = m(i, 2)βg + n(i, 2)αg, i = 1, 2.

It is easy to verify that (see Schweiger 2000, p.5)

det

(
B(pg+2)

0 x1 − B(pg+2)
1 B(pg)

0 x1 − B(pg)
1

B(pg+2)
0 x2 − B(pg+2)

2 B(pg)
0 x2 − B(pg)

2

)
=

1

B(pg+1)
0 + B(pg+2)

0 y1 + B(pg)
0 y2

.
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Here T p(x1, x2) = (y1, y2). Note that from B(gp)
0 ∼ ρg we obtain

max
i=1,2

(|B(pg)
0 xi − B(pg)

i |, |B(pg+2)
0 xi − B(pg+2)

i |) & 1

(
√
ρ)g

=
√

|αβ|g.

For the last equality we used αβρ = 1. If |α| = |β| then

max
i=1,2

(|B(pg)
0 xi − B(pg)

i |, |B(pg+2)
0 xi − B(pg+2)

i |) & |β|g.

If |α| < |β| then at least one of the numbers m(1, 0), m(2, 0), m(1, 2), m(2, 2) cannot vanish.
If m(1, 0) = m(2, 0) = m(1, 2) = m(2, 2) = 0 then we see that

ρ−g ) det

(
B(pg+2)

0 x1 − B(pg+2)
1 B(pg)

0 x1 − B(pg)
1

B(pg+2)
0 x2 − B(pg+2)

2 B(pg)
0 x2 − B(pg)

2

)
) |α|2g

which (by using αβρ = 1) leads to |β| ≤ |α|. Therefore we get again

max
i=1,2

(|B(pg)
0 xi − B(pg)

i |, |B(pg+2)
0 xi − B(pg+2)

i |) & |β|g.

!

Remark 2 Since |β| > 1 can occur we see that lim supg→∞ |B(pg)
0 xi −B(pg)

i | = ∞ is possible.
Therefore a generalization of Nakaishi’s approach [3] seems to be out of reach.

3. Periodic Expansions for the Triangle Sequence

The shape of the time-1-matrices for Selmer’s multiplicative algorithm suggest to investigate
the algorithm with time-1-matrices

β(k) :=




1 k 1
1 0 0
0 1 0



 .

These matrices belong to an algorithm which has been called the triangle sequence by Garrity
[2] (see also [1]). The underlying map is given on B2 by

T (x1, x2) = (
x2

x1
,
1 − x1 − kx2

x1
), k = [

1 − x1

x2
].

There are some similarities but also some differences between these algorithms. The most im-
portant difference is the time-1-partition. The cylinders B(k) are the triangles with vertices
(1, 0), ( 1

k+1 ,
1

k+1), (
1

k+2 ,
1

k+2), k ≥ 0. Therefore all cylinders are full, i. e. TB(k) = B2, k ≥ 0.
If we set

β(s)(k1, ..., ks) := β(k1)...β(ks) =:




B(s)

00 B(s)
01 B(s−1)

00

B(s)
10 B(s)

11 B(s−1)
10

B(s)
20 B(s)

21 B(s−1)
20
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we find the recursion relations

B(s+1)
i0 = B(s)

i0 + B(s)
i1 , i = 0, 1, 2

B(s+1)
i1 = ks+1B

(s)
i0 + B(s−1)

i0 , i = 0, 1, 2.

Similar to the multiplicative Selmer algorithm we see easily the following properties. As
before let α, β, ρ be the three eigenvalues of the characteristic polynomial ordered in a way
such that |α| ≤ |β| < ρ.

(1) The characteristic polynomial can be reducible. Let p = 1 and k1 = k. Then χΓ(t) =
t3 − t2 − kt − 1. For k = 3 we see that β = −1.

(2) It is possible to have 0 < α < 1 < β < ρ. Let p = 2 and k1 = 4, k2 = 3. Then
χΓ(t) = t3 − 5t2 + 6t − 1. Then ρ = 6.480786620527056, β = 1.4097605688346069,α =
0.109452810638337.

In contrast to the multiplicative Selmer algorithm much more is known about convergence
(see [1]). In fact, it is known that the triangle sequence is convergent for periodic expansions.
This makes it easier to prove the following theorem, which is a strengthening of Theorem 9
of [2].

Theorem 3 Assume that the algorithm of x = (x1, x2) eventually becomes periodic with
period length p. Then x1 and x2 are rational functions in ρ, where ρ denotes the greatest
eigenvalue of the characteristic polynomial of the periodicity matrix β(p). Therefore x1 and
x2 belong to a number field of degree ≤ 3.

Proof. Since the proof closely follows Perron’s proof ([4],[5]), we will only sketch it. Let
(x1, x2) have a purely periodic expansion with periodicity matrix

Γ = β(p) =




B(p)

00 B(p)
01 B(p−1)

00

B(p)
10 B(p)

11 B(p−1)
10

B(p)
20 B(p)

21 B(p−1)
20



 .

Then 


B(p)

00 B(p)
01 B(p−1)

00

B(p)
10 B(p)

11 B(p−1)
10

B(p)
20 B(p)

21 B(p−1)
20








1
x1

x2



 = λ




1
x1

x2





for some eigenvalue λ > 1. Clearly, x1 and x2 are rational functions in λ. From Γp+1 = ΓpΓ
we obtain the relation

B((g+1)p)
00

B(gp)
00

= B(p)
00 + B(p)

01

B(gp)
10

B(gp)
00

+ B(p−1)
00

B(gp)
20

B(gp)
00

.

From the convergence of the algorithm we obtain

lim
g→∞

B((g+1)p)
00

B(gp)
00

= B(p)
00 + B(p)

01 x1 + B(p−1)
00 x2 = λ.
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Using this result and the recursion relations we obtain B(gp)
00 ∼ λg and B(gp)

01 ∼ λg. However
from

B(gp)
00 + B(gp)

11 + B(gp−1)
20 = ρg + αg + βg

we see that λ = ρ. !

Remark 3 Clearly Theorem 2 can also be extended to the triangle sequence.
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