A CHARACTERIZATION OF MINIMAL ZERO-SEQUENCES OF INDEX ONE IN FINITE CYCLIC GROUPS

Scott T. Chapman ${ }^{1}$
Trinity University, Department of Mathematics, One Trinity Place, San Antonio, TX 78212-7200, USA schapman@trinity.edu
William W. Smith
The University of North Carolina at Chapel Hill, Department of Mathematics, Phillips Hall, Chapel Hill, NC 27599-3250, USA
wwsmith@email.unc.edu

Received: 4/27/05, Revised: 10/26/05, Accepted: 11/16/05, Published: 11/29/05

Abstract

Let $G \cong \mathbb{Z}_{n}$ where n is a positive integer. A finite sequence $S=\left\{g_{1}, \ldots, g_{k}\right\}$ of not necessarily distinct elements from G for which $\sum_{i=1}^{k} g_{i}=0$ is called a zero-sequence. If a zero-sequence S contains no proper subzero-sequence, then it is called a minimal zero-sequence. The notion of the index of a minimal zero-sequence (see Definition 1) in \mathbb{Z}_{n} has been recently addressed in the mathematical literature. In this note, we offer a characterization of minimal zerosequences in \mathbb{Z}_{n} with index 1.

Let G be an additive abelian group and $S=\left\{g_{1}, \ldots, g_{k}\right\}$ a finite sequence of not necessarily distinct elements from G. Denote by $|S|=k$ the number of elements in S (or the length of S) and let $\operatorname{supp}(S)=\left\{g \mid g \in G\right.$ with $g=g_{i}$ for some $\left.i\right\}$ be the support of S. Various properties of the sequence S have been considered over the last several years in the mathematical literature. Some of these properties are among the following.

1. S is zero-free if $\sum_{i \in \mathcal{J}} g_{i} \neq 0$ for any nonempty subset $\mathcal{J} \subseteq\{1,2, \ldots, k\}$.
2. S is a zero-sequence if $\sum_{i=1}^{k} g_{i}=0$.
3. A zero-sequence S is a minimal zero-sequence (or $M Z S$) if for every nonempty $\mathcal{J} \subsetneq$ $\{1,2, \ldots, k\}$, the sequence $\left\{g_{i}\right\}_{i \in \mathcal{J}}$ is zero-free.

[^0]4. A zero-sequence S which is not an MZS is an almost minimal zero-sequence (or AMZS) if for every nonempty $\mathcal{J} \subsetneq\{1,2, \ldots, k\}$ where the sequence $\left\{g_{i}\right\}_{i \in \mathcal{J}}$ is a zero-sequence, then $\left\{g_{i}\right\}_{i \in \mathcal{J}}$ is a minimal zero-sequence.

In this article, we will consider a property of minimal zero-sequences in finite cyclic groups which was introduced in the literature in [2] and consequently considered in greater detail in [4] and [7]. Some notation will be necessary before giving a formal statement describing this property. Since the ordering of the elements in a sequence S does not matter, we will view sequences as elements of $\mathcal{F}(G)$, the free abelian monoid on G. Hence, we write

$$
S=\prod_{g \in G} g^{n_{g}}
$$

where only finitely many of the n_{g} are not zero.
Our goal is to offer a characterization of index 1 minimal zero-sequences in \mathbb{Z}_{n}. This will be done in terms of almost minimal zero-sequences (see [3, Chapter 5] for more information on AMZSs). We will find the language of block monoids useful for expressing and applying some of our arguments. For a finite abelian group G, let $\mathcal{B}(G)$ represent the set of elements in $\mathcal{F}(G)$ which are zero-sequences. Further, let $\mathcal{U}(G)$ be the subset of $\mathcal{B}(G)$ consisting of the minimal zero-sequences of G. If $S_{1}=\prod_{g \in G} g^{m_{g}}$ and $S_{2}=\prod_{g \in G} g^{s_{g}}$ are in $\mathcal{B}(G)$, then $\mathcal{B}(G)$ can be considered as a commutative cancellative monoid under the operation

$$
S_{1} * S_{2}=\prod_{g \in G} g^{m_{g}+s_{g}}
$$

and is commonly called a block monoid (more information on block monoids can be found in [6]). The irreducible elements of $\mathcal{B}(G)$ are merely the elements of $\mathcal{U}(G)$ and the empty block (i.e., $S=\emptyset$) acts as the identity of $\mathcal{B}(G)$. An interpretation of an almost minimal zero-sequence in terms of block monoids can be stated as follows: $B \in \mathcal{B}(G)$ is an almost minimal zero-sequence if and only if $B=B_{1} \cdots B_{t}$ with each B_{i} in $\mathcal{U}(G)$ implies that $t=2$.

Definition 1. Let G be an abelian group.
(1) Let $g \in G$ be a non-zero element with $\operatorname{ord}(g)=n>1$. For a sequence $S=$ $\left(n_{1} g\right) \cdots\left(n_{l} g\right)$, where $l \in \mathbb{N}_{0}$ and $n_{1}, \ldots, n_{l} \in[1, n]$, we define

$$
\|S\|_{g}=\frac{n_{1}+\ldots+n_{l}}{n}
$$

to be the g-norm of S. If $S=\emptyset$, then set $\|S\|_{g}=0$.
(2) Let S be a zero-sum sequence for which $\langle\operatorname{supp}(S)\rangle \subset G$ is a nontrivial finite cyclic group. Then we call

$$
\operatorname{index}(S)=\min \left\{\|S\|_{g} \mid g \in G \text { with }\langle\operatorname{supp}(S)\rangle=\langle g\rangle\right\} \in \mathbb{N}_{0}
$$

the index of S .

Notice that the index of a sequence S depends only on S and not the choice of the cyclic group G which contains $\operatorname{supp}(S)$. Theorem 2 of [2] indicates that as n increases, there exist minimal zero-sequences of \mathbb{Z}_{n} of arbitrarily high index. The papers [7] and [4] have both shown that for a fixed value of n, "long" minimal zero-sequences must have index 1 . In particular, [4, Section 2] shows for $n \geq 10$ that a minimal zero-sequence S in \mathbb{Z}_{n} with $|S|>\frac{2 n}{3}$ must have index 1 .

When restricting our attention to cyclic groups, the g-norm of an zero-sequence can be used to draw some helpful conclusions. We determine some basic properties of the g-norm in the next proposition.

Proposition 2. Let G be an abelian group, $g \in G$ a nonzero element and $S, T \in \mathcal{B}(\langle g\rangle)$.
(1) $\|\cdot\|_{g}: \mathcal{B}(\langle g\rangle) \rightarrow \mathbb{N}_{0}$ is a monoid homomorphism (i.e., $\|S * T\|_{g}=\|S\|_{g}+\|T\|_{g}$).
(2) $\|S\|_{g}=0$ if and only if $S=\emptyset$.
(3) $\|0\|_{g}=1$.
(4) If $\|S\|_{g}=1$, then S is a $M Z S$.
(5) If $\|S\|_{g}=2$, then S is an $A M Z S$.

Proof. The proofs of (1)-(3) are clear. For (4), if $S=S_{1} * S_{2}$ with S_{1} and S_{2} in $\mathcal{B}(\langle g\rangle)$, then $1=\|S\|_{g}=\left\|S_{1}\right\|_{g}+\left\|S_{2}\right\|_{g} \geq 2$, a contradiction. For (5), if S is neither an MZS or an AMZS, then $S=S_{1} * S_{2} * S_{3}$ for S_{1}, S_{2} and S_{3} in $\mathcal{B}(\langle g\rangle)$. The argument now follows as in (4).

We note that index one MZSs satisfy several interesting properties. Two of these properties follow. Recall that if $S=\prod_{g \in G} g^{n_{g}}$ is an MZS in \mathbb{Z}_{n}, then the cross number of S is defined as $\mathbb{k}(S)=\sum_{g \in G} \frac{n_{g}}{\operatorname{ord}(g)}$ where ord (g) represents the order of g in G (more information on the cross number can be found in [1]). For $S \in \mathcal{B}(G)$ consider these properties.
(P1) $S * S$ is an AMZS in \mathbb{Z}_{n}.
(P2) $\mathbb{k}(S) \leq 1$.
It follows directly from Proposition 2 that $S=\prod_{g \in G} g^{n_{g}}$ an MZS in \mathbb{Z}_{n} with $\|S\|_{g}=1$ satisfies (P1). That $\|S\|_{g}=1$ implies $\mathbb{k}(S) \leq 1$ can be seen as follows. Suppose $S=\left(n_{1} g\right) \cdots\left(n_{l} g\right)$ is written as in Definition 1 with $n=\operatorname{ord}(g)$. Then

$$
\mathbb{k}(S)=\sum_{i=1}^{l} \frac{1}{\operatorname{ord}\left(n_{i} g\right)}=\sum_{i=1}^{l} \frac{1}{\frac{n}{\operatorname{gcd}\left(n_{i}, n\right)}} \leq \sum_{i=1}^{k} \frac{n_{i}}{n}=\|S\|_{g}=1 .
$$

Hence we have the following.
Proposition 3. If S is a $M Z S$ of \mathbb{Z}_{n} with $\operatorname{index}(S)=1$, then S satisfies properties $(\mathbf{P} 1)$ and (P2).

Example 4. Properties (P1) and (P2) do not characterize MZSs of index 1. Notice that all of the index 2 MZSs in [2] do not satisfy (P1) (see in particular the proof of [2, Theorem 2]). A slight modification of the construction used in [2] yields the following example. Let $G=\mathbb{Z}_{23}$ and set $S=2 \cdot 7 \cdot 9 \cdot 11 \cdot 17$. It is a routine calculation to check the 22 possible values of $\|S\|_{g}$ and determine that index $(S)=2$. Since $\mathbb{k}(S) \leq 1, S$ satisfies (P2). For considering property ($\mathbf{P} 1$), note that $\|S\|_{1}=2$ and so $\|S * S\|_{1}=4$. To establish that $S * S$ is an AMZS, one needs only observe that if it were not, then $S * S=A * B * C$ for some zero sequences A, B, and C. It follows that this has to be done (with the proper choice of g) so that $\|A\|_{g}=\|B\|_{g}=1$ and $\|C\|_{g}=2$. The key then to observing such a decomposition is impossible is to note that $7^{2} \cdot 9$ is the only subsequence of $S * S$ that sums to 23 .

While (P1) and (P2) do not offer the characterization of index 1 MZSs we desire, a relatively simple condition involving the AMZS's which contain an MZS S does provide a characterization.

Theorem 5. Let G be an abelian group and S a minimal zero-sequence over G such that $\operatorname{supp}(S)$ generates a cyclic group H of order $n \geq 2$. Then the following statements are equivalent:
(a) There exists some $A M Z S A \in \mathcal{F}(H)$ of length $|A|=|S|+n$ where S divides A in $\mathcal{B}(G)$.
(b) There exists some $g \in H$ such that $g^{n} S$ is an $A M Z S$.
(c) $\operatorname{index}(S)=1$.

Proof. (a) \Rightarrow (b) Let $A=S T$ be an AMZS of length $|S|+n$ for some $T \in \mathcal{F}(H)$. Then T is a minimal zero-sum sequence of length n. Thus, for example by [5, Lemma 13], there exists some $g \in H$ such that $T=g^{n}$.
(b) \Rightarrow (c) Let $g \in H$ and $A=g^{n} S$ an AMZS. Then there are $m_{1}, \ldots, m_{l} \in[1, n-1]$ with $m_{1} \leq \ldots \leq m_{l}$ such that $S=\prod_{i=1}^{l}\left(m_{i} g\right)$. We assert that $\|S\|_{g}=1$. Assume to the contrary that

$$
\|S\|_{g}=\frac{m_{1}+\ldots+m_{l}}{n}=k \text { with } k \geq 2
$$

Since S is a minimal zero-sum sequence, there exist $u, v \in[1, l-1]$ such that

$$
(k-2) n<m_{1}+\ldots+m_{u}<(k-1) n<m_{1}+\ldots+m_{u}+m_{u+1}
$$

and

$$
m_{u+1}+\ldots+m_{v}<n<m_{u+1}+\ldots+m_{v}+m_{v+1}
$$

We set

$$
r=(k-1) n-\left(m_{1}+\ldots+m_{u}\right)
$$

$$
s=n-\left(m_{u+1}+\ldots+m_{v}\right)
$$

and we define

$$
N_{1}=g^{r} \prod_{i=1}^{u}\left(m_{i} g\right), N_{2}=g^{s} \prod_{i=u+1}^{v}\left(m_{i} g\right) \text { and } N_{3}=g^{n-(r+s)} \prod_{i=v+1}^{l}\left(m_{i} g\right) .
$$

By construction, N_{1}, N_{2} and N_{3} are zero-sum sequences with $A=N_{1} N_{2} N_{3}$, a contradiction to the fact that A is an AMZS.
(c) \Rightarrow (a) Let $g \in H$ such that $\|S\|_{g}=1$. We set $A=g^{n} S$, and since $\|A\|_{g}=2$, it follows that A is an AMZS.

Acknowledgement

The authors would like to thank the referee for many helpful suggestions.

References

[1] S. T. Chapman, On the Davenport constant, the cross number, and their application in factorization theory, Zero-dimensional commutative rings (Knoxville, TN, 1994), Marcel Dekker, New York, 1997, 167-190.
[2] S. T. Chapman, M. Freeze, and W. W. Smith, Minimal zero-sequences and the strong Davenport constant, Discrete Math. 203(1999), 271-277.
[3] M. Freeze, Lengths of Factorizations in Dedekind domains, Ph. D. Dissertation, The University of North Carolina at Chapel Hill, 1999.
[4] W. D. Gao, Zero sums in finite cyclic groups, Integers, (electronic) 0(2000) A12, 7 pp.
[5] A. Geroldinger, Systeme von Längenmengen, Abh. Math. Sem. Univ. Hamburg 60(1990), 115-130.
[6] A. Geroldinger and F. Halter-Koch, Nonunique factorizations in block semigroups and their arithmetical applications, Math. Slovaca 42(1992), 641-661.
[7] V. Ponomarenko, Minimal zero sequences of finite Abelian groups, Integers, (electronic) 4(2004) A24, 6 pp.

[^0]: ${ }^{1}$ Part of this work was completed while the first author was on an Academic Leave granted by the Trinity University Faculty Development Committee.

