A QUESTION OF SIERPINSKI ON TRIANGULAR NUMBERS

Michael A. Bennett
Department of Mathematics, University of British Columbia, Vancouver BC, Canada
bennett@math.ubc.edu

Received: 8/30/05, Accepted: 11/6/05, Published: 11/22/05

Abstract

We answer a question of Sierpinski by showing that there do not exist four distinct triangular number in geometric progression.

In D23 of [2], it is stated that Sierpinski asked the question of whether or not there exist four (distinct) triangular numbers in geometric progression and, further, that Szymiczek [4] conjectured the answer to this to be a negative one. Recall that a triangular number is one of the form

$$
T_{n}=\frac{n(n+1)}{2}
$$

for $n \in \mathbb{Z}$. The problem of finding three such triangular numbers is readily reduced to finding solutions to a Pell equation (whereby, an old result of Gérardin [1] (see also [3]) implies that there are infinitely many such triples, the smallest of which is $\left(T_{1}, T_{3}, T_{8}\right)$). It is easy to show that the answer to Sierpinski's question is in the negative. This is, in fact, an immediate consequence of the following.

Lemma If a and b are positive integers with $b>1$ then at least one of $a b+1$ and $a b^{3}+1$ is not a perfect square.

Proof. Suppose that we have

$$
a b+1=x^{2} \text { and } a b^{3}+1=y^{2}
$$

for positive integers x and y. From the theory of quadratic fields, since we may assume that $a b$ is not a perfect square, it follows that

$$
y+b \sqrt{a b}=(x+\sqrt{a b})^{k}
$$

for some positive integer k (which, since $b>1$, we may assume to be at least 2). If $k \geq 3$, then we would have that

$$
y+b \sqrt{a b} \geq(x+\sqrt{a b})^{3}
$$

and hence

$$
b \geq 3 x^{2}+a b
$$

a contradiction, since $a, x \geq 1$. It follows that $k=2$ and hence that $b=2 x$. Since $a b+1=x^{2}$, we have $x=1$, contradicting the fact that a and b are positive integers. This completes the proof of our Lemma.

To connect this to Sierpinski's question, suppose that the four triangular numbers in geometric progression are

$$
T_{x}<T_{y}<T_{u}<T_{v}
$$

Taking $a=8 T_{x}$ and $b=T_{y} / T_{x}$, it follows that one of $8 T_{y}+1$ or $8 T_{v}+1$ cannot be a perfect square, contradicting the identity $8 T_{n}+1=(2 n+1)^{2}$.

References

[1] A. Gérardin. Sphinx-Oedipe 9 (1914), 75, 145-146
[2] R. Guy. Unsolved Problems in Number Theory, 3rd edition. Springer Verlag, New York, 2004.
[3] K. Szimiczek. L' équation $u v=w^{2}$ en nombres triangulaires. (French) Publ. Inst. Math. (Beograd) (N.S.) 3 (17) (1963), 139-141.
[4] K. Szimiczek. The equation $\left(x^{2}-1\right)\left(y^{2}-1\right)=\left(z^{2}-1\right)^{2}$, Eureka 35 (1972), 21-25.

