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Abstract

We consider the problem of enumerating the nonnegative integer sequences λ =
(λ1, λ2, . . . , λn) satisfying the constraints

ci,1λ1 + ci,2λ2 + . . . + ci,nλn ≥ 0, 1 ≤ i ≤ n,

for a given an n × n integer matrix C = [ci,j]. We show that, in the area of partition and
composition enumeration, many familiar sets of linear constraints can be easily handled by
a matrix inversion.

1. Introduction

For a sequence λ = (λ1, λ2, . . . , λn) of integers, define the weight of λ to be |λ| = λ1+· · ·+λn.
If sequence λ of weight N has all parts nonnegative, we call it a composition of N ; if, in
addition, λ is a nonincreasing sequence, we call it a partition of N .

Given an n × n integer matrix C = [ci,j], we consider the set SC of compositions λ =
(λ1, λ2, . . . , λn) satisfying the constraints

ci,1λ1 + ci,2λ2 + . . . + ci,nλn ≥ 0, 1 ≤ i ≤ n. (1)

1Research supported in part by NSF grants DMS-0300034 and INT-0230800
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In [4], we gave sufficient conditions for the generating function of SC to have a product form:

FC(q) =
∑

λ∈SC

q|λ| =
n∏

j=1

1

(1 − qbj)
, (2)

for some positive integers b1, . . . , bn. Specifically, it was shown that if C is an upper triangular
matrix with all ci,i = 1, and if B = C−1 has nonnegative entries, then FC(q) is given by (2),
where bj is the sum of the entries in column j of B = [bi,j]. Moreover, it was shown that
this provides a natural bijection between the “partitions” of N into parts from the multiset
{b1, . . . , bn} and the compositions of N in SC given by:

bm1
1 bm2

2 · · · bmn
n ↔ (λ1, λ2, . . . , λn), (3)

where λi =
∑n

j=i bi,jmj. Consequently, both the generating function for SC and the bijection
can be “read off” from C−1.

This result automatically gives the product form generating functions, as well as the
corresponding “natural bijections”, for all of the following families:

• Hickerson partitions [5]

Given a positive integer r, the partitions λ = (λ1, . . . , λn) satisfying λi ≥ rλi+1 have
generating function

n∏

j=1

1

1 − q1+r+···+rj−1 .

This follows by inverting the constraint matrix:

C−1 =





1 −r 0 0 0 . . . 0
0 1 −r 0 0 . . . 0
0 0 1 −r 0 . . . 0
...

...
...

...
... . . .

...
0 0 0 0 0 . . . 1





−1

=





1 r r2 r3 r4 . . . rn−1

0 1 r r2 r3 . . . rn−2

0 0 1 r r2 . . . rn−3

...
...

...
...

... . . .
...

0 0 0 0 0 . . . 1




.

• Santos’ interpretation of Euler [7]

The number of partitions λ = (λ1, . . . , λn) of N into n nonnegative parts satisfying
the additional constraint λ1 ≥

∑n
i=2 λi, is the same as the number of partitions of N

into odd parts in {1, 3, . . . , 2n − 1}. (See next example.)

• Sellers’ generalization of Santos [8, 9]:

The set of partitions λ = (λ1, . . . , λn) into n nonnegative parts satisfying the additional
constraint λ1 ≥

∑n
i=2 kiλi, for a given sequence of nonnegative integers (k2, . . . , kn)

with k2 > 0 has generating function

1

(1 − q)(1 − qk2+1)(1 − qk2+k3+2)(1 − qk2+k3+k4+3) · · · (1 − qk2+k3+···+kn+n−1)
. (4)
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This follows because the constraint matrix has the form

C =





1 −k2 −k3 −k4 −k5 . . . −kn

0 1 −1 0 0 . . . 0
0 0 1 −1 0 . . . 0
...

...
...

...
... . . .

...
0 0 0 0 0 . . . 1




,

and its inverse is

C−1 =





1 k2 k2 + k3 k2 + k3 + k4 k2 + k3 + k4 + k5 . . . k2 + · · · + kn

0 1 1 1 1 . . . 1
0 0 1 1 1 . . . 1
...

...
...

...
... . . .

...
0 0 0 0 0 . . . 1




.

Setting k2 = · · · = kn = 1 gives Santos’ result. In fact, note that we can relax Sellers’
requirements that k2 > 0 and ki ≥ 0: as long as all partial sums k2+ · · ·+ki, 2 ≤ i ≤ n,
are nonnegative, (4) is still the generating function for the set of compositions of N (no
longer necessarily partitions) satisfying λ1 ≥

∑n
i=2 kiλi and λi ≥ λi+1 for 2 ≤ i ≤ n−1.

For example, we could have ki = 1 if i is even, ki = −1 if i is odd.

• Partitions with nonnegative second differences [1], super-concave partitions [10]

Partitions (λ1, λ2, . . . , λn) with the additional constraint that λi ≥ 2λi+1 − λi+2 for
1 ≤ i ≤ n− 1, with λn+2 = 0 were first considered by Andrews in [1] as partitions with
nonnegative second differences. He used partition analysis to show that they have the
same generating function as partitions into the triangular numbers {

(
i+1
2

)
|1 ≤ i ≤ n}

and also to give a bijection. We can get the same generating function and a bijection
from (2) and (3) by inverting the constraint matrix.

Snellman and Paulsen arrived at the same family via a different definition in [10]. Their
interest was in partitions (λ1, λ2, . . . , λn) satisfying λi(k− j)+λj(i−k)+λk(j− i) ≥ 0
for all positive integers i < j < k ≤ n + 1, where λn+1 = 0. They called these
super concave partitions and proved that they are equivalent to the partitions with
nonnegative second differences.

• Partitions with r-th differences nonnegative [1, 3, 11]

Generalizing the case for r = 2, these are the partitions (λ1, λ2, . . . , λn) satisfying

r∑

j=0

(−1)jλi+j

(
r

j

)
≥ 0

for 1 ≤ i ≤ n − 1, with λn+1 = · · · = λn+r−1 = 0, defined by Andrews in [1]. He used
partition analysis to show that they have the same generating function as partitions
into parts in {

(
i+r
2

)
|0 ≤ i ≤ n − 1} and a bijection appears in [3, 11]. Again, here, we

can get the generating function and a bijection by inverting the constraint matrix.
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• Examples (0-5) of Pak in [6].

Many other examples are provided in [4], where the main result was extended to handle
the case where any subset of the constraints (1) could require equality and also to handle
certain inhomogenous constraints.

On the other hand, consider the following simple example where the results of [4] do not
directly apply. Let S be the set of integer sequences (λ1, λ2, λ3) satisfying

λ1 ≥ λ2 + λ3

λ2 ≥ λ3

2λ3 ≥ λ1 − λ2. (5)

The constraint matrix is

C =




1 −1 −1
0 1 −1

−1 1 2



 , (6)

which is not upper triangular and its diagonal entries are not all 1.

The purpose of this note is to extend the result of [4] to more general systems, including
(5). We show that for any constraint matrix C, as long as the matrix B = C−1 has all
nonnegative integer entries, then the generating function for the set SC , of integer sequences
satisfying (1), has the form (2), where bj is the sum of the entries in column j of B =
[bi,j]. Again, this comes supplied with the natural bijection (3). As in [4], this extends to
the case where some of the inequalities are equalities and some of the inequalities may be
inhomogeneous.

Furthermore, the multivariable generating function

FC(x1, x2, . . . , xn) =
∑

λ∈SC

xλ1
1 xλ2

2 · · ·xλn
n (7)

can also be “read” from the B matrix: qbj in (2) just becomes: x
b1,j

1 x
b2,j

2 · · ·xbn,j
n in (7). Note

that the polynomial FC(x1, x2, . . . , xn) is an encapsulation of the set SC : the coefficient of
qN in FC(qx1, qx2, . . . , qxn) is a listing (as the terms of a polynomial) of all integer solutions
to (1) of weight N .

In the next section we state and prove the extended theorem and follow in Section 3 with
some examples.

2. The Main Theorem

Suppose S is a multiset of positive integers. We want to define a partition of n into parts
taken from S. Suppose i is some element of S which appears with multiplicity > 1. Then
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imagine that the different copies of i have different colors. We will count as different a
partition of n that uses two red copies of i and six green copies of i, on the one hand, and
a partition of n that uses five red copies of i and three green copies of i, on the other hand.
It is in this sense that we will be counting the partitions of n into parts taken from S.

Theorem 1 Let C be an n× n matrix of integers such that C−1 = B = [bi,j] exists and has
all entries nonnegative integers. Let e1, . . . , en be nonnegative integer constants. Let EQ be
a subset of {1, . . . , n}. For each 1 ≤ i ≤ n, let ci be the constraint

{
ci,1λ1 + ci,2λ2 + . . . ci,nλn ≥ ei if i &∈ EQ
ci,1λ1 + ci,2λ2 + . . . ci,nλn = ei if i ∈ EQ

Let SC be the set of nonnegative integer sequences λ = (λ1, λ2, . . . , λn) satisfying the con-
straints ci for all i, 1 ≤ i ≤ n. The generating function for SC is:

FC(x1, x2, . . . , xn) =
∑

λ∈SC

xλ1
1 xλ2

2 · · ·xλn
n =

∏n
j=1(x

b1,j

1 x
b2,j

2 · · ·xbn,j
n )ej

∏
j∈{1,... ,n}−EQ(1 − x

b1,j

1 x
b2,j

2 · · ·xbn,j
n )

.

Furthermore, let bj be the sum of the entries in column j of B = C−1. Then an explicit
bijection between

(i) partitions of N into parts from the multiset {b1, . . . , bn} with the restriction
that part bj occurs at least ej times if j &∈ EQ and exactly ej times if j ∈ EQ and

(ii) sequences λ ∈ SC of weight N

is given by

bm1
1 bm2

2 · · · bmn
n → (λ1, λ2, . . . , λn)

where λi =
∑n

j=i bi,jmj.

Proof. If λ ∈ SC , then for 1 ≤ i ≤ n,

si =

(
n∑

j=1

ci,jλj

)
− ei ≥ 0,

and si = 0 if i ∈ EQ. Conversely, if B has all nonnegative integer entries, then given
nonnegative integers s1, s2, . . . , sn, with si = 0 if i ∈ EQ, define λ by




λ1
...

λn



 = B




s1 + e1

...
sn + en



 . (8)
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Then the λi are nonnegative integers and since B = C−1,

C




λ1
...

λn



 =




s1 + e1

...
sn + en



 .

So for 1 ≤ i ≤ n, λ satisfies

ci,1λ1 + ci,2λ2 + . . . ci,nλn = si + ei

{
≥ 0 if i &∈ EQ
= 0 if i ∈ EQ

that is, λ ∈ SC .

Thus,

FC(x1, . . . , xn) =
∑

λ∈SC

n∏

i=1

xλi
i

=
∑

s1, . . . , sn ≥ 0
k ∈ EQ → (sk = 0)

n∏

i=1

x
bi,1(s1+e1)+···+bi,n(sn+en)
i

=
∑

s1, . . . , sn ≥ 0
k ∈ EQ → (sk = 0)

n∏

j=1

(x
b1,j

1 x
b2,j

2 · · ·xbn,j
n )(sj+ej)

=
n∏

j=1

(x
b1,j

1 x
b2,j

2 · · ·xbn,j
n )ej

∑

s1, . . . , sn ≥ 0
k ∈ EQ → (sk = 0)

n∏

j=1

(x
b1,j

1 x
b2,j

2 · · ·xbn,j
n )sj

and the result follows. !

3. Examples

Example 1 We revisit the example from the introduction. Let S be the set of integer
sequences (λ1, λ2, λ3) satisfying the constraints (5). The constraint matrix C is (6) which is
not upper triangular. However, C−1 has all nonnegative integer entries:

C−1 =




3 1 2
1 1 1
1 0 1



 ,

so by Theorem 1, the multivariable generating function is
∑

(λ1,λ2,λ3)∈S

xλ1
1 xλ2

2 xλ3
3 =

1

(1 − x3
1x2x3)(1 − x1x2)(1 − x2

1x2x3)
.
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Example 2. Consider the set T of nondegenerate incongruent integer-sided triangles which
were treated by Andrews in [1]. These are partitions into 3 parts (λ1, λ2, λ3) satisfying
λ1 ≥ λ2 ≥ λ3 ≥ 0 and λ1 + λ2 > λ3, λ2 + λ3 > λ1, λ1 + λ3 > λ2. Equivalently, T is the set
of nonnegative integer sequences (λ1, λ2, λ3) satisfying

λ1 ≥ λ2

λ2 ≥ λ3

λ3 ≥ λ1 − λ2 + 1. (9)

Then in the hypotheses of Theorem 1, EQ = ∅, e1 = e2 = 0, e3 = 1, and the constraint
matrix is

C =




1 −1 0
0 1 −1

−1 1 1





(which is not upper triangular). The inverse is:

B = C−1 =




2 1 1
1 1 1
1 0 1



 ,

so by Theorem 1 the multivariable generating function is

∑

(λ1,λ2,λ3)∈T

xλ1
1 xλ2

2 xλ3
3 =

x
b1,3

1 x
b2,3

2 x
b3,3

3

(1 − x
b1,1

1 x
b2,1

2 x
b3,1

3 )(1 − x
b1,2

1 x
b2,2

2 x
b3,2

3 )(1 − x
b1,3

1 x
b2,3

2 x
b3,3

3 )

=
x1x2x3

(1 − x2
1x2x3)(1 − x1x2)(1 − x1x2x3)

.

Setting x1 = x2 = x3 = q gives

∑

(λ1,λ2,λ3)∈T

qλ1+λ2+λ3 =
q3

(1 − q4)(1 − q2)(1 − q3)
.

Also, Theorem 1 gives an explicit bijection between the partitions of N into parts 2, 3, 4 with
at least one part 3 (i.e. at least e3 = 1 copies of b3 = 1 + 1 + 1) and the triangles (λ1, λ2, λ3)
of perimeter N satisfying (9). Specifically: the partition 4m12m23m3 (using multiplicity
representation), with m3 ≥ 1, maps to the triangle (2m1 +m2 +m3, m1 +m2 +m3, m1 +m3),
the same bijection obtained in [1].

Continuing with the integer-sided triangles, suppose we only wanted those in which the
lengths of the three sides were distinct. Then EQ = ∅, e1 = e2 = e3 = 1, and the multivari-
able generating function would be:

(x2
1x2x3)(x1x2)(x1x2x3)

(1 − x2
1x2x3)(1 − x1x2)(1 − x1x2x3)

=
x4

1x
3
2x

2
3

(1 − x2
1x2x3)(1 − x1x2)(1 − x1x2x3)

.
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If we wanted the two smallest sides to be the same length and to differ from the largest by
at least 2, then EQ = 2, e1 = 2, e2 = 0, e3 = 1, and the generating function is:

(x2
1x2x3)2(x1x2x3)

(1 − x2
1x2x3)(1 − x1x2x3)

=
(x5

1x
3
2x

3
3)

1 − x2
1x2x3(1 − x1x2x3)

.

Example 3. Analogous to the super concave partitions of Snellman and Paulsen in [10],
call a partition super convex if it satisfies

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0; 2λi ≥ λi−1 + λi+1, i ≥ 2,

assuming λn+1 = 0. To our knowledge, these were first considered by Andrews in [1], where
he called them partitions with mixed difference conditions and computed their generating
function using partition analysis. The generating function is also easy to compute from
Theorem 1. The constraint matix is (e.g., for n = 6)

C =





1 −1 0 0 0 0
−1 2 −1 0 0 0

0 −1 2 1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2





and the inverse is

C−1 =





6 5 4 3 2 1
5 5 4 3 2 1
4 4 4 3 2 1
3 3 3 3 2 1
2 2 2 2 2 1
1 1 1 1 1 1





so by Theorem 1, the multivariable generating function is

n∏

j=1

(
1 −

j∏

i=1

(xi · · ·xn)

)−1

.

We can generalize this a bit: the generating function for the nonnegative integer sequences
λ satisfying

λ1 ≥ tλ2; (t + 1)λi ≥ λi−1 + tλi+1, i ≥ 2,

assuming λn+1 = 0, is

n∏

j=1

(
1 −

j∏

i=1

(xt0

i xt1

i+1 · · ·xtn−i

n )

)−1

.
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Example 4. In [1], Andrews defines ∆m as the number of partitions λ1, λ2, . . . , λ2m+1

satisfying the additional constraints

λ2i−1 − λ2i − λ2i+1 + λ2i+2 ≤ 0, 1 ≤ i ≤ m − 1; λ2m−1 − λ2m − λ2m+1 ≤ 0, (10)

and shows that the generating function of ∆m is

m∏

h=1

1

1 − q2h

m∏

j=0

1

1 − q(j+1)(2m+1−j)
. (11)

(Then ∆1 is the set of incongruent nonnegative integer-sided triangles.)

The constraints (10), together with the constraints λi ≥ λi+1, 1 ≤ i ≤ 2m, give a total
of 3m − 1 constraints in 2m + 1 variables. It is easy to check that the set of constraints
{λ2i+1 ≥ λ2i+2|1 ≤ i < m} is redundant. Deleting these gives a system of 2m+1 constraints
in 2m + 1 variables defining ∆m. The constraint matrix, e.g. when m = 4, is:

C =





1 −1 0 0 0 0 0 0 0
−1 1 1 −1 0 0 0 0 0

0 0 −1 1 1 −1 0 0 0
0 0 0 0 −1 1 1 −1 0
0 0 0 0 0 0 −1 1 1
0 0 0 0 0 0 0 1 −1
0 0 0 0 0 1 −1 0 0
0 0 0 1 −1 0 0 0 0
0 1 −1 0 0 0 0 0 0





,

and its inverse is:

C−1 =





5 4 3 2 1 1 1 1 1
4 4 3 2 1 1 1 1 1
4 4 3 2 1 1 1 1 0
3 3 3 2 1 1 1 1 0
3 3 3 2 1 1 1 0 0
2 2 2 2 1 1 1 0 0
2 2 2 2 1 1 0 0 0
1 1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0 0





.

Generalizing this to arbitrary m, the last m columns of C−1 give rise to the first product in
(11) and the first m + 1 columns, the second product.

Example 5. Theorem 1 can be used to work backwards from a target generating function.
For example, starting with the matrix on the right below and considering its inverse gives
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another “Euler bijection”. Observe that

C−1 =





1 −2 2 −2 2 . . . (−1)n+12
0 1 −2 2 −2 . . . (−1)n2
0 0 1 −2 2 . . . (−1)n+12
...

...
...

...
... . . .

...
0 0 0 0 0 . . . 1





−1

=





1 2 2 2 2 . . . 2
0 1 2 2 2 . . . 2
0 0 1 2 2 . . . 2
...

...
...

...
... . . .

...
0 0 0 0 0 . . . 1




. (12)

Using C as a constraint matrix defines the set Sn of sequences λ1, . . . , λn satisfying λi ≥
2(λi+1 − λi+2 + λi+3 − λi+4 + · · · ), where we assume λi = 0 if i > n. (It can be checked that
the elements of Sn are partitions.) By Theorem 1 and (12), the generating function for Sn is

Sn(x1, x2, . . . , xn) =
1

(1 − x1)(1 − x2
1x2)(1 − x2

1x
2
2x3) · · · (1 − x2

1x
2
2 · · ·x2

n−1xn)
.

So, the number of partitions of N into odd parts in {1, 3, . . . , 2n− 1} is equal to number of
partitions of N in Sn and the bijection is given by

1m13m25m3 · · · (2n − 1)mn → (m1 + 2
n∑

j=2

mj, m2 + 2
n∑

j=3

mj, m3 + 2
n∑

j=4

mj, . . . , mn).

4. Conclusion

Theorem 1 provides a uniform treatment of a broad class of partition identities, many of
which have been handled elsewhere by a variety of techniques. We propose Theorem 1 as
the “method of first attack” since, when it does apply, it gives the generating function and
the bijection, for the price of inverting a matrix. It also gives the multivariable generating
function, which can be viewed as an encoding of all possible solutions.

It is not hard to find examples beyond the scope of this method. Consider the constraints
for one of the special cases of constrained compositions from [2]:

(nk − 1)λj ≥
n∑

i=1

kλi; j = 1, . . . , n.

The inverse of the constraint matrix for this system does not have all entries nonnegative.
Nevertheless, it is shown in [2] that the mutivariable generating function has a simple form.

As another example, define the super convex compositions to be those integer sequences
λ = (λ1, λ2, . . . , λn) satisfying

2λi ≥ λi−1 + λi+1, 1 ≤ i ≤ n,
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where we assume λ0 = λn+1 = 0. These differ from the super-convex partitions of Example
3 in that here 2λ1 ≥ λ2, but the λi need not be weakly decreasing. The inverse of the
constraint matrix for this system no longer has integer entries. In fact, we offer as an open
question the challenge of computing the generating function for this family.

Acknowledgement. The second author would like thank Sunyoung Lee for technical sup-
port.
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