ON 2-ADIC ORDERS OF STIRLING NUMBERS OF THE SECOND KIND

Stefan De Wannemacker
Department of Mathematics, University College Dublin, Belfield, Dublin 4, Ireland
sdwannem@maths.ucd.ie

Received: 7/15/04, Revised: 8/11/05, Accepted: 9/26/05, Published: 10/4/05

Abstract

We prove that for any $k=1, \ldots, 2^{n}$ the 2-adic order of the Stirling number $S\left(2^{n}, k\right)$ of the second kind is exactly $d(k)-1$, where $d(k)$ denotes the number of 1 's among the binary digits of k. This confirms a conjecture of Lengyel.

1. Introduction

For a nonzero integer m, if 2^{h} is the highest power of two dividing m, then we say that the 2-adic order $\rho_{2}(m)$ of m is h. In this paper $\rho_{2}(\cdot)$ is called the 2 -adic valuation function.
Legendre observed that if $n \in \mathbb{N}=\{0,1,2, \ldots\}$ then $\rho_{2}(n!)=n-d(n)$, where $d(n)$ is the number of 1's in the binary representation of n, in other words $d(n)=\sum_{\lambda=0}^{\infty} \varepsilon_{\lambda}(n)$ if $n=\sum_{\lambda=0}^{\infty} \varepsilon_{\lambda}(n) 2^{\lambda}$ with $\varepsilon_{\lambda}(n) \in\{0,1\}$. Kummer proved that $\rho_{2}\left(\binom{n}{k}\right)=d(k)+d(n-k)-d(n)$ whenever $0 \leq k \leq n$.
Let $n \in \mathbb{N}$. The Stirling numbers $S(n, k)(k \in \mathbb{N})$ of the second kind are given by

$$
x^{n}=\sum_{k=0}^{\infty} S(n, k)(x)_{k},
$$

where $(x)_{k}=x(x-1)(x-2) \ldots(x-k+1)$ for $k \in \mathbb{N} \backslash\{0\}$ and $(x)_{0}=1$. Actually $S(n, k)$ is the number of ways in which it is possible to partition a set with n elements into exactly k nonempty subsets. For more details and basic results on Stirling numbers of the second kind we refer the reader to [2] and [4].
In this paper we study 2-adic orders of Stirling numbers of the second kind, and establish the following theorem which was conjectured by T.Lengyel [3] and verified by him in some special cases.

Theorem 1. Let $n, k \in \mathbb{N}$ and $1 \leq k \leq 2^{n}$. Then we have

$$
\rho_{2}\left(S\left(2^{n}, k\right)\right)=d(k)-1 .
$$

In the next section we reveal some useful properties of Stirling numbers of the second kind. We are going to prove Theorem 1 in Section 3 on the basis of Section 2.

2. Auxiliary results on Stirling numbers of the second kind

The following identity relates the Stirling numbers of the second kind $S(n+m, \cdot)$ to $S(n, \cdot)$ and $S(m, \cdot)$.

Theorem 2. Let $n, m, k \in \mathbb{N}$ such that $0 \leq k \leq n+m$. Then

$$
S(n+m, k)=\sum_{i=0}^{k} \sum_{j=i}^{k}\binom{j}{i} \frac{(k-i)!}{(k-j)!} S(n, k-i) S(m, j)
$$

Proof. Let $n, m \in \mathbb{N}$. Then

$$
\begin{aligned}
x^{n+m} & =x^{n} x^{m}=\sum_{r=0}^{n} S(n, r)(x)_{r} \sum_{j=0}^{m} S(m, j)(x)_{j} \\
& =\sum_{r=0}^{n} S(n, r)(x)_{r} \sum_{j=0}^{m} j!S(m, j)\binom{x}{j} \\
& =\sum_{r=0}^{n} S(n, r)(x)_{r} \sum_{j=0}^{m} j!S(m, j) \sum_{i=0}^{j}\binom{x-r}{i}\binom{r}{j-i}
\end{aligned}
$$

(by the Chu-Vandermonde identity)
$=\sum_{r=0}^{n} S(n, r) \sum_{j=0}^{m} S(m, j) \sum_{i=0}^{j} \frac{j!}{i!}\binom{r}{j-i}(x)_{r+i}$

Thus, for any $k=0,1, \ldots, n+m$ we have

$$
\begin{aligned}
S(n+m, k) & =\sum_{i=0}^{k} \sum_{j=i}^{k} \frac{j!}{i!}\binom{k-i}{j-i} S(n, k-i) S(m, j) \\
& =\sum_{i=0}^{k} \sum_{j=i}^{k}\binom{j}{i} \frac{(k-i)!}{(k-j)!} S(n, k-i) S(m, j) .
\end{aligned}
$$

Remark: Stirling numbers of the second kind occur in a natural way while making calculations in the Witt ring (see [1] for further details). It was in this context that the previous identity arose.

Lemma 1. Let $m, n \in \mathbb{N}$. Then

$$
d(m+n) \leq d(m)+d(n)
$$

and equality holds if and only if

$$
\sum_{\lambda=0}^{\infty} \varepsilon_{\lambda}(m) \varepsilon_{\lambda}(n)=0
$$

i.e., when m and n have no non-zero binary digit in common.

Proof. If m and n have no non-zero binary digit in common then it is obvious that $d(m+n)=$ $\sum \varepsilon_{\lambda}(m+n)=\sum\left(\varepsilon_{\lambda}(m)+\varepsilon_{\lambda}(n)\right)=d(m)+d(n)$. On the other hand, suppose that m and n have a non-zero binary digit in common. Let us say that λ_{0} is the lowest natural number such that $\varepsilon_{\lambda_{0}}(m)=\varepsilon_{\lambda_{0}}(n)=1$. Then it is clear that $\varepsilon_{\lambda_{0}}(m+n)=0$ and 1 is added to $\varepsilon_{\lambda_{0}+1}(m)+\varepsilon_{\lambda_{0}+1}(n)$ to obtain an expression for $\varepsilon_{\lambda_{0}+1}(m+n)$. Anyhow, at least one non-zero binary digit is lost in $d(m+n)$.

Remark: The case $d(m+n)=d(m)+d(n)-1$ occurs if and only if $\varepsilon_{\lambda_{0}+1}(m)=\varepsilon_{\lambda_{0}+1}(n)=0$ with λ_{0} the unique natural number such that $\varepsilon_{\lambda_{0}}(m)=\varepsilon_{\lambda_{0}}(n)=1$.

A new lower bound on the 2-adic order of Stirling numbers of the second kind can be obtained as follows.

Theorem 3. Let $n, k \in \mathbb{N}$ and $0 \leq k \leq n$. Then

$$
\rho_{2}(S(n, k)) \geq d(k)-d(n) .
$$

Proof. We use induction on n.
For $n=0, \rho_{2}(S(0,0))=\rho_{2}(1) \geq d(0)-d(0)$.
Assume now that the above inequality is true for all $i<n$. We will prove the theorem for n. Observe that for $k=0$ the result is obviously true.
Let $1 \leq k \leq n$. The Stirling numbers of the second kind satisfy the well-known 'vertical' recurrence relation

$$
S(n, k)=\sum_{i=k-1}^{n-1}\binom{n-1}{i} S(i, k-1)
$$

Combining this with the 'triangular' recurrence relation

$$
S(n, k)=S(n-1, k-1)+k S(n-1, k)
$$

we obtain

$$
k S(n, k)=\sum_{i=k-1}^{n-1}\binom{n}{i} S(i, k-1) .
$$

Thus

$$
\begin{aligned}
\rho_{2}(k S(n, k)) & =\rho_{2}\left(\sum_{i=k-1}^{n-1}\binom{n}{i} S(i, k-1)\right) \\
& \geq \min _{k-1 \leq i \leq n-1}\left\{\rho_{2}\left(\binom{n}{i}\right)+d(k-1)-d(i)\right\}
\end{aligned}
$$

(by the induction hypothesis)
$=\min _{k-1 \leq i \leq n-1}\{d(n-i)+d(k-1)-d(n)\}$
(by the Kummer identity)
$=d(k-1)-d(n)+1$.
So,

$$
\begin{aligned}
\rho_{2}(S(n, k)) & \geq d(k-1)-\rho_{2}(k)+1-d(n) \\
& =d(k)-d(n) .
\end{aligned}
$$

3. Proof of Lengyel's conjecture

We use induction on n. For $n=0, \rho_{2}(S(1,1))=\rho_{2}(1)=0=d(1)-1$. We assume the theorem is true for all powers 2^{i} where $i<n$. We will prove that the theorem holds for 2^{n}. By Theorem 2

$$
\begin{equation*}
S\left(2^{n}, k\right)=\sum_{i=0}^{k} \sum_{j=i}^{k}\binom{j}{i} \frac{(k-i)!}{(k-j)!} S\left(2^{n-1}, k-i\right) S\left(2^{n-1}, j\right) . \tag{1}
\end{equation*}
$$

We will take a closer look at the 2-adic valuation of each term in this sum (1).

$$
\begin{aligned}
\rho_{2} & \left(\binom{j}{i} \frac{(k-i)!}{(k-j)!} S\left(2^{n-1}, k-i\right) S\left(2^{n-1}, j\right)\right) \\
& =\rho_{2}\left(\binom{j}{i}\right)+\rho_{2}((k-i)!)-\rho_{2}((k-j)!)+\rho_{2}\left(S\left(2^{n-1}, k-i\right)\right)+\rho_{2}\left(S\left(2^{n-1}, j\right)\right) \\
& =\rho_{2}\left(\binom{j}{i}\right)+\rho_{2}((k-i)!)-\rho_{2}((k-j)!)+d(k-i)+d(j)-2
\end{aligned}
$$

(by the induction hypothesis)

$$
=d(i)+d(j-i)-d(j)+(k-i)-d(k-i)-(k-j)+d(k-j)+d(k-i)+d(j)-2
$$

(by the Kummer and Legendre identities)
$=d(i)+d(j-i)+j-i+d(k-j)-2$.
The inequality of Lemma 1 implies that

$$
d(i)+d(j-i)+j-i+d(k-j)-2 \geq d(j)+j-i+d(k-j)-2 \geq d(k)-2+j-i
$$

Since $j \geq i$, the 2 -adic valuation of every term in the sum is at least $d(k)-2$. To prove that the 2 -adic valuation of the global sum (1) equals $d(k)-1$ we will calculate the number of terms with 2 -adic valuation $d(k)-2$ and the number of terms with 2 -adic valuation $d(k)-1$. These two results together will show that the 2 -adic valuation of (1) equals $d(k)-1$.

For $k=1$ the theorem holds since $\rho_{2}\left(S\left(2^{n}, 1\right)\right)=\rho_{2}(1)=0=d(1)-1$, for all $n \in \mathbb{N}$. So assume $k \neq 1$.

Case 1 : $d(i)+d(j-i)+j-i+d(k-j)-2=d(k)-2$.

Since $d(i)+d(j-i)+d(k-j) \geq d(k)$ and $j \geq i$, this situation can occur only when $j=i$ and $d(i)+d(k-i)=d(k)$. By Lemma 1 this holds only when i and $k-i$ have no non-zero binary digit in common, or equivalently, when $\varepsilon_{\lambda}(i)+\varepsilon_{\lambda}(k-i)=\varepsilon_{\lambda}(k)$, for all $\lambda \in \mathbb{N}$. If $\varepsilon_{\lambda}(k)=1$ (this occurs $d(k)$ times), the possible values for $\varepsilon_{\lambda}(i)$ are 0 and 1 . If $\varepsilon_{\lambda}(k)=0$, then $\varepsilon_{\lambda}(i)=0$ as well.
So, for a given k, there are $2^{d(k)}$ possibilities for $i=j$. We need to modify this number of possibilities since it includes the non-occurring situations $i=j=0$ and $i=j=k$. This means we have $2^{d(k)}-2$ terms in (1) with 2-adic valuation $d(k)-2$.
In the case where $d(k)=1$, i.e. $k=2^{m}$, there are no terms satisfying the condition. When $d(k)>1$, these $2^{d(k)}-2$ terms contribute, in total, $M 2^{d(k)-1}$ to (1).
We will show that M is odd. Let $O(i)$ be the odd part of $S\left(2^{n-1}, i\right)$. Consider the sum in this case

$$
\begin{aligned}
& \sum_{\substack{i=1 \\
d(i)+d(k-i)=d(k)}}^{k-1} S\left(2^{n-1}, k-i\right) S\left(2^{n-1}, i\right) \\
= & \sum_{\substack{i=1 \\
d-1}}^{k-1)+d(k-i)=d(k)}<
\end{aligned} O(k-i) O(i) 2^{d(k)-2} .
$$

The latter expression is invariant under switching i and $k-i$ and since $i=k / 2$ (in the case k even) never occurs $(d(k / 2)+d(k / 2)=2 d(k) \neq d(k))$ we obtain

$$
\sum_{\substack{i=1 \\ d(i)+d(k-i)=d(k) \\ i<k / 2}}^{k-1} O(k-i) O(i) 2^{d(k)-1}
$$

This last expression consists of an odd number, $2^{d(k)-1}-1$, of terms, so it contributes, in total, $M 2^{d(k)-1}$ to (1), where M is odd.

Case 2: $d(i)+d(j-i)+j-i+d(k-j)-2=d(k)-1$.

Since $d(i)+d(j-i)+d(k-j) \geq d(k)$ and $j \geq i$, this situation can occur only when $j=i+1$ and $d(i)+d(k-i-1)=d(k)-1$ or when $j=i$ and $d(i)+d(k-i)=d(k)+1$.

Case 2.1 : $d(i)+d(k-i-1)=d(k)-1$ and $j=i+1$.

Since $d(k-1) \leq d(i)+d(k-i-1)=d(k)-1, k$ must be odd. We have $d(i)+d((k-1)-i)=$ $d(k-1)$. As in Case 1, there are $2^{d(k-1)}$ possible values for i (the case $i=k$ doesn't occur and the case $i=0$ and $j=1$ is allowed). This is an even number of terms since $k \neq 1$.

Case 2.2: $d(i)+d(k-i)=d(k)+1$ and $j=i$.

By Lemma 1 this can occur only when there is just one value of $\lambda \in \mathbb{N}$ for which $\varepsilon_{\lambda}(i)=$ $\varepsilon_{\lambda}(k-i)=1$. Moreover one must have $\varepsilon_{\lambda+1}(i)=\varepsilon_{\lambda+1}(k-i)=0$. This implies that $\varepsilon_{\lambda}(k)=0$ and $\varepsilon_{\lambda+1}(k)=1$. Following the same reasoning as in Case 1 with the remaining $d(k)-1$ non-zero binary digits of k, we have $2^{d(k)-1}$ possibilities for i (the cases $i=0$ and $i=k$ don't occur).
So there are $2^{d(k)-1}$ terms in (1) which come under Case 2.2 (and thus have 2-adic valuation $d(k)-1)$. When $d(k)=1$, this number is 1 , otherwise it is even.

After considering all the possible cases and counting the number of terms with 2-adic valuation $d(k)-2$ and 2-adic valuation $d(k)-1$, we can conclude that $\rho_{2}\left(S\left(2^{n}, k\right)\right)=d(k)-1$.

An overview of all the cases is given in the following table.

	Case $\mathbf{1}$ coefficient of $2^{d(k)-2}$	Case $\mathbf{2 . 1}$ coefficient of $2^{d(k)-1}$	Case $\mathbf{2 . 2}$ coefficient of $2^{d(k)-1}$	coefficient of $\mathbf{2}^{\mathbf{d (k})-\mathbf{1}}$
$\mathbf{d}(\mathbf{k})=\mathbf{1}(\mathbf{k} \neq \mathbf{1})$	0	0	odd	odd
$\mathbf{d}(\mathbf{k})>\mathbf{1} \& \mathbf{k}$ odd	$2 \times$ odd	even	even	odd
$\mathbf{d}(\mathbf{k})>\mathbf{1} \& \mathbf{k}$ even	$2 \times$ odd	0	even	odd

References

[1] S. De Wannemacker, Polynomials annihilating the Witt ring and 2-adic valuation of Stirling numbers, Math. Nachr. (to appear).
[2] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, a foundation for computer science, Addison Wesley, 1989.
[3] T. Lengyel, On the divisibility by 2 of the Stirling numbers of the second kind, The Fibonacci Quarterly 32, 1994, pp. 194-201.
[4] L. Comtet, Advanced Combinatorics, D. Reidel, 1974.

