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Abstract

Let N0 denote the set of non-negative integers. In this paper we prove that

lim sup
t→∞

∣∣{(n, m) ∈ N2
0 : n!m! = t

}∣∣ = 6.

1. Introduction

Let N0 denote the set of non-negative integers. In this paper we will prove that

lim sup
t→∞

∣∣{(n, m) ∈ N2
0 : n!m! = t

}∣∣ = 6.

We use three techniques to prove this result. First, it is not difficult to generate an infinite
set of t each of which has at least 6 representations as a product of factorials thus establishing
the lower bound. We then use considerations of the number of times two divides t in order
to show that all of the solutions must be near each other. Lastly we use some analytic
techniques analogous to those in [1].

The following three conjectures also seem likely.

Conjecture 1.
max

∣∣{(n, m) ∈ N2
0 : n!m! = t

}∣∣ = 6.

Conjecture 2.
lim sup

t→∞

∣∣{(n, m) ∈ N2 : n!m! = t
}∣∣ = 4.

Conjecture 3.
max

∣∣{(n, m) ∈ N2 : n!m! = t
}∣∣ = 4.

It is true that conjecture 3 would imply both other conjectures, and that any of these
conjectures is stronger than our main theorem.
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2. The lower bound

Notice that for any integer n > 2, we have that

(n!)! = 0! · (n!)! = 1! · (n!)! = n! · (n! − 1)! = (n! − 1)! · n! = (n!)! · 1! = (n!)! · 0!.

Therefore, we have that

lim sup
t→∞

∣∣{(n, m) ∈ N2
0 : n!m! = t

}∣∣ ≥ 6.

3. The first technique

For a positive integer n, let e(n) denote the largest k so that 2k divides n. Notice that

e(n!) =

�log2(n)�∑
i=1

⌊ n

2i

⌋
=

�log2(n)�∑
i=1

n

2i
−

�log2(n)�∑
i=1

O(1)

= n + O(log n).

Therefore we have that if n!m! = t, then e(n!) + e(m!) = e(t), and therefore, n + m +
O(log n + log m) = e(t). Since (n/2)n/2 < n! < t, we have that n < log t for sufficiently large
t. Therefore, for sufficiently large t, n+m+O(log log t) = e(t). Hence if n1!m1! = n2!m2! = t,
then n1 + m1 = n2 + m2 + O(log log t). This fact provides an elementary proof that for fixed
t the number of solutions to n!m! = t is O(log log t) because by convexity of the log of the
factorial function, at most two solutions to n!m! = t have a given sum of n + m, and this
sum cannot vary by more than O(log log t).

4. The second technique

Our second technique is similar to that used in [1]. We begin with the following lemma:

Lemma 1. If F (x) : R → R is an infinitely differentiable function and if F (x) = 0 for
x = x1, x2, ..., xn+1 (where x1 < x2 < ... < xn+1), then F (n)(y) = 0 for some y ∈ (x1, xn+1).

Proof. We proceed by induction on n. The case of n = 1 is Rolle’s Theorem. Given the
statement of Lemma 2.1 for n − 1, if there exists such an F with n + 1 zeroes, x1 < x2 <
... < xn+1, then by Rolle’s theorem, there exist points yi ∈ (xi, xi+1) (1 ≤ i ≤ n) so that
F ′(yi) = 0. Then since F ′ has at least n roots, by the induction hypothesis there exists a y
with x1 < y1 < y < yn < xn+1, and F (n)(y) = (F ′)(n−1)(y) = 0.
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We now state a lemma that helps us to count the number of integer points on smooth
curves.

Lemma 2. Let f : R → R be a Ck function. Suppose that for x ∈ (a, b), that

0 <

∣∣∣∣ 1

k!

∂k

∂xk
f(x)

∣∣∣∣ < α.

Then if we have a < x0 < x1 < ... < xk < b where xi ∈ Z and f(xi) ∈ Z for all 0 ≤ i ≤ k,

then xk − x0 ≥ α
−2

k(k+1) .

Proof. Let

g(x) =
k∑

i=0

f(xi)
∏

0≤j≤k
i�=j

x − xj

xi − xj

be the polynomial of degree k that interpolates f at the xi. Let h(x) = f(x) − g(x). Then
h(xi) = 0. Hence by Lemma 1 we have that for some a < x0 < y < xk < b that ∂k

∂xk h(y) = 0.
Or that (

1

k!

∂k

∂xk
f(x)

)
x=y

=

(
1

k!

∂k

∂xk
g(x)

)
x=y

=
k∑

i=0

f(xi)
∏

0≤j≤k
j �=i

1

xi − xj

.

Therefore,

s =

(
1

k!

∂k

∂xk
f(x)

)
x=y

is an integer multiple of M =
∏

0≤i<j≤k
1

xj−xi
. Therefore, either s = 0 or else |s| ≥ M . But

by assumption, 0 < |s| < α. Therefore, α ≥ |s| ≥ M . Hence α ≥ (xk − x0)
−k(k+1)

2 , and hence

we have that α
−2

k(k+1) ≤ xk − x0 as desired.

We will also make use of a generalization of Stirling’s formula which states that:

log(Γ(z + 1)) = (z +
1

2
) log(z) − z +

1

2
log(2π) + O(z−1)

uniformly for �(z) > 0. This follows readily from the m = 2 case of

log Γ(z + 1) =
1

2
log(2π) +

(
z +

1

2

)
log(z) − z

+
m∑

j=1

B2j

(2j − 1)(2j)z2j−1
− 1

2m

∫ ∞

0

B2m(x − [x])

(x + z)2m
dx.

where B2j and B2m are the Bernoulli numbers and Bernoulli polynomials (see [2]).
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5. The Strategy

We have yet to prove that for sufficiently large t∣∣{(n, m) ∈ N2
0 : n!m! = t

}∣∣ ≤ 6.

It is sufficient to show that |{(n, m) ∈ N2
0 : n ≥ m, n!m! = t}| ≤ 3 for all sufficiently large t.

We will split solutions of this form into three overlapping cases:

1. m < exp(2
√

log log t)

2. m > exp(
√

log log t), n − m > (log t)25/36

3. n − m < (log t)26/36

Furthermore, we will show by our results from sections 3 and 4, that for all sufficiently
large t, that all integer solutions to n!m! = t lie in one of these regions.

Define the function f : R → R implicitly by Γ(f(x) + 1)Γ(x + 1) = t. It is clear that

f ′(x) = − g(x)

g(f(x))

where

g(x) =
∂

∂x
log Γ(x + 1) = log(x) + O(x−1)

(by our strong form of Stirling’s formula). So

f ′(x) = − log x + O(1)

log(f(x))
.

So if we have two pairs of solutions (n1, m1), (n2, m2) to n ≥ m, n!m! = t, where m2 > m1,
then

O(log log t) > n2 + m2 − (n1 + m1) =

∫ m2

m1

1 + f ′(x)dx.

We need to show that if there are solutions with m too big for region 1, there are none
with m too small for region 2, and that if there are solutions with m too small for region 3,
there are none with m too big for region 2.

We can show the first of these by verifying that for sufficiently large t∫ exp(2
√

log log t)

exp(
√

log log t)

1 + f ′(x)dx >

∫ exp(2
√

log log t)

exp(
√

log log t)

log t − 4
√

log log t + O(1)

log t
dx

= exp(2
√

log log t) + O(1)

� log log t.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5 (2005), #A02 5

This shows that for sufficiently large t, it is impossible to have two solutions, one of which
has m too small to be in region 2, and the other of which has m too large to be in region 1
since this would imply that n1 + m1 − (n2 + m2) � log log t.

Now if x1 and x2 are the numbers so that f(x2) − x2 = (log t)25/36 and f(x1) − x1 =
(log t)26/36, we notice that since the log of the gamma-function is convex that x2 − x1 >
1
3
(log t)26/36. Thus we verify the second of these statements by noticing that∫ x2

x1

1 + f ′(x)dx >
1

3
(log t)26/36(1 + f ′(x2))

>
1

3
(log t)26/36 log(f(x2)/x2) + O(x−1

2 )

log(f(x2))

> Ω

(
(log t)26/36 (f(x2) − x2)/x2

log(f(x2))

)
= Ω

(
(log t)15/36

log log t

)
� log log t.

Recall that a(t) = Ω(b(t)) means that there exists a constant c > 0 so that for all sufficiently
large t, a(t) > cb(t), and that a(t) = Θ(b(t)) means that there exist c1 > 0 and c2 > 0 so
that for all sufficiently large t, c1a(t) > b(t) > c2a(t).

In section 6, we will cover the case where there are solutions in the first region. In section
7, we will cover the case where there are solutions in the second region. In section 8, we will
cover the case where there are solutions in the third region.

6. The First Region

In this section, we will prove that for sufficiently large t, that there are at most 2 solutions
to n!m! = t with 0 < m ≤ exp(

√
log log t).

Notice that

e

(
(n + x)!

n!

)
= e((n + x)!) − e(n!)

=
∞∑
i=1

⌊
n + x

2i

⌋
−

⌊ n

2i

⌋
=

�log x�∑
i=1

x

2i
+ O(1) + max

n<c≤n+x
e(c) − log x

= x + max
n<c≤n+x

e(c) + O(log x).

Therefore, if we have any two such solutions, n1!m1! = n2!m2! = t, with n1 > n2 then
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e
(

n1!
n2!

)
= e

(
m2!
m1!

)
. Therefore,

n1 − n2 + O(log(n1 − n2)) + max
n1<c≤n2

e(c) ≥ m2 − m1 + O(log(m2 − m1)).

Which implies that

max
n1<c≤n2

e(c) > (m2 − m1) − (n1 − n2) + O(log(m2 − m1)).

Notice that if n1!m1! = n2!m2!, then n1!
n2!

= m2!
m1!

, and therefore, m2−m1 > (n1−n2) · log n2

log m2
.

Now, n2 log n2 > log t − 2
√

log log t exp(2
√

log log t). Therefore, n2 = Ω( log t
log log t

), so log n2 =

Ω(log log t). Hence m2 − m1 = Ω(
√

log log t)(n1 − n2). Therefore, we have that

max
n1<c≤n2

e(c) > (m2 − m1)(1 + O((log log t)−1/2)) + O(log(m2 − m1))

= Ω(m2 − m1)

= Ω(
√

log log t).

Therefore, if we have three solutions in region 1, (n1, m1), (n2, m2), (n3, m3) with 0 <
m1 < m2 < m3, then we have that there exist n3 < c1 ≤ n2 < c2 ≤ n1 with e(ci) =
Ω(

√
log log t). Therefore, since min(e(x), e(y)) ≤ e(x − y), we have that e(c2 − c1) =

Ω(
√

log log t). Therefore, n1 − n3 > c2 − c1 > exp(Ω(
√

log log t)). But we notice that
this and previous inequalities imply that

m3 + n3 − (m1 + n1) = Ω(
√

log log t) exp(Ω(
√

log log t)).

Since this cannot be O(log log t), we have that for sufficiently large t, there are at most 2
solutions with m �= 0 in region 1. Hence there are at most 3 solutions in region 1.

7. The Second Region

In this section we will show that there are at most 2 solutions with m > exp(
√

log log t)
and n − m > (log t)25/36. Recall that f : R → R so that Γ(f(x) + 1)Γ(x + 1) = t. This
is defined in the range we are interested in, because the gamma-function is increasing. Let
g(x) = log Γ(x + 1). So g(f(x)) + g(x) = log t. Differentiating implicitly, we get that

f ′(x) = − g′(x)

g′(f(x))
.

Therefore,

f ′′(x) = − g′′(x)

g′(f(x))
+ f ′(x)

g′(x)g′′(f(x))

(g′(f(x)))2

= −g′′(x)(g′(f(x)))2 + (g′(x))2g′′(f(x))

(g′(f(x)))3
.
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By differentiating our strong form of Stirling’s formula, we find that for f(x) > x

f ′′(x) = −(log f(x))2x−1 + (log x)2(f(x))−1(1 + O(x−1))

((log f(x)) + O(f(x)−1))3
.

Therefore, for all sufficiently large t, for x > exp(
√

log log t) and f(x) − x > (log t)25/36 we
have that

0 <

∣∣∣∣12f ′′(x)

∣∣∣∣ < O

(
1

x(log f(x))

)
.

Assume for sake of contradiction that we have three solutions to n!m! = t in region 2
(ni!mi! = t for 1 ≤ i ≤ 3 where mi < mi+1). Then we have that mi is an integer and that
f(mi) is an integer. Since between m1 and m3 we have that

0 <

∣∣∣∣12f ′′(x)

∣∣∣∣ < O

(
1

m1

)
.

Therefore, by Lemma 2, m3−m1 > Ω(m
1/3
1 ). But we also have that (m3 +n3)− (m1 +n1) =

O(log log t). Therefore∫ m1+Ω(m
1/3
1 )

m1

(log f(x)) − log x

log f(x)
dx = O(log log t).

Now we have that for x in the range we are concerned with that

(log f(x)) − log x

log f(x)
= Ω

(
(f(x) − x)/x

log f(x)

)
= Ω((log t)−11/36).

Therefore, it must be that m1 = O((log log t)3(log t)11/12). But in this range, the integrand
we are concerned with is at least 1

12
+ o(1). Therefore, it must be that m1 = O((log log t)3)

which does not hold. Therefore, for sufficiently large t, there are at most 2 solutions in region
2.

8. Region Three

In this section we will show that there are at most 3 solutions in region 3 for sufficiently
large t. This proof depends on the fact that if n and m are integers, then so are n + m and
(n − m)2 and applications of Lemma 2 and results from section 3.

Suppose that Γ((a+
√

x+2)/2)Γ((a−√
x+2)/2) = t, where x = O(a3/2). Then we have
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by our strong form of Stirling’s formula that

log t =
a +

√
x + 1

2
log

(
a +

√
x

2

)
+

a −√
x + 1

2
log

(
a −√

x

2

)
−a + log 2π + O(a−1)

= (a + 1) log(a/2) − a + log(2π)

+
a +

√
x + 1

2
log

(
1 +

√
x

a

)
+

a −√
x + 1

2
log

(
1 −

√
x

a

)
+ O(a−1)

= (a + 1) log(a/2) − a + log(2π) +
x

a
+ O(a−1).

Therefore, we have that

x = a log

(
t

2π

)
− a(a + 1) log

(a

2

)
+ a2 + O(1).

Let a0 be the positive real value so that (Γ((a0/2) + 1))2 = t. So then we have that

a0 log

(
t

2π

)
− a0(a0 + 1) log

(a0

2

)
+ a2

0 = O(1).

It is also true that a0 = O(log t). If we pick an a so that

a log

(
t

2π

)
− a(a + 1) log

(a

2

)
+ a2 + O(1) < (log t)16/11.

Then there must be a unique complex x with |x| ≤ (log t)16/11 so that Γ((a+
√

x+2)/2)Γ((a−√
x + 2)/2) = t. Since the derivative of

a log

(
t

2π

)
− a(a + 1) log

(a

2

)
+ a2

is

log

(
t

2π

)
− (2a + 1) log

(a

2

)
+ a − 1

and since its second derivative is O(log a), this should hold as long as |a−a0| < O((log t)9/20).
Furthermore, for a in this range, x attains all values with |x| ≤ (log t)13/9. This allows use
to define an analytic function h(a) defined on |a − a0| < O((log t)29/20) so that

Γ

(
a +

√
h(a)

2
+ 1

)
Γ

(
a −

√
h(a)

2
+ 1

)
= t.

Furthermore, h(a) attains all values of absolute value at most (log t)13/9 when |a − a0| =
O(log t)5/9. Additionally, we have that

h(a) = a log

(
t

2π

)
− a(a + 1) log

(a

2

)
+ a2 + O(1).
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Since the O(1) is uniform in the region stated, its third derivative when |a−a0| = O(log t)13/29

(notice that 4/9 < 13/29 < 9/20) can be written using Cauchy’s Integral formula as∫
C

O((z − a)−4)dz,

where C is a contour that traverses a circle centered at a of radius Ω((log t)9/20) once in the
counter-clockwise direction. This is O((log t)−27/20). Therefore, when |h(a)| < (log t)13/9 we
have that

h′′′(a) =
∂3

∂a3

(
a log

(
t

2π

)
− a(a + 1) log

(a

2

)
+ a2

)
+ O((log t)−27/20)

= −1

a
+ O((log t)−27/20).

Since it is clear by Stirling’s formula that a0 = Θ
(

log t
log log t

)
we have that for sufficiently large

t, when |h(a)| ≤ (log t)13/9 then 0 < |h′′′(a)| < O
(

log log t
log t

)
.

Now suppose for sake of contradiction that (ni, mi) are distinct region 3 solutions for
1 ≤ i ≤ 4. Then ni + mi ∈ Z and h(ni + mi) = (ni −mi)

2 ∈ Z. Furthermore, |h(ni + mi)| ≤
(log t)13/9. Then since in the range between the ni + mi we have that 0 < |h′′′(a)| <

O
(

log log t
log t

)
, Lemma 2 implies that the difference between the largest and smallest of the

ni + mi is at least

Ω

((
log t

log log t

)1/6
)

.

Since this is larger than O(log log t), we have from results in section 3, that for sufficiently
large t, this is impossible.

Hence there are at most three solutions in region 3 for sufficiently large t.

9. Conclusions

Hence we have proved our result that

lim sup
t→∞

∣∣{(n, m) ∈ N2
0 : n!m! = t

}∣∣ = 6.

Notice that all of our statements about there being at most 6 solutions for “sufficiently large
t” can be made effective, although this was not done in this paper. I do not believe that the
effective bound that is achieved would be small enough to allow for a reasonable proof that
there are at most 6 solutions for any t, at least without further insight.
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