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Abstract

We provide a complete characterization of substitution invariant inhomogeneous bi-
directional pointed Sturmian sequences. The result is analogous to that obtained by
Berthé et al. [5] and Yasutomi [21] for one-directional Sturmian words. The proof is con-
structive, based on the geometric representation of Sturmian words by a cut-and-project
scheme.

1. Introduction

Sturmian words have been extensively studied from many aspects. Several equivalent
definitions as aperiodic words of minimal complexity C(n) = n + 1, as balanced aperi-
odic sequences or as mechanical words have been derived already in [9, 16]. Recently,
new characterizations have been developed using return words [20] or using palindromic
structure [10]. For a survey of results known on Sturmian words we refer, for example,
to [14, 4].

Among the properties of Sturmian words that have been in focus during the past
few years is their invariance under non-trivial substitutions and a weaker property of
substitutivity, according to the slope α and intercept β of the Sturmian word. If β = 0,
the Sturmian word is called homogeneous, otherwise inhomogeneous. The first results
of this kind are found in [7]. Then it has been shown independently by several au-
thors [8, 12, 13, 3] that a homogeneous one-directional Sturmian word is invariant under
a substitution if and only if the slope α is a Sturm number. Parvaix [17] has given a suf-
ficient condition for an inhomogeneous one-directional Sturmian word to be substitution
invariant. However, his condition does not include all substitution invariant Sturmian
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words. In another paper [18] he studies inhomogeneous bi-directional non-pointed Stur-
mian words and proves that they are invariant under substitution if and only if the slope
α is a Sturm number and the intercept β belongs to the field Q(α). Yasutomi [21] solved
the question of substitution invariance of inhomogeneous one-directional Sturmian se-
quences. Berthé et al. [5] give an alternative proof and describe the matrices of the
corresponding substitutions.

The question of substitutivity of Sturmian words seems to be less difficult to solve.
It has been derived in [6] that Sturmian words are substitutive if and only if their slope
α is a quadratic number and the intercept β belongs to Q(α). This is in fact a result
analogous to [1], which provides a characterization of substitutive words coding 3-interval
exchanges.

In our paper we provide a complete characterization of substitution invariant inho-
mogeneous bi-directional pointed Sturmian sequences. The result is analogous to that
of [21, 5]. However, the method used here is rather simpler and novel in the study of
substitution properties of Sturmian words. It is based on the geometric representation of
Sturmian words by a cut-and-project scheme. It is worth noting that similar reasoning
can be used for characterizing substitution invariant infinite words that code an orbit
under a 3-interval exchange transformation. An important advantage is that our paper
is self-contained and does not use any deep results from elsewhere, except the simple
fact that incidence matrix of Sturmian morphisms has unit determinant, which follows
from [3]. The main result proved in our paper is the following.

Theorem 1.1. Let α be an irrational number, α ∈ (0, 1), β ∈ [0, 1). The pointed bi-
directional Sturmian word with slope α and intercept β is invariant under a non-trivial
substitution if and only if the following three conditions are satisfied:

(i) α is a quadratic irrational with conjugate α′ /∈ (0, 1), i.e. α is a Sturm number,

(ii) β ∈ Q(α),

(iii) α′ ≤ β′ ≤ 1 − α′ or 1 − α′ ≤ β′ ≤ α′, where β′ is the image of β under the Galois
automorphism of the quadratic field Q(α).

For the proof of Theorem 1.1 we need to recall the basic notion of substitutions
(Section 2), define a geometric representation of a Sturmian word and show that it can
be recast in an algebraic formalism (Section 3). Then we prove a necessary and sufficient
condition for substitution invariance of Sturmian words in terms of fixed points of a map
gλ. This result is stated as Theorem 4.5 in Section 4 and proved in Section 5. Using
the study of fixed points of gλ (Section 6) we show that the condition of Theorem 4.5 is
equivalent to the simple algebraic criterion given in Theorem 1.1 (Section 7). Note that
the proof given here is constructive. For a given Sturmian word with slope α and intercept
β that satisfies conditions (i)–(iii) of Theorem 1.1 one can determine the substitution as
described in Section 8.
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We use the notation N for the set of positive integers and N0 = {0} ∪ N.

2. Preliminaries

In this paper we study pointed bi-directional Sturmian words

(un)n∈Z = · · ·u−2u−1|u0u1u2 · · ·

For every such word (un)n∈Z there exists an irrational α ∈ (0, 1) (slope) and a real
β ∈ [0, 1) (intercept) such that

either un = sα,β(n) := �(n + 1)α + β� − �nα + β� , for n ∈ Z,

or un = sα,β(n) := �(n + 1)α + β� − �nα + β� , for n ∈ Z.

It is obvious that (un)n∈Z is a binary word on the alphabet {0, 1}. One can show that
the densities of letters 0 and 1 in the word (un)n∈Z defined above are well defined

�(0) := lim
n→∞

number of 0 in the word u−n · · ·u−1|u0u1 · · ·un

2n + 1
= 1 − α ,

�(1) := lim
n→∞

number of 1 in the word u−n · · ·u−1|u0u1 · · ·un

2n + 1
= α .

Denote A∗ the free monoid generated by the alphabet A = {0, 1} endowed with the
operation of concatenation. A map ϕ of A∗ into itself such that ϕ(uv) = ϕ(u)ϕ(v) for
all pairs of finite words u, v is called a morphism. The morphism is non-erasing, if ϕ(i)
is not an empty word for any i ∈ A. A non-erasing morphism ϕ is called a substitution.
The action of ϕ can be extended to infinite words (un)n∈Z = · · ·u−2u−1|u0u1u2 · · · by
· · ·ϕ(u−2)ϕ(u−1)|ϕ(u0)ϕ(u1)ϕ(u2) · · · . We say that the word (un)n∈Z is invariant under
the substitution ϕ, if

· · ·ϕ(u−2)ϕ(u−1)|ϕ(u0)ϕ(u1)ϕ(u2) · · · = · · ·u−2u−1|u0u1u2 · · ·

One can associate with every substitution on a binary alphabet a matrix A ∈ Z2×2 by

Aij = number of letters j in the word ϕ(i) , i, j ∈ {0, 1} .

This matrix is called the incidence matrix of the substitution. Note that the term in-
cidence matrix is sometimes used for the transpose AT . If ϕ is a morphism that maps
a Sturmian word to a Sturmian word, it is called Sturmian morphism. Every Sturmian
morphism is clearly non-erasing, i.e. is a substitution. As a consequence of [3] the inci-
dence matrix A of a non-trivial (i.e. non-identic) Sturmian morphism is irreducible and
has determinant ±1.

If (un)n∈Z is invariant under substitution ϕ and if the densities of letters 0 and 1 are
well defined, then the vector (�(0), �(1)) is a left eigenvector of A. In particular, if a
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bi-directional Sturmian word of slope α is invariant under a substitution, then (1−α, α)
is a left eigenvector of the non-negative irreducible integer matrix A. This eigenvector
corresponds according to Perron-Frobenius theorem to the dominant eigenvalue, say λ,
of A, which is called the substitution factor.

The characteristic polynomial of the matrix A is a monic quadratic polynomial with
integer coefficients. The substitution factor λ is thus a quadratic integer. Let us denote
by λ′ the algebraic conjugate of λ, i.e. the other root of the characteristic polynomial.
Since det A = ±1, we have λλ′ = ±1. The substitution factor λ is thus an algebraic
unit λ > 1 and λ′ ∈ (−1, 1). Without loss of generality we consider the matrix A of
determinant +1, hence λ′ ∈ (0, 1). (If (un) is invariant under some substitution ϕ with
matrix A, then it is invariant also under ϕ2 with matrix A2.)

Necessarily, the components of the eigenvector (1−α, α) belong to the quadratic field
Q(λ) = {a + bλ | a, b ∈ Q}. The Galois automorphism on this field is defined by the
prescription

x = a + bλ �→ x′ = a + bλ′ .

Since A has integer components, its second eigenvalue is λ′ and left eigenvectors
corresponding to λ′ are scalar multiples of (1 − α′, α′). As a consequence of the Perron-
Frobenius theorem, the components of this eigenvector must have opposite signs, i.e.
α′(1 − α′) < 0, which implies that α′ /∈ (0, 1). We have thus derived by a simple
argument a necessary condition in order that a Sturmian word is invariant under a non-
trivial substitution.

Proposition 2.1. If a Sturmian word with irrational slope α ∈ (0, 1) and intercept β ∈
[0, 1) is invariant under a non-trivial substitution, then α is a quadratic irrational number
with algebraic conjugate α′ /∈ (0, 1).

Note that the condition given in the above proposition means that α is a Sturm
number. Sturm numbers can be defined using continued fractions [8], here we use the
characterization of Allauzen [2]. For β = 0 the condition is also sufficient, as it was shown
by several authors [3, 8, 12, 13]. From now on we consider Sturmian words the slope of
which is a Sturm number.

As we have said, bi-directional Sturmian words can be described using mechani-
cal words sα,β or sα,β. Let (un)n∈Z be a pointed bi-directional word in the alphabet
{0, 1}. Let us define a word (vn)n∈Z by vn = u−n−1, i.e. · · · v−2v−1|v0v1v2 · · · =
· · ·u2u1u0|u−1u−2 · · · . We define also an infinite word (wn)n∈Z by wn = 1 − vn for
all n ∈ Z. Obviously, either all the three pointed bi-directional infinite words (un)n∈Z,
(vn)n∈Z, (wn)n∈Z are invariant under a non-trivial substitution, or none of them is. It is
easy to see that

un = sα,β(n) = �(n + 1)α + β� − �nα + β�
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implies

vn = sα,1−β(n) = �(n + 1)α + 1 − β� − �nα + 1 − β� ,

wn = s1−α,β(n) = �(n + 1)(1 − α) + β� − �n(1 − α) + β� .

Therefore in the study of invariance of pointed bi-directional Sturmian sequences under
a substitution we shall focus on the words sα,β. Since sα,β is invariant under a non-trivial
substitution if and only if s1−α,β is, we consider without loss of generality words

un = �(n + 1)α + β� − �nα + β�, n ∈ Z,

α ∈ (0, 1) quadratic irrational, α′ < 0, (1)

β ∈ [0, 1).

If an infinite word is invariant under a non-trivial substitution, it can be geometrically
represented using a selfsimilar set Σ ⊂ R. We say that Σ is selfsimilar, if there exists
λ > 1 (called the selfsimilarity factor of Σ) such that λΣ ⊂ Σ. The selfsimilar set
which represents a substitution invariant word is defined in the following way. Denote
by �(0) and �(1) the components of a positive right eigenvector of the incidence matrix
A corresponding to the dominant eigenvalue λ. Define

t0 = 0,

tn =
n−1∑
i=0

�(ui) for n ≥ 1,

tn = −
−1∑
i=n

�(ui) for n ≤ −1.

Then the set Σ = {tn | n ∈ Z} satisfies

λΣ ⊂ Σ . (2)

From the construction of the sequence (tn)n∈Z we have

tn+1 − tn = �(un) for all n ∈ Z.

Remark 2.2. The fact that
(

�(0)
�(1)

)
is a right eigenvector of the incidence matrix A cor-

responding to the eigenvalue λ ensures that for every n ∈ Z such that tn+1 − tn = �(0),
the sequence of distances in the set Σ between points λtn and λtn+1 is the same. Similar
statement is true for all n ∈ Z such that tn+1 − tn = �(1). This fact is illustrated on
Figure 1.

Recall that if (un)n∈Z satisfies conditions (1) and is invariant under a non-trivial
substitution with matrix A, then (1−α, α) is a left eigenvector of A corresponding to the
eigenvalue λ, and (1 − α′, α′) is a left eigenvector of A corresponding to the eigenvalue
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Figure 1: Action of a substitution on the geometric representation of its fixed point.

λ′. Since left and right eigenvectors corresponding to different eigenvalues are mutually
orthogonal, every right eigenvector of the matrix A corresponding to the eigenvalue λ
must be orthogonal to (1−α′, α′). However, this determines the eigenvector uniquely to
be, up to a scalar multiple,

( −α′

1−α′

)
. Since α is a Sturm number and satisfies (1), both

components of this vector are positive, for the geometric representation Σ of the infinite
word (un)n∈Z we can choose the lengths �(0) = −α′ and �(1) = 1 − α′.

3. Geometric representation of Sturmian words

Let the word (un)n∈Z, and numbers α, β satisfy conditions (1). The set

Σα,β := {tn | n ∈ Z} ,

where

t0 = 0 and tn+1 − tn =

{
−α′, if un = 0 ,

1 − α′, if un = 1 ,

is called the geometric representation of the word (un)n∈Z. Note that the distances
between adjacent points of Σα,β depend only on the slope and not on the intercept of the
corresponding Sturmian word (un)n∈Z. The distance −α′ corresponding to the letter 0
is shorter, we will use the notation S = −α′. The longer distance corresponding to the
letter 0 is denoted by L = 1 − α′.

Remark 3.1. From what has been said and from Remark 2.2 it is obvious that (un)n∈Z
is invariant under a non-trivial substitution if and only if there exists a quadratic unit
λ > 1, with conjugate λ′ ∈ (0, 1), such that λΣα,β ⊂ Σα,β, and for every n, such that
un = 0, the segments of the set Σα,β between points λtn and λtn+1 are the same, and for
every n, such that un = 1, the segments of the set Σα,β between points λtn and λtn+1 are
the same.
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Let us therefore study the properties of Σα,β.

Proposition 3.2. Let α, β satisfy (1). Then

Σα,β = {a − bα′ | a − bα ∈ (β − 1, β]} .

Proof. If a − bα ∈ (β − 1, β], then a = �bα + β�. Therefore

{a − bα′ | a − bα ∈ (β − 1, β]} = {yn := �nα + β� − nα′ | n ∈ Z} .

From (1), (yn)n∈Z is a strictly increasing sequence and y0 = 0. Let us calculate the
distances between consecutive points yn, yn+1.

yn+1 − yn = �(n + 1)α + β� − �nα + β� − α′ = un − α′ .

Thus (yn)n∈Z = (tn)n∈Z, as desired.

It is useful to introduce for a quadratic α and its algebraic conjugate α′ the sets

Z[α] = {a + bα | a, b ∈ Z} and Z[α′] = {a + bα′ | a, b ∈ Z} .

The above sets are generally distinct additive abelian groups, generally not closed under
multiplication. (For example, the Sturm number α, root of the polynomial 2x2−1, is not
an algebraic integer and satisfies α2 = 1

2
/∈ Z[α].) Clearly Z[α] and Z[α′] are subsets of

the field Q(α) = Q(α′). Restriction of the Galois automorphism of Q(α) on Z[α], resp.
Z[α′] is an isomorphism between these groups. Obviously, we have(

Z[α]
)′

= Z[α′] and
(
Z[α′]

)′
= Z[α].

The set Σα,β representing the Sturmian word (un)n∈Z can therefore be written as

Σα,β = {x ∈ Z[α′] | x′ ∈ (β − 1, β]}.

Let us mention that Σα,β is a particular case of the so-called cut-and-project set. In
fact, the abelian groups Z[α], Z[α′] arise by projection of points of the lattice Z2 to the
lines with slopes α′, α respectively. More precisely, every lattice point (−b, a) ∈ Z2 can
be written as

(−b, a) = (a + bα)�x1 + (a + bα′)�x2 ,

where

�x1 =
1

α′ − α
(1, α′) and �x2 =

1

α − α′ (1, α) .

The isomorphism a + bα �→ (a + bα)′ = a + bα′ between Z[α] and Z[α′] is a correspon-
dence between two projections of the same lattice point. A cut-and-project sequence is
constructed by first projection of lattice points which have the second projection in a
bounded interval Ω; this amounts to

Σα(Ω) = {x ∈ Z[α′] | x′ ∈ Ω} .
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Figure 2: Construction of a cut-and-project sequence.

In this notation, we have Σα,β = Σα

(
(β − 1, β]

)
. The construction of Σα,β as a cut-and-

project set is illustrated on Figure 2. For more details about the general definition of
cut-and-project sets we refer to [15], the onedimensional case useful for our considerations
is described together with its properties in [11].

The following proposition shows the relation of the selfsimilarity factor of Σα,β to the
abelian group Z[α′].

Proposition 3.3. Let α, β satisfy conditions (1) and let λ > 1 be a quadratic unit with
λ′ ∈ (0, 1). Then λΣα,β ⊂ Σα,β if and only if λZ[α′] = Z[α′].

Proof. First let us show that the selfsimilarity of Σα,β implies λZ[α′] = Z[α′]. Find
n, m ∈ Z, so that tn+1 − tn = −α′, tm+1 − tm = 1 − α′.

λtn+1, λtn ∈ Σα,β ⊂ Z[α′] =⇒ −λ(tn+1 − tn) = λα′ ∈ Z[α′]

λtm+1, λtm ∈ Σα,β ⊂ Z[α′] =⇒ λ(1 − α′) ∈ Z[α′]

}
=⇒ λ ∈ Z[α′].

Since λ · 1 and λα′ belong to Z[α′] and from the fact that Z[α′] is closed under addition,
it follows that λZ[α′] ⊂ Z[α′].

Since λ is a unit, it satisfies λ2 + Aλ + 1 = 0 for some A ∈ Z. We thus have λ−1 =
−(λ+A) ∈ Z[α′] and λ−1α′ = −(λ+A)α′ ∈ Z[α′], which together imply λ−1Z[α′] ⊂ Z[α′],
which completes the first part of the proof.
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For the opposite implication let us show that λZ[α′] = Z[α′] implies λΣα(Ω) =
Σα(λ′Ω) for every bounded interval Ω. It is a consequence of the following equalities,

λΣα(Ω) = λ{x ∈ Z[α′] | x′ ∈ Ω} = {λx ∈ λZ[α′] | λ′x′ ∈ λ′Ω} =

= {y ∈ Z[α′] | y′ ∈ λ′Ω} = Σα(λ′Ω) .

Directly from the definition of Σα(Ω) it follows that Σα(Ω1) ⊂ Σα(Ω2) if Ω1 ⊂ Ω2. Since
0 ∈ (β − 1, β] and λ′ ∈ (0, 1), we have λ′(β − 1, β] ⊂ (β − 1, β] and therefore

λΣα,β = Σα

(
λ′(β − 1, β]

)
⊂ Σα

(
(β − 1, β]

)
= Σα,β .

As a byproduct of the proof of the above proposition we have the following result.

Corollary 3.4. Let α satisfy (1) and let λZ[α′] = Z[α′]. Then λΣα(Ω) = Σα(λ′Ω) for
every bounded interval Ω.

4. A necessary and sufficient condition

Let us study the structure of the set Σα,β. Since Σα,β ⊂ Z[α′], every element of Σα,β

is of the form x′, where x′ is the image of an x ∈ Z[α] ∩ (β − 1, β] under the Galois
automorphism of Q(α). The distances between adjacent elements of Σα,β take values
L = 1 − α′ or S = −α′. Therefore the right neighbour of a given x′ ∈ Σα,β is either
x′ + 1 − α′ or x′ − α′, according to whether x + 1 − α ∈ (β − 1, β] or x − α ∈ (β − 1, β].
We can thus define a function f : (β − 1, β] → (β − 1, β] by

f(x) =

{
x + 1 − α if x ∈ (β − 1 , β − 1 + α] =: ΩL,

x − α if x ∈ (β − 1 + α , β] =: ΩS.

From the graph of the function f , illustrated of Figure 3, it is obvious that f is a
2-interval exchange transformation [19]. The Sturmian word (un)n∈Z, defined by equa-
tion (1) and represented by Σα,β is a coding of the orbit of 0 under the map f , i.e. un = 0
if fn(0) ∈ ΩS, and un = 1 if fn(0) ∈ ΩL.

Remark 4.1. In terms of the sequence (tn)n∈Z, which represents the set Σα,β, we have
f(t′n) = t′n+1. For the left end-point of the short distance tn+1 − tn = −α′ we have
t′n ∈ ΩS. Similarly, for the left end-point of the long distance tn+1 − tn = 1 − α′ we have
t′n ∈ ΩL.

Remark 4.2. Since α is irrational, we have fn(x) �= x for every n ∈ Z \ {0} and every
x ∈ (β−1, β]. The reason is that since fn(x) = x+n1(−α)+n2(1−α) for some n1, n2 ∈ Z
such that n1 + n2 = n, we obtain from fn(x) = x that n1(−α) + n2(1 − α) = 0, which
implies n1 = n2 = n = 0.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5 (2005), #A14 10

�

�f(x)

x
�

�
�

�
�

�
�

�
�

�
�

β − 1 β − 1 + α β

β

β − α

�

� �
�

Figure 3: The graph of the function f .

As a motivation for definition of another important function gλ(x), note another
property of the geometric representation of the word (un)n∈Z. The selfsimilarity λΣα,β ⊂
Σα,β = {tn | n ∈ Z} implies that

∀ tn ∈ Σα,β ∃m ∈ Z such that λtm ≤ tn < λtm+1 ,

see also Figure 1. This however implies that there exists an index i ≥ 0 such that
λtm = tn−i. For such tn−i we have

λ′t′m = t′n−i = f−i(t′n) ∈ λ′(β − 1, β] =⇒ t′m =
1

λ′f
−i(t′n) .

Definition 4.3. Let α, β satisfy conditions (1) and let λ > 1 be a quadratic unit with
conjugate λ′ ∈ (0, 1) such that λZ[α′] = Z[α′]. For x ∈ (β − 1, β] let

ind(x) := min{i ∈ N0 | f−i(x) ∈ λ′(β − 1, β]} and gλ(x) =
1

λ′f
−ind(x)(x) .

From what was said before the definition, it is obvious that the function gλ(x) is well
defined for x ∈ {t′n | n ∈ Z} = Z[α]∩ (β−1, β]. Since Z[α] is dense in R and the function
f is piece-wise linear, the function gλ(x) has sense for all x ∈ (β − 1, β]. The following
remark identifies two fixed points of gλ in Z[α] ∩ (β − 1, β].

Remark 4.4.

(a) Since ind(0) = 0, we have gλ(0) = 0.

(b) Since t0 = 0, we have λt−1 < t−1 < λt0 which implies gλ(t
′
−1) = t′−1.

The function gλ plays a crucial role in the characterization of substitution invariant
Sturmian sequences. A very important necessary and sufficient condition is stated in the
following theorem.
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Theorem 4.5. Let the sequence (un)n∈Z and numbers α, β satisfy conditions (1). Then
(un)n∈Z is invariant under a non-trivial substitution, if and only if there exists a quadratic
unit λ > 1 with conjugate λ′ ∈ (0, 1) such that λZ[α′] = Z[α′] and

gλ

(
{β, β − 1 + α}

)
⊂ {β, β − 1 + α} .

The proof of the above theorem is a technical one, but its ideas are rather important
and novel. Therefore we put it in a separate Section 5.

Remark 4.6. Consider (un)n∈Z, α, β satisfying (1). If a quadratic unit λ > 1 with
conjugate λ′ ∈ (0, 1) verifies λZ[α′] = Z[α′] and gλ

(
{β, β − 1 + α}

)
⊂ {β, β − 1 + α},

then (un)n∈Z is invariant under a non-trivial substitution, say ϕ and λ is its substitution
factor. Therefore the sequence (un)n∈Z is invariant also under the substitution ϕk for
arbitrary k ∈ N, which has the substitution factor λk. According to Theorem 4.5, the
substitution factor must satisfy gλk

(
{β, β − 1 + α}

)
⊂ {β, β − 1 + α}. As a consequence,

while verifying the necessary and sufficient condition of Theorem 4.5, we may limit our
considerations, without loss of generality, to suitable powers λk.

Theorem 4.5 easily implies several facts proved by other authors by different means.
We state them as Corollary 4.7 (cf. [18]) and Corollary 4.8 (cf. [8, 12, 13, 3]).

The definition of gλ and the condition gλ

(
{β, β − 1 + α}

)
⊂ {β, β − 1 + α} implies

the following result.

Corollary 4.7. Let (un)n∈Z be a Sturmian word with slope α ∈ (0, 1) and intercept β. If
(un)n∈Z is invariant under a non-trivial substitution, then β ∈ Q(α).

If β = 0, then t0 = β = 0. The definition of f implies f(β − 1 + α) = f(−1 + α) =
0 = β = t0, and thus t−1 = −1 + α′. Since according to Remark 4.4, t0 and t−1 are
fixed points of gλ, we obtain gλ{0,−1 + α} ⊂ {0,−1 + α}, by which the necessary and
sufficient condition of Theorem 4.5 is satisfied. For the following corollary it suffices to
realize that conditions (1) for α say that α is a Sturm number.

Corollary 4.8. Let (un)n∈Z be a Sturmian word with slope α ∈ (0, 1) and intercept β = 0.
Then (un)n∈Z is invariant under a substitution if and only if α is a Sturm number.

We shall further discuss the case β �= 0. Then β /∈ λ′(β − 1, β], and therefore
ind(β) �= 0. Since f−1(β) = β − 1 + α, we have gλ(β − 1 + α) = gλ(β). The condition
gλ

(
{β, β−1+α}

)
⊂ {β, β−1+α} is therefore equivalent to the fact that either β−1+α

or β is a fixed point of the function gλ.

Remark 4.9. For intercept β �= 0, Theorem 4.5 can be stated as follows:
Let the sequence (un)n∈Z and numbers α, β satisfy conditions (1) and let β �= 0. Then
(un)n∈Z is invariant under a non-trivial substitution, if and only if there exists a quadratic
unit λ > 1 with conjugate λ′ ∈ (0, 1) such that λZ[α′] = Z[α′] and

β or β − 1 + α is a fixed point of gλ .
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Determining the fixed points of gλ in Q(α) ∩ (β − 1, β] will be the subject of Section
6.

5. Proof of Theorem 4.5

The proof of Theorem 4.5 will be divided into two parts. The necessity of the condition
is given as Proposition 5.1 and the sufficiency of the condition as Proposition 5.3.

Proposition 5.1. Let (un)n∈Z, α, β satisfy conditions (1) and let (un)n∈Z be invariant
under a non-trivial substitution. Then there exists a quadratic unit λ > 1 with conjugate
λ′ ∈ (0, 1) such that λZ[α′] = Z[α′] and

gλ

(
{β, β − 1 + α}

)
⊂ {β, β − 1 + α} . (3)

Proof. In Section 2 we have explained that substitution invariance implies the existence
of a factor λ > 1 being a quadratic unit, with conjugate λ′ ∈ (0, 1), such that λΣα,β ⊂
Σα,β = {tn | n ∈ Z}. In fact, λ is the dominant eigenvalue of the incidence matrix.
Proposition 3.3 implies that λZ[α′] = Z[α′]. Let us show that the factor λ satisfies (3).

Important for our considerations is the partition of the interval (β − 1, β], given by
the discontinuity of the function f , into (β − 1, β] = ΩL ∪ ΩS. Recall that

ΩL = (β − 1, β − 1 + α] , ΩS = (β − 1 + α, β] .

Recall also that if tn+1 − tn = −α′, then according to Remark 4.1, the conjugate t′n of tn
satisfies t′n ∈ ΩS. Using the invariance under substitution, as explained in Remark 3.1,
we also know that the sequences of distances between points λtn and λtn+1 for all such n

coincide. It follows using Remark 4.1 that there exists an integer kS given as the length
of the word ϕ(0) such that

for i ∈ {0, 1, . . . , kS − 1} either f i(λ′ΩS) ⊂ ΩS or f i(λ′ΩS) ⊂ ΩL ,

and fkS(λ′ΩS) ⊂ λ′(β − 1, β] .
(4)

Similarly, for all n such that tn+1 − tn = 1−α′, i.e. for all n such that t′n ∈ ΩL, there
exists an integer kL given as the length of the word ϕ(1) such that

for j ∈ {0, 1, . . . , kL − 1} either f j(λ′ΩL) ⊂ ΩS or f j(λ′ΩL) ⊂ ΩL ,

and fkL(λ′ΩL) ⊂ λ′(β − 1, β] .
(5)

In the statements (4) and (5) we have used a simple fact which follows from the piece-
wise linearity of the function f , namely that if I1, I2 ⊂ (β − 1, β] are right-semi-closed
intervals, then f(I1 ∩ Z[α]) ⊂ I2 ∩ Z[α] implies f(I1) ⊂ I2.
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Now realize that every element of (Σα,β)′ = (β−1, β]∩Z[α] is covered by an iteration

f i(λ′t′n) for some n ∈ Z and some i ∈
{

{0, 1, . . . , kS − 1} if tn+1 − tn = −α′ ,

{0, 1, . . . , kL − 1} if tn+1 − tn = 1 − α′ .

Therefore

kS−1⋃
i=0

f i(λ′ΩS) ∪
kL−1⋃
j=0

f j(λ′ΩL) = (β − 1, β] , (6)

where the union of kS + kL intervals on the left hand side is disjoint.

As a consequence of (4) and (5) the discontinuity point β − 1 + α of the function f
and the boundary point β of the interval (β − 1, β] must be covered in the union (6) by
the boundary point of some interval f i(λ′ΩS) or f j(λ′ΩL). More precisely, we must have

either β = f i(λ′β) for some i ∈ {0, 1, . . . , kS − 1} ,
or β = f j

(
λ′(β − 1 + α)

)
for some j ∈ {0, 1, . . . , kL − 1} ,

(7)

and

either β − 1 + α = f i(λ′β) for some i ∈ {0, 1, . . . , kS − 1} ,
or β − 1 + α = f j

(
λ′(β − 1 + α)

)
for some j ∈ {0, 1, . . . , kL − 1} .

(8)

Let us study (7). If β = f i(λ′β) for i ∈ {0, 1, . . . , kS − 1}, then

ind(β) = i and β =
1

λ′f
−ind(β)(β) = gλ(β) .

On the other hand, if β = f j
(
λ′(β − 1 + α)

)
for j ∈ {0, 1, . . . , kL − 1}, then

ind(β) = j and β + α − 1 =
1

λ′f
−ind(β)(β) = gλ(β) .

This implies gλ(β) ∈ {β, β−1+α}. In the same way we derive from (8) that gλ(β−1+α) ∈
{β, β − 1 + α}.

Let us now show that the condition in Theorem 4.5 is sufficient. Thus from now
on, until the end of the present section we assume that for (un)n∈Z, α, β satisfying (1)
there exists a quadratic unit λ with conjugate λ′ ∈ (0, 1) such that λZ[α′] = Z[α′] and
gλ

(
{β, β − 1 + α}

)
⊂ {β, β − 1 + α}. First we introduce an indicator of how many

iterations of the function f are necessary to get from a point x ∈ λ′(β−1, β] back to this
interval. Formally, for an x ∈ λ′(β − 1, β] we let

rt(x) := min{i ∈ N | f i(x) ∈ λ′(β − 1, β]}. (9)
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The mapping which assigns to x ∈ λ′(β − 1, β] the image f rt(x)(x) ∈ λ′(β − 1, β] is in
symbolic dynamics known as the first return map. The assignment x �→ rt(x) is called
return time. The fact that this mapping is well defined follows from Corollary 3.4.

As a consequence of Corollary 3.4 and Remark 4.1 the function rt(x) is piece-wise
constant. The following observation about the relation between rt(x) and ind(x) will be
useful.

Observation 5.2. For all x ∈ λ′(β − 1, β] and all j ∈ {0, 1, . . . , rt(x) − 1},

ind
(
f j(x)

)
= j .

We are now in position to complete the proof of Theorem 4.5 by showing the sufficiency
of the condition.

Proposition 5.3. Let (un)n∈Z, α, β satisfy conditions (1). Let λ > 1 be a quadratic unit
with conjugate λ′ ∈ (0, 1) such that λZ[α′] = Z[α′] and

gλ

(
{β, β − 1 + α}

)
⊂ {β, β − 1 + α} .

Then (un)n∈Z is invariant under a non-trivial substitution.

Proof. We show that there exists a substitution with the factor λ, under which the
Sturmian word (un)n∈Z is invariant. From Proposition 3.3 it is clear that the geometric
representation Σα,β = {tn | n ∈ Z} of the word (un)n∈Z is selfsimilar with the selfsimilarity
factor λ. According to Remark 3.1, for existence of a substitution with the factor λ under
which (un)n∈Z is invariant, it suffices to prove that for every n ∈ Z such that un = 0, the
segments of the set Σα,β between points λtn and λtn+1 are the same, and for every n ∈ Z
such that un = 1, the segments between points λtn and λtn+1 are the same.

Let n0 ∈ Z be such that un0 = 0, i.e. tn0+1 − tn0 = S = −α′. Let us denote by
p and q the number of distances S and L respectively in the segment of Σα,β between
points λtn0 and λtn0+1. As a consequence of Corollary 3.4 and Remark 4.1 it holds that
rt(λ′t′n0

) = p+q and λ(tn0+1− tn0) = −λα′ = p(−α′)+q(1−α′). Since −α′ and 1−α′ are
linearly independent over Q, the expression of the number −λα′ in the base {−α′, 1−α′}
is unique. Since λ(tn+1 − tn) = −λα′ for all n such that un = 0, we have shown that
the number of distances S, L between points λtn and λtn+1 are constantly equal to p,
q respectively for all n such that un = 0. We need to show that the ordering of these
distances S and L between points λtn and λtn+1 is constant. This ordering determines
the substitution word for the letter 0.

Since rt(λ′t′n) is equal to the number of distances between points λtn and λtn+1, we
have rt(x) = p + q for all x ∈ λ′ΩS. Let us denote this constant by jS, i.e.

jS := rt(x) for some x ∈ λ′ΩS .
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In order to show that the ordering of the distances S and L between points λtn and λtn+1

is constant, it suffices to prove that

for all j ∈ {0, 1, . . . , jS − 1} either f j(λ′ΩS) ⊂ ΩS or f j(λ′ΩS) ⊂ ΩL . (10)

For contradiction, take the minimal index j ≤ jS − 1 such that f j(λ′ΩS) �⊂ ΩS and
f j(λ′ΩS) �⊂ ΩL. Then f j(λ′ΩS) is an interval and its interior contains the discontinuity
point β−1+α. This means that there exists an x ∈ λ′(β−1+α, β) = (λ′ΩS)◦ such that
f j(x) = β−1+α. Therefore f−j(β−1+α) = x ∈ λ′(β−1+α, β). Since j < jS = rt(x),
we derive using Observation 5.2 that ind

(
f j(x)

)
= ind(β − 1 + α) = j. Hence

1

λ′f
−j(β − 1 + α) = gλ(β − 1 + α) ∈ (β − 1 + α, β).

But this is a contradiction with the assumption gλ(β − 1 + α) ∈ {β, β − 1 + α}.

Similarly we can show that rt(x) is constant on λ′ΩL. We denote

jL := rt(x) for some x ∈ λ′ΩL

and by similar arguments as for jS we show that

for all j ∈ {0, 1, . . . , jL − 1} either f j(λ′ΩL) ⊂ ΩS or f j(λ′ΩL) ⊂ ΩL . (11)

It is now clear that the finite word which the substitution assigns to the letter 0, repre-
sented by the distance S, is the coding of the trajectory of λ′ΩS under the iterations
f j for j ∈ {0, 1, . . . , jS − 1}. Similarly we construct the substitution word for the letter
1.

6. Fixed points of gλ

A necessary condition so that a Sturmian word (un)n∈Z with parameters α, β is substi-
tution invariant, is that β ∈ Q(α), see Corollary 4.7. Such β can be written in the form
1
q
(a + bα) for some q ∈ N, a, b ∈ Z, i.e. β ∈ 1

q
Z[α].

We have seen in Remark 4.9 that in order to determine all substitution invariant
Sturmian words, we have to study when β or β−1+α is a fixed point of the function gλ.
For that we shall study the fixed points of gλ in 1

q
Z[α] ∩ (β − 1, β] for an arbitrary fixed

q ∈ N. Recall that gλ was defined for a quadratic unit λ > 1 whose conjugate λ′ ∈ (0, 1)
satisfies λ′Z[α] = Z[α] (cf. Definition 4.3). Therefore gλ has 1

q
Z[α] ∩ (β − 1, β] as an

invariant subset. Let us divide the set 1
q
Z[α] into a disjoint union of subsets - classes of

the following equivalence.

Definition 6.1. Let q ∈ N. We define an equivalence relation on 1
q
Z[α] by

x ∼q y ⇐⇒ x − y ∈ Z[α] for x, y ∈ 1

q
Z[α].
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It is obvious that the equivalence classes of ∼q are of the form

Tij :=
i + jα

q
+ Z[α] , i, j ∈ {0, 1, . . . , q − 1} ,

and thus their number is q2.

Recall that f acts as translation by 1− α or α. Therefore for every equivalence class
Tij, the set Tij ∩ (β − 1, β] is invariant under f . However, since the definition of gλ

uses except the function f also multiplication by the factor λ′, the set Tij ∩ (β − 1, β] is
generally not invariant under gλ. In order to determine for which λ the set Tij ∩ (β−1, β]
is invariant under gλ, it suffices to study the conditions, under which the class Tij is
closed under multiplication by λ′.

Proposition 6.2. Let α satisfy (1), let γ ∈ R such that γZ[α] = Z[α] and let q ∈ N.
Then there exists an integer k ∈ N such that γkTij = Tij for every equivalence class Tij

of ∼q.

Proof. First we show that the mapping ψ(Tij) := γTij is a well defined map on the set
of equivalence classes. For arbitrary i, j ∈ {0, 1, . . . , q − 1} we have γ i+jα

q
⊂ 1

q
Z[α] and

therefore there exist l, m ∈ {0, 1, . . . , q − 1} and a z ∈ Z[α] such that γ i+jα
q

= l+mα
q

+ z.
For ψ(Tij) we have

ψ(Tij) = γ

(
i + jα

q
+ Z[α]

)
=

l + mα

q
+ z + Z[α] = Tlm .

Now let us show that the map ψ is injective. For that it suffices to show

γ
i1 + j1α

q
− γ

i2 + j2α

q
∈ Z[α] ⇐⇒ (i1, j1) = (i2, j2) , (12)

for all i1, j1, i2, j2 ∈ {0, 1, . . . , q − 1}. A simple manipulation of the left hand side of (12)
leads us to

i1 − i2 + (j1 − j2)α

q
∈ 1

γ
Z[α] = Z[α] ,

which implies that q divides i1− i2 and j1−j2. This is possible only if i1 = i2 and j1 = j2.
The mapping ψ is therefore injective and hence a permutation on the set of q2 classes Tij,
i, j ∈ {0, 1, . . . , q − 1}. Necessarily there exists an exponent k so that ψk is the identity,
i.e. ψk(Tij) = γkTij = Tij, which completes the proof.

For β of the form β = a+bα
q

the numbers β and β−1+α belong to the same equivalence
class T . Thus according to Remark 4.6 and Proposition 6.2 we may consider without loss
of generality the quadratic unit λ such that λ′T = T , and study the fixed points of the
function gλ on its invariant subset (β − 1, β]∩T . In fact, in the proof of the main result,
we need only the class T which contains β and β − 1 + α (cf. proof of Corollary 7.2).
However, we prove the following statements for arbitrary class Tij.
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Let us study the image of the set (β − 1, β] ∩ Tij under the Galois automorphism.
Then(

(β − 1, β] ∩ Tij

)′
=

{
y′

∣∣∣ y ∈ Tij ∩ (β − 1, β]
}

=

=

{
i + jα′

q
+ z′

∣∣∣∣ z ∈ Z[α] ∩
(
β − 1 − i + jα

q
, β − i + jα

q

]}
=

=
i + jα′

q
+ Σα

((
β − 1 − i + jα

q
, β − i + jα

q

])
.

This means that
(
(β−1, β]∩Tij

)′
is the geometric representation of the Sturmian word of

slope α, intercept β− 1
q
(i+jα), translated by 1

q
(i+jα′). Therefore the set

(
(β−1, β]∩Tij

)′
is a discrete set where the distances of adjacent elements take values −α′, 1 − α′. Then
there exists a strictly increasing sequence (sn)n∈Z such that(

(β − 1, β] ∩ Tij

)′
= {sn | n ∈ Z} and f(s′n) = s′n+1 for every n ∈ Z .

Thus the sequence (s′n)n∈Z is an orbit under the function f of a point in the interval
(β − 1, β]. If Tij = T00 = Z[α], then {s′n | n ∈ Z} = {t′n | n ∈ Z} is the orbit of 0. The
sequence (sn)n∈Z for a class Tij �= Z[α] is illustrated on Figure 4.

0

︷ ︸︸ ︷ ︷ ︸︸ ︷︷ ︸︸ ︷
g

λ
g

λg
λ

s−3 �s−2

λs2

s−1s0 s1 s2 s3 s4 �s5

λs3

s6 s7 �s8

λs4

s9s10 s11 s12 s13 s14 �s15

λs5

Figure 4: Action of the mappings ind(x) : (β−1, β] → N0 and gλ : (β−1, β] → (β−1, β]
on the Galois image of points of (β − 1, β] ∩ Tij.

Bold points represent elements of the set λ{sn | n ∈ Z} ⊂ {sn | n ∈ Z}. They are
important for determination of the value ind(s′m) for m ∈ Z. In fact, ind(s′m) is the
number of steps to the first left neighbour of sm which belongs to the set λ{sn | n ∈ Z}.
For example,

ind(s′3) = 5 , ind(s′7) = 2 , ind(s′8) = 0 .

If we divide the first left neighbour of sm in λ{sn | n ∈ Z} by the factor λ, we obtain the
Galois conjugate of the value gλ(s

′
m). Clearly, several points may have the same image

under the mapping gλ. Such points are marked on Figure 4 by braces. For example, we
have

gλ(s
′
−2) = gλ(s

′
−1) = gλ(s

′
0) = gλ(s

′
1) = gλ(s

′
2) = gλ(s

′
3) = gλ(s

′
4) = s′2 ,

gλ(s
′
5) = gλ(s

′
6) = gλ(s

′
7) = s′3 ,

gλ(s
′
8) = gλ(s

′
9) = gλ(s

′
10) = gλ(s

′
11) = gλ(s

′
12) = gλ(s

′
13) = gλ(s

′
14) = s′4 .

With this in mind it is simple to describe all fixed points of the function gλ.
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Proposition 6.3. Let α, β satisfy (1), β ∈ 1
q
Z[α], and let λ > 1 be a quadratic unit with

conjugate λ′ ∈ (0, 1) such that all equivalences classes of ∼q are closed under multiplica-
tion by λ′. Let (sn)n∈Z be the strictly increasing sequence such that

(
(β − 1, β] ∩ T

)′
=

{sn | n ∈ Z} for an equivalence class T . Then s′n is a fixed point of gλ if and only if
sn ≤ 0 and sn+1 ≥ 0.

Proof. Note that

gλ(s
′
n) =

1

λ′f
−ind(s′n)(s′n) = s′n ⇐⇒ f−ind(s′n)(s′n) = λ′s′n .

This means that s′n being a fixed point of gλ is equivalent to the fact that among the
left neighbours of sn, the point λsn is the nearest one which has its Galois image in
λ′(β − 1, β] ∩ T . This is characterized by the two inequalities

λsn ≤ sn (13)

sn < λsn+1. (14)

Since λ > 1, the inequality (13) is equivalent with sn ≤ 0. Since sn+1 is the nearest
right neighbour of sn, inequality (14) can be equivalently written as sn+1 ≤ λsn+1, which
implies sn+1 ≥ 0.

Remark 6.4. Note that in Proposition 6.3, the necessary and sufficient condition for sn

to be a fixed point of the mapping gλ does not depend on λ. Therefore sn is either a
fixed point of gλ for all λ satisfying the assumptions of the proposition, or is not a fixed
point of gλ for any λ.

7. Substitution invariant Sturmian words

In this section we show that the necessary and sufficient condition of Theorem 4.5 is
equivalent to the inequalities given in Theorem 1.1. At the end we explain how to
construct a non-trivial substitution ϕ under which a given Sturmian word satisfying the
conditions of Theorem 1.1 is invariant.

A part of the construction requires to find for a given quadratic α a quadratic unit λ
such that λZ[α′] = Z[α′]. Obviously, if Z[α] is the ring of integers in Q(α), then such λ
trivially exists. However, in general α is even not an algebraic integer and thus Z[α] is
not closed under multiplication. For completeness we prove the existence of the factor λ

in the following simple lemma.

Lemma 7.1. For every quadratic irrational α there exists a quadratic unit λ > 1 such
that λ′ ∈ (0, 1) and λZ[α′] = Z[α′].
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Proof. Let α satisfy the equation Aα2+Bα+C = 0, where A, B, C ∈ Z, D = B2−4AC >

0 and
√

D is irrational. For α and its conjugate α′ we have α +α′ = −B
A
, αα′ = C

A
. First

we find an algebraic unit γ such that γZ[α] = Z[α].

Let x, y ∈ Z be a non-trivial solution of the Pell equation x2 − Dy2 = 1. Set γ :=
x + By + 2Ayα. We have

γ + γ′ = 2x + 2By + 2Ay(α + α′) = 2x ∈ Z ,

γγ′ = (x + By)2 + 2Ay(x + By)(α + α′) + 4A2y2αα′ = x2 − Dy2 = 1 ,

therefore γ is an algebraic unit. Since γ ∈ Z[α], for verifying the relation γZ[α] = Z[α]
it suffices that γα ∈ Z[α] and 1

γ
α ∈ Z[α]. We have

γα = (x + By)α + 2Ayα2 = (x + By)α + 2Ay
(
−B

A
α − C

A

)
∈ Z[α] ,

1
γ
α = γ′α = (x + By + 2Ayα′)α = (x + By)α + 2AyC

A
∈ Z[α] .

The relation γZ[α] = Z[α], which we have just proven, is equivalent to γ′Z[α′] = Z[α′].
Since γ is a unit, we have also γZ[α′] = Z[α′]. Now at least one of the numbers γ, γ′,
−γ, −γ′ is greater than 1. We choose it for the desired quadratic unit λ. Clearly, since
γ was found so that γγ′ = 1, we have λ′ ∈ (0, 1).

Corollary 7.2. Let (un)n∈Z, α, β satisfy conditions (1), and let 0 �= β ∈ Q(α). Then
(un)n∈Z is invariant under a non-trivial substitution if and only if

α′ ≤ β′ ≤ 1 − α′ . (15)

Proof. Let β ∈ 1
q
Z[α]. Due to Lemma 7.1 and Proposition 6.2 there exists a quadratic

unit λ with conjugate λ′ ∈ (0, 1) such that λ′Tij = Tij for every equivalence class of
∼q. (Note that the class of 1

q
Z[α] which contains 0 is Z[α], therefore the latter condition

implies λ′Z[α] = Z[α].)

According to Theorem 4.5 and to Remarks 4.9 and 6.4, for invariance under substi-
tution we have to show that inequality (15) is equivalent to the fact that β or β − 1 + α

is a fixed point of the function gλ.

Let us denote by T the equivalence class containing β and β − 1 + α, and by (sn)n∈Z
the strictly increasing sequence such that

(
T ∩ (β − 1, β]

)′
= {sn | n ∈ Z}. Since

f(β−1+α) = β, there exists an index n0 ∈ Z such that β′−1+α′ = sn0 and β′ = sn0+1.
According to Proposition 6.3 at least one of the points s′n0

or s′n0+1 is a fixed point of gλ

if and only if

sn0 ≤ 0 and 0 ≤ sn0+2 . (16)

We can substitute s′n0
= β − 1 + α and s′n0+2 = f(s′n0+1) = f(β) = β − α into (16)

to obtain that β or β − 1 + α is a fixed point of gλ if and only if β′ − 1 + α′ ≤ 0 and
β′ − α′ ≥ 0, which completes the proof.
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Proof of Theorem 1.1. Necessity of condition (i) (α being a Sturm number) has been
derived in Proposition 2.1. Corollary 4.7 says that (ii) (β ∈ Q(α)) is also a necessary
condition. Therefore it suffices to show that for Sturmian words with irrational slope
α ∈ (0, 1) and intercept β ∈ [0, 1) satisfying (i) and (ii), invariance under a non-trivial
substitution is equivalent to the condition (iii).

Recall that Sturmian words sα,β, s1−α,β and sα,1−β are either all substitution invariant,
or none of them. Also condition (iii) is satisfied either for all pairs of parameters (α, β),
(α, 1 − β) and (1 − α, β), or for none of them. Therefore it suffices to consider the
Sturmian word (un)n∈Z =

(
sα,β(n)

)
n∈Z with α′ < 0. For such a slope α the condition (iii)

has the form
α′ ≤ β′ ≤ 1 − α′ .

For β = 0 the latter is satisfied automatically. As a consequence of Corollary 7.2, for
β �= 0, the above inequality is equivalent with (un)n∈Z being substitution invariant.

8. Construction of the substitution

The proof given in this paper is constructive. For a given Sturmian word (un)n∈Z with
slope α and intercept β = 1

q
(a + bα) that satisfies conditions (i)–(iii) of Theorem 1.1 one

can determine a non-trivial substitution ϕ under which (un)n∈Z is invariant.

If a Sturmian word is invariant under a non-trivial substitution, then it is invariant
under many substitutions with different factors. All substitution factors λ are quadratic
units with conjugate λ′ ∈ (−1, 1) and satisfy λ′Z[α] = Z[α]. It is convenient to choose
the substitution with the smallest substitution factor λ0, because then the substitution
words ϕ(0), ϕ(1) are short. From the proof presented in the paper it follows that the
smallest quadratic unit λ > 1 with conjugate λ′ ∈ (0, 1), satisfying λ′Z[α] = Z[α] and
λ′T = T for T = β + Z[α′], is either λ = λ0 or λ = λ2

0.

Let us describe explicitly the algorithm for determining a substitution to a given
Sturmian word. This algorithm is a consequence of the proof of Proposition 5.3. First
we find, according to the construction in proof of Lemma 7.1, a quadratic unit λ > 1
with conjugate λ′ ∈ (0, 1) which satisfies λ′Z[α] = Z[α]. Every power of λ satisfies these
conditions, therefore we can assume that the chosen factor λ is such that λ′T = T for the
equivalence class T of ∼q, that contains β. If λ satisfies all of the above conditions, then we
define the substitution ϕ : {0, 1} → {0, 1}∗ in the following way. Put ϕ(0) = v0 · · · vjS−1,
where jS = rt(λ′β) is the smallest positive index such that f jS(λ′β) ∈ λ′(β − 1, β], and
let ϕ(1) = w0 · · ·wjL−1 where jL = rt

(
λ′(β − 1 + α)

)
is the smallest positive index such
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that f jL
(
λ′(β − 1 + α)

)
∈ λ′(β − 1, β]. Then we let

vi :=

{
0 if f i

(
λ′β

)
∈ ΩS ,

1 if f i
(
λ′β

)
∈ ΩL ,

for i ∈ {0, 1, . . . , jS − 1} ,

wi :=

{
0 if f i

(
λ′(β − 1 + α)

)
∈ ΩS ,

1 if f i
(
λ′(β − 1 + α)

)
∈ ΩL ,

for i ∈ {0, 1, . . . , jL − 1} .

Let us illustrate the construction of a substitution to a given Sturmian word on an
example.

Example 1. Let α = 1√
2
. Such α is a quadratic number, solution of 2x2 − 1 = 0. Its

algebraic conjugate is α′ = − 1√
2
. Since α ∈ (0, 1) and α′ < 0, α is a Sturm number.

Let us first find a quadratic unit λ > 0 with conjugate λ′ ∈ (0, 1) such that λ′Z[α] =
Z[α]. For that we use the constructive proof of Lemma 7.1. Since the coefficients of
the equation Ax2 + Bx + C = 2x2 − 1 = 0 of α are A = 2, B = 0, C = −1, we have
the discriminant D = B2 − 4AC = 8. For a solution of the Pell equation x2 − Dy2 =
x2 − 8y2 = 1 we can choose x = 3, y = 1. Then γ = x + By + 2Ayα = 3 + 4α. Since
γ > 1, we let λ = γ = 3 + 4α.

In order that the Sturmian word (un)n∈Z given by

un = �(n + 1)α + β� − �nα + β�

be invariant under a substitution, we need to choose the intercept β ∈ Q(
√

2) so that

− 1√
2

= α′ ≤ β′ ≤ 1 − α′ = 1 +
1√
2

.

For simplicity, we consider the example of β = 1
q
, for some q ∈ N, which clearly satisfies

the condition.

Now we have to take a power λs of λ, such that the multiplication by λ′s preserves the
equivalence classes Tij of ∼q in 1

q
Z[α]. It is not difficult to calculate that the multiplication

of Tij by λ′ gives λ′Tij = Tkl, where

k = 3i − 2j mod q and l = −4i + 3j mod q .

Clearly for q = 2 we have λ′Tij = Tij, whereas for q = 3 we have to take the fourth
power, i.e. λ′4Tij = Tij.

In order to illustrate the construction of a substitution, we let β = 1
2
. We will use the

function f in our case defined as

f(x) =

{
x + 1 − α if x ∈

(
−1

2
, −1

2
+ 1√

2

]
=: ΩL,

x − α if x ∈
(
−1

2
+ 1√

2
, 1

2

]
=: ΩS.
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We have to calculate iterations f i(λ′β) = f i(λ′ 1
2
), f i

(
λ′(β − 1 + α)

)
= f i

(
λ′(−1

2
+ 1√

2
)
)

until the first return to the interval λ′(β − 1, β],

f 0(λ′ 1
2
) = 3

2
− 2α ∈ ΩL ,

f 1(λ′ 1
2
) = 5

2
− 3α ∈ ΩS ,

f 2(λ′ 1
2
) = 5

2
− 4α ∈ ΩL ,

f 3(λ′ 1
2
) = 7

2
− 5α ∈ λ′Ω ,

thus jS = 3 and ϕ(0) = 101 .

Similarly, we have

f 0
(
λ′(−1

2
+ 1√

2
)
)

= −7
2

+ 5α ∈ ΩL ,

f 1
(
λ′(−1

2
+ 1√

2
)
)

= −5
2

+ 4α ∈ ΩS ,

f 2
(
λ′(−1

2
+ 1√

2
)
)

= −5
2

+ 3α ∈ ΩL ,

f 3
(
λ′(−1

2
+ 1√

2
)
)

= −3
2

+ 2α ∈ ΩL ,

f 4
(
λ′(−1

2
+ 1√

2
)
)

= −1
2

+ α ∈ ΩL ,

f 5
(
λ′(−1

2
+ 1√

2
)
)

= 1
2

∈ ΩS ,

f 6
(
λ′(−1

2
+ 1√

2
)
)

= 1
2
− α ∈ ΩL ,

f 7
(
λ′(−1

2
+ 1√

2
)
)

= 3
2
− 2α ∈ λ′Ω ,

thus jL = 7 and ϕ(1) = 1011101 .

The infinite word (un)n∈Z is a fixed point of the substitution

ϕ(0) = 101 , ϕ(1) = 1011101 .

Therefore (un)n∈Z can be generated from the initial pair of letters 1|1 by repeated appli-
cation of ϕ, i.e.

· · ·u−2u−1|u0u1u2 · · · = lim
n→∞

ϕn(1)|ϕn(1) .

The Sturmian word (un)n∈Z is geometrically represented by the set

Σα,β =
{
x ∈ Z[α′]

∣∣ x′ ∈ (−1
2
, 1

2
]
}

.

Since the boundary point 1
2

of the interval is not an element of Z[α], the set Σα,β is
symmetric with respect to the origin. This corresponds to the fact that the substitution
words ϕ(0) and ϕ(1) are palindromes.
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