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Abstract

We define the arithmetic function P by P (1) = 0, and P (n) = p1 + p2 + · · ·+ pk if n has the
unique prime factorization given by n =

∏k
i=1 pai

i ; we also define ω(n) = k and ω(1) = 0. We
study pairs (n, n + 1) of consecutive integers such that P (n) = P (n + 1). We prove that (5, 6),
(24, 25), and (49, 50) are the only such pairs (n, n + 1) where {ω(n), ω(n + 1)} = {1, 2}. We
also show how to generate certain pairs of the form (22npq, rs), with p < q, r < s odd primes,
and lend support to a conjecture that infinitely many such pairs exist.
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1. Introduction

For positive integers n, we define the arithmetic function P (n) by
P (1) = 0, and, for a positive integer n having as its unique prime factorization n = pa1

1 pa2
2 · · · pak

k ,

P (n) = p1 + p2 + · · · + pk.

That is, P (n) gives the sum of prime divisors of n without multiplicity taken into account. The
function is additive, in that P (m) + P (n) = P (mn) if (m,n) = 1.

This function compares to the arithmetic function defined for positive integers n by S(1) = 0
and S(n) =

∑k
i=1 aipi whenever n =

∏k
i=1 pai

i ; that is, S(n) gives the sum of primes dividing
n, taken with multiplicity. Then S(n) is completely additive, in that S(mn) = S(m) + S(n)
for any two positive integers m and n. A Ruth–Aaron pair is a pair (n, n + 1) of consecutive
integers such that S(n) = S(n + 1). These were first discussed by Pomerance et. al. [4], and
have been the subject of several articles (such as by Pomerance [6], Drost [2]) and numerous
websites since.

However, in this article we are interested in finding pairs of consecutive positive integers
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(n, n + 1), such that P (n) = P (n + 1). For the sake of easy reference, we may call these Ruth–
Aaron pairs of the second kind, or RAP2s for short. Note, however, that a RAP2 is also an
ordinary Ruth–Aaron pair if both members n and n + 1 are square-free.

Some observations regarding RAP2s are immediate. For example, the members (n, n + 1)
of a RAP2 are of opposite parity, and are relatively prime. Let n be a positive integer. If n

has the unique prime factorization n =
∏k

i=1 pai

i , then the prime powers pai

i , 1 ≤ i ≤ k, are
called the components of n, and we define ω(n) = k, ω(1) = 0 (thus ω counts the components
of n). For any given RAP2 (n, n + 1), since 2 divides exactly one of the members (all other
prime divisors of n and n + 1 being odd), we see that ω(n) and ω(n + 1) are of opposite parity.
In this article we shall completely determine all RAP2s (n, n + 1) whose members have one or
two components. We will also investigate RAP2s of the form (22npq, rs), with p < q, r < s odd
primes.

2. Preliminaries

If p is a prime and a, m, are positive integers we write pm‖a if pm | a and pm+1 � a. In
this case we say pm exactly divides a. For distinct primes p and q we write ep(q) to denote the
exponent to which q belongs modulo p.

For positive integers n, we denote the nth cyclotomic polynomial evaluated at x by Φn(x).
The cyclotomic polynomials (as shown by Niven [5], Ch. 3) may be defined inductively by

(1) xn − 1 =
∏
d|n

Φn(x).

By Theorems 94 and 95, Nagell [3], Ch. 5, we have

Lemma 1. Let p be and q be odd primes and let m be a positive integer. Let h = ep(q). Then
p | Φm(q) if and only if m = hpj for some integer j ≥ 0. If j > 0 then p‖Φhpj (q).

Lemma 2. Let q be an odd prime and let m be a positive integer. Then 2 | Φm(q) if and only
if m = 2j for some integer j ≥ 0. If j > 1 then 2‖Φ2j (q).

Let q be prime and let m > 0 be an integer. Since, by definition,

Φm(q) =
m−1∏
k=1

(k,m)=1

(q − e2πik/m),

and since Φm(q) > 0, we have

Φm(q) =
m−1∏
k=1

(k,m)=1

∣∣∣q − e2πik/m
∣∣∣ ,

and since |q − e2πik/m| ≥ q − 1 for 1 ≤ k ≤ m − 1, we have
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Lemma 3. For a prime q and an integer m > 0 we have Φm(q) ≥ (q − 1)φ(m).

3. RAP2s of the form (2apb, qc)

The smallest numbers of components the members of a RAP2 can have are 1 and 2. In this
instance, the members of the RAP2 have the form 2apb and qc for positive integers a, b, and c,
where p and q are necessarily twin (odd) primes (that is, p + 2 = q). We have two cases arising
in this instance, those being 2apb = qc ± 1. In this section we consider the easier case of the
two,

(2) 2apb = qc − 1.

Clearly c > 1, since 2apb ≥ 2(q − 2) = q + (q − 4) > q − 1. Thus, since q = p + 2, (2) factors as

2apb = (p + 1)(qc−1 + qc−2 + · · · + q + 1).

Since (p, p + 1) = 1, it follows that p + 1 = 2t for some positive integer t. Hence p = 2t − 1,
q = 2t + 1, which is possible only if t = 2; that is, p = 3 and q = 5. Then (2) becomes

2a3b = 5c − 1.

Since 5c ≡ 1 (mod 3), we have 2 | c, so we write c = 2γ for some positive integer γ. Thus

2a3b = (5γ − 1)(5γ + 1).

Since 2‖5γ + 1, we must have 3 | 5γ + 1. Since (5γ + 1, 5γ − 1) = 2, we have 3 � 5γ − 1. Hence

5γ − 1 = 2a−1, 5γ + 1 = 2 · 3b.

Certainly γ is odd (as 3 � 5γ − 1). Suppose γ > 1. Then

5γ − 1 = (5 − 1)(5γ−1 + 5γ−2 + · · · + 5 + 1).

But the second factor is odd, and greater than 1; this contradicts 5γ − 1 = 2a−1. Therefore
γ = 1, and so c = 2. Hence (2) becomes 23 · 3 = 52 − 1; that is, a = 3, b = 1, and we have the
RAP2 (24, 25). Hence the only RAP2 of the form (2apb, qc) is (24, 25).

4. RAP2s of the form (qc, 2apb)

Suppose now that

(3) 2apb = qc + 1

for positive integers a, b, and c, where p and q are primes such that p + 2 = q. This case is
more difficult than that in Section 3.
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By (1), we see that (3) is equivalent to

(4) 2apb =
∏
d|2c
d�c

Φd(q).

Let h = ep(q); we observe h = ep(2) as well (since q = p+2). By Lemmas 1 and 2, each divisor
d | 2c such that d � c must either have the form hpj for some integer j ≥ 0 or the form 2k for
some integer k ≥ 1. Writing c = 2ms for some integer m ≥ 0 and odd integer s, we see that
2m+1‖d for all divisors d | 2c such that d � c. In particular 2m+1‖h.

Suppose s is composite. Then t | s for some odd integer t such that 1 < t < s. Then by (4),
Φs(q)Φt(q) | 2apb. This is impossible as 2 � Φs(q)Φt(q) by Lemma 2, and, as 2 | h, we have
h � s, and so p � Φs(q)Φt(q) by Lemma 1. Hence either s is prime or s = 1.

Suppose s is prime. Then h = 2m+1s. For, if this were not the case then we would have
h = 2m+1; since 2 � Φ2c(q) by Lemma 2, it follows that either p � Φ2c(q) (if s �= p) or p‖Φ2c(q) (if
s = p) by Lemma 1. The former possibility clearly contradicts (4); the latter implies Φ2c(q) = p,
which is impossible as Φ2c(q) > p by Lemma 3.

Therefore, since h = 2m+1s, we have

(5) 2apb = Φ2m+1s(q)Φ2m+1(q)

by (4). This implies m = 0 because otherwise (5) is impossible since we have p � Φ2m+1(q),
2‖Φ2m+1(q), and Φ2m+1(q) > 2 by Lemmas 1, 2, and 3 respectively. Therefore h = 2s and

2apb = Φ2(q)Φ2s(q),

with 2a = Φ2(q) = q+1 and pb = Φ2s(q). But then q = 2a−1, so that p = 2a−3. It is clear that
a > 2, hence p ≡ 5 (mod 8). Thus 2 is a quadratic nonresidue of p, and hence 2(p−1)/2 ≡ −1
(mod p) by Euler’s criterion. Since 22 | p− 1 = 2a − 4, it follows that 22 | ep(2). But ep(2) = h,
and since h = 2s, we have 2‖h, a contradiction.

Therefore s = 1 and hence c = 2m for some integer m ≥ 0. Thus (3) becomes

(6) 2apb = q2m

+ 1.

First let us suppose that m > 1. Then q2m ≡ 1 (mod 4) so that a = 1. Hence

(7) 2pb = q2m

+ 1.

Since p | q2m

+ 1 = Φ2m+1(q), it follows from Lemma 1 that h = 2m+1; recalling as well
h = ep(2), it follows that p ≡ 1 (mod 2m+1). Since ep(2) = 2m+1 and Φ2m+1(2) = 22m

+ 1, it
follows from Lemma 1 that

(8) p | 22m

+ 1.

Suppose p = 2m+1t + 1 for some odd integer t. Then, as 22m ≡ −1 (mod p) by (8),

2(p−1)/2 = 22mt = (22m

)t ≡ (−1)t ≡ −1 (mod p),
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and hence
(

2
p

)
= −1 by Euler’s criterion, where

( ·
·
)

denotes the Legendre symbol. But, p ≡ 1

(mod 8), which implies
(

2
p

)
= +1, a contradiction. Therefore

(9) p ≡ 1 (mod 2m+2).

Suppose b > 2m. Then from (7) we have

2pb−2m

=
(

1 +
2
p

)2m

+
1

p2m .

By (9), p > 2m+2, and so

2pb−2m

<

(
1 +

1
2m

)2m

+ 1 < e + 1 < 4,

which implies 2p < 4, a contradiction. On the other hand, suppose b < 2m. Then by (6),

2 =
(

1 +
2
p

)b

(p + 2)2
m−b +

1
pb

> (p + 2)2
m−b ≥ p + 2,

a contradiction. Therefore we must have b = 2m, so that (7) becomes

(10) 2p2m

= q2m

+ 1.

Since q = p + 2, (10) becomes

p2m

= −p2m

+ (p + 2)2
m

+ 1

=
2m∑
k=1

(
2m

k

)
p2m−k2k + 1.(11)

Since by (9) p > 2m+2, we have for each k such that 1 ≤ k ≤ 2m,
(

2m

k

)
p2m−k2k =

2m(2m − 1)(2m − 2) · · · (2m − k + 1)
k!

· p2m−k2k

<
2mk

k!
· p2m−k2k

=
1
2k

· 1
k!

· p2m

.

Hence by (11),

p2m

<

2m∑
k=1

1
2k

· 1
k!

· p2m

+ 1 < p2m

(√
e − 1 +

1
p2m

)
< 0.8p2m

,

a contradiction.

Hence we have (6) with either m = 0 or m = 1. If m = 0 then (6) becomes

2apb = q + 1 = p + 3,
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implying p | 3, and hence p = 3, q = 5. Therefore 2a3b = 6, and so a = b = 1, and we have the
RAP2 (5, 6).

If m = 1 then (6) becomes
2apb = q2 + 1,

which implies a = 1 since q2 ≡ 1 (mod 4). Therefore

2pb = q2 + 1 = (p + 2)2 + 1 = p2 + 4p + 5,

implying p | 5, and hence p = 5, q = 7. Therefore 2 · 5b = 50, and so b = 2, and we have the
RAP2 (49, 50). Therefore the only RAP2s of the form (qc, 2apb) are (5, 6) and (49, 50).

We summarize our results from this and the previous section:

Theorem 1. The only RAP2s (n, n+1) such that {ω(n), ω(n+1)} = {1, 2} are (5, 6), (24, 25),
and (49, 50).

5. RAP2s of the form (22npq, rs)

We now turn our attention to RAP2s (n, n + 1) where {ω(n), ω(n + 1)} = {2, 3}. There are
88 such pairs less than 109. Of these, 41 have the form (4pq, rs), six have the form (16pq, rs),
and three have the form (64pq, rs), with p < q, r < s odd primes. Among the remaining 38
pairs, no discernable patterns emerged. These data led us to narrow our investigation to those
pairs of the form (22npq, rs), n ≥ 1.

Given such a pair, we have

2 + p + q = r + s,(12)

22npq + 1 = rs.(13)

By (12) we have integers x, y, and z such that

r = x − y, s = x + y,(14)

p = x − 1 − z, q = x − 1 + z.(15)

Substituting (14) and (15) into (13), and simplifying, gives us

((22n − 1)x − (22n + 1))(x − 1) = (2nz − y)(2nz + y),

which may be expressed as

(16)
(22n − 1)x − (22n + 1)

2nz − y
=

2nz + y

x − 1
=

a

b
,

where a/b represents the fractions in (16) in their lowest terms; thus (a, b) = 1. Separating the
variables x, y, and z in (16) gives us

(22n − 1)bx + ay − 2naz = (22n

+ 1)b,
ax − by − 2nbz = a,
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which we solve for x, y, in terms of z:

(a2 + (22n − 1)b2)x = 2n+1abz + a2 + (22n

+ 1)b2,(17)

(a2 + (22n − 1)b2)y = 2n(a2 − (22n − 1)b2)z + 2ab.(18)

Our data of RAP2s less than 109 revealed to us many different rational numbers for the quotient
a/b in (16), but some persisted more than others, especially 2/1 and 7/4 in the cases where
n = 1. Recognizing these values as solutions to the Pell equation a2 − 3b2 = 1, we decided to
assume that a, b, solved the Pell equation

(19) a2 − (22n − 1)b2 = 1

in the general case for n ≥ 1. Under this hypothesis, (17) and (18) simplify to

(2a2 − 1)x = 2n+1abz + 2a2 + 2b2 − 1,

(2a2 − 1)y = 2nz + 2ab.(20)

It is well known (e.g., as shown by Shockley [7], Ch. 12) that all positive solutions to (19) are
given by

a1 = 2n, b1 = 1,

aj+1 = 2naj + (22n − 1)bj (j ≥ 1),

bj+1 = aj + 2nbj (j ≥ 1).(21)

One shows by induction that 2n | ajbj for all j ≥ 1. Hence we may parametrize z from (20):
since y is an integer it follows that 2a2 − 1 divides 2nz + 2ab, and since 2a2 − 1 is odd we have

z ≡ −2ab

2n
(mod 2a2 − 1).

Thus z has the form given by

(22) z = (2a2 − 1)k + 2a2 − 1 − 2ab

2n

for integers k ≥ 0. Substituting (22) into (17) and (18) gives us

x = 2n+1abk + 2n+1ab − 2b2 + 1,(23)

y = 2nk + 2n.(24)

Substituting (22), (23), and (24) into (14) and (15) gives us

Theorem 2. Let integral n ≥ 1 be given and let a, b, be solutions to the Pell equation (19).
Then (22npq, rs) is a RAP2 if, for an integer k ≥ 0, the following four quantities are all prime:

p = 2(2n+1ab − 2a2 + 1)k +
(

2n+1 − 2b2 − 2a2 + 1 +
2ab

2n

)
,

q = 2(2n+1ab + 2a2 − 1)k +
(

2n+1 − 2b2 + 2a2 − 1 − 2ab

2n

)
,

r = 2n+1(2ab − 1)k + 2n(2ab − 1) − 2b2 + 1,

s = 2n+1(2ab + 1)k + 2n(2ab + 1) − 2b2 + 1.
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Note that we substituted 2k instead of k to ensure p and q as given in Theorem 2 are
odd. We also kept 2ab in the numerators above (rather than reduce to ab/2n−1) since the Pell
sequences (21) have the property b2j = 2ajbj (as well as a2j = 2a2

j −1). Moreover, one shows by
induction that for all n and k, if a3j , b3j in (21) are the solutions used in applying Theorem 2,
then at least one of p, q, r, and s is divisible by 3 (hence no RAP2 is produced).

There are 149 RAP2s of the form (22npq, rs) whose elements are less than 234. Of these, 116
correspond to n = 1, and 16 of these involve the solutions a1 = 2, b1 = 1 of the Pell equation
a2 − 3b2 = 1, while an additional 3 involve a2 = 7, b2 = 4. Also, 16 such RAP2s correspond to
n = 2, 3 of which involve the solutions a1 = 4, b1 = 1 of the equation a2 − 15b2 = 1, and 9 of
the RAP2s correspond to n = 3, 3 of which involve a1 = 8, b1 = 1 (a2 − 63b2 = 1). Finally, 3
of the RAP2s involve n = 4.

We had found the RAP2s less than 234 by a straightforward computer search. Later on, we
applied Theorem 2 to search for the RAP2s of the special form described in that theorem. We
found literally thousands of them. We computed them on a PC, using the UBASIC software
package. Primality of p, q, r, s, were verified by the APR primality test due to Adleman,
Pomerance, and Rumely [1].

6. Concluding Remarks

It is unknown if there are infinitely many RAP2s. The question of infinitude also remains
open for ordinary Ruth–Aaron pairs—see Pomerance [6] for a detailed history. In light of
Theorem 2, fixing n at say n = 1, if one could show that for each solution aj , bj , 3 � j, to (19),
there exists at least one k for which p, q, r, s, are all prime, then a proof of infinitely many
RAP2s of the form (4pq, rs) would be obtained. We have not been able to produce such a proof,
but we conjecture the existence of infinitely many RAP2s nonetheless.

We have also considered RAP2s (n, n + 1) for which {ω(n), ω(n + 1)} = {1, 4}. These would
be obtained by finding distinct odd primes p1, p2, p3, q, and positive integers a, b1, b2, b3, c,
such that

(25) 2 + p1 + p2 + p3 = q,

and such that

(26) 2apb1
1 pb2

2 pb3
3 = qc ± 1.

Let h = [ep1(q), ep2(q), ep3 (q)]. Then p1, p2, p3, all divide qc−1 only if h | c, in which case qh−1
divides 2apb1

1 pb2
2 pb3

3 . Thus if qh − 1 is found to contain any prime factors other than 2, p1, p2,
p3, then a contradiction is obtained. Using modular arithmetic, we can find α, β1, β2, β3, such
that 2α‖qh − 1 and pβi

i ‖qh − 1 (1 ≤ i ≤ 3). A contradiction is obtained if 2αpβ1
1 pβ2

2 pβ3
3 < qh − 1.

In the case of qc + 1, (26) becomes

2apb1
1 pb2

2 pb3
3 =

∏
d|2c
d�c

Φd(q)
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by (1). By Lemma 1, the primes p1, p2, p3, all divide qc + 1 only if ep1(q), ep2(q), and ep3(q)
are all even such that each quantity is exactly divisible by the same power of 2. In this case
we have qh/2 + 1 | 2apb1

1 pb2
2 pb3

3 . Thus a contradiction is obtained if qh/2 + 1 contains any prime
factors other than 2, p1, p2, or p3.

For all odd primes q < 20000, we found all triples of odd primes p1 < p2 < p3 satisfying (25),
and then we disproved the possibility of (25) and (26) by computation. We conjecture the
nonexistence of RAP2s (n, n+1) for which {ω(n), ω(n+1)} = {1, 4}, although we have not yet
obtained a proof.
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