ON CONSECUTIVE INTEGER PAIRS WITH THE SAME SUM OF DISTINCT PRIME DIVISORS

Douglas E. Iannucci, University of the Virgin Islands, St. Thomas VI 00802, USA

diannuc@uvi.edu

Alexia S. Mintos, University of the Virgin Islands, St. Thomas VI 00802, USA

Received: 1/10/05, Accepted: 5/28/05, Published: 6/29/05

Abstract

We define the arithmetic function P by $P(1)=0$, and $P(n)=p_{1}+p_{2}+\cdots+p_{k}$ if n has the unique prime factorization given by $n=\prod_{i=1}^{k} p_{i}^{a_{i}}$; we also define $\omega(n)=k$ and $\omega(1)=0$. We study pairs $(n, n+1)$ of consecutive integers such that $P(n)=P(n+1)$. We prove that $(5,6)$, $(24,25)$, and $(49,50)$ are the only such pairs $(n, n+1)$ where $\{\omega(n), \omega(n+1)\}=\{1,2\}$. We also show how to generate certain pairs of the form ($2^{2 n} p q, r s$), with $p<q, r<s$ odd primes, and lend support to a conjecture that infinitely many such pairs exist.

Keywords: Ruth-Aaron pairs, cyclotomic polynomials, Pell sequences, primes
Subject Class: 11A25, 11Y55

1. Introduction

For positive integers n, we define the arithmetic function $P(n)$ by $P(1)=0$, and, for a positive integer n having as its unique prime factorization $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$,

$$
P(n)=p_{1}+p_{2}+\cdots+p_{k} .
$$

That is, $P(n)$ gives the sum of prime divisors of n without multiplicity taken into account. The function is additive, in that $P(m)+P(n)=P(m n)$ if $(m, n)=1$.

This function compares to the arithmetic function defined for positive integers n by $S(1)=0$ and $S(n)=\sum_{i=1}^{k} a_{i} p_{i}$ whenever $n=\prod_{i=1}^{k} p_{i}^{a_{i}}$; that is, $S(n)$ gives the sum of primes dividing n, taken with multiplicity. Then $S(n)$ is completely additive, in that $S(m n)=S(m)+S(n)$ for any two positive integers m and n. A Ruth-Aaron pair is a pair $(n, n+1)$ of consecutive integers such that $S(n)=S(n+1)$. These were first discussed by Pomerance et. al. [4], and have been the subject of several articles (such as by Pomerance [6], Drost [2]) and numerous websites since.

However, in this article we are interested in finding pairs of consecutive positive integers
($n, n+1$), such that $P(n)=P(n+1)$. For the sake of easy reference, we may call these RuthAaron pairs of the second kind, or RAP2s for short. Note, however, that a RAP2 is also an ordinary Ruth-Aaron pair if both members n and $n+1$ are square-free.

Some observations regarding RAP2s are immediate. For example, the members ($n, n+1$) of a RAP2 are of opposite parity, and are relatively prime. Let n be a positive integer. If n has the unique prime factorization $n=\prod_{i=1}^{k} p_{i}^{a_{i}}$, then the prime powers $p_{i}^{a_{i}}, 1 \leq i \leq k$, are called the components of n, and we define $\omega(n)=k, \omega(1)=0$ (thus ω counts the components of n). For any given RAP2 $(n, n+1)$, since 2 divides exactly one of the members (all other prime divisors of n and $n+1$ being odd), we see that $\omega(n)$ and $\omega(n+1)$ are of opposite parity. In this article we shall completely determine all RAP2s $(n, n+1)$ whose members have one or two components. We will also investigate RAP2s of the form ($2^{2 n} p q, r s$), with $p<q, r<s$ odd primes.

2. Preliminaries

If p is a prime and a, m, are positive integers we write $p^{m} \| a$ if $p^{m} \mid a$ and $p^{m+1} \nmid a$. In this case we say p^{m} exactly divides a. For distinct primes p and q we write $e_{p}(q)$ to denote the exponent to which q belongs modulo p.

For positive integers n, we denote the $n^{t h}$ cyclotomic polynomial evaluated at x by $\Phi_{n}(x)$. The cyclotomic polynomials (as shown by Niven [5], Ch. 3) may be defined inductively by

$$
\begin{equation*}
x^{n}-1=\prod_{d \mid n} \Phi_{n}(x) . \tag{1}
\end{equation*}
$$

By Theorems 94 and 95, Nagell [3], Ch. 5, we have

Lemma 1. Let p be and q be odd primes and let m be a positive integer. Let $h=e_{p}(q)$. Then $p \mid \Phi_{m}(q)$ if and only if $m=h p^{j}$ for some integer $j \geq 0$. If $j>0$ then $p \| \Phi_{h p^{j}}(q)$.

Lemma 2. Let q be an odd prime and let m be a positive integer. Then $2 \mid \Phi_{m}(q)$ if and only if $m=2^{j}$ for some integer $j \geq 0$. If $j>1$ then $2 \| \Phi_{2^{j}}(q)$.

Let q be prime and let $m>0$ be an integer. Since, by definition,

$$
\Phi_{m}(q)=\prod_{\substack{k=1 \\(k, m)=1}}^{m-1}\left(q-e^{2 \pi i k / m}\right)
$$

and since $\Phi_{m}(q)>0$, we have

$$
\Phi_{m}(q)=\prod_{\substack{k=1 \\(k, m)=1}}^{m-1}\left|q-e^{2 \pi i k / m}\right|,
$$

and since $\left|q-e^{2 \pi i k / m}\right| \geq q-1$ for $1 \leq k \leq m-1$, we have

Lemma 3. For a prime q and an integer $m>0$ we have $\Phi_{m}(q) \geq(q-1)^{\phi(m)}$.

3. RAP2s of the form $\left(2^{a} p^{b}, q^{c}\right)$

The smallest numbers of components the members of a RAP2 can have are 1 and 2 . In this instance, the members of the RAP2 have the form $2^{a} p^{b}$ and q^{c} for positive integers a, b, and c, where p and q are necessarily twin (odd) primes (that is, $p+2=q$). We have two cases arising in this instance, those being $2^{a} p^{b}=q^{c} \pm 1$. In this section we consider the easier case of the two,

$$
\begin{equation*}
2^{a} p^{b}=q^{c}-1 . \tag{2}
\end{equation*}
$$

Clearly $c>1$, since $2^{a} p^{b} \geq 2(q-2)=q+(q-4)>q-1$. Thus, since $q=p+2$, (2) factors as

$$
2^{a} p^{b}=(p+1)\left(q^{c-1}+q^{c-2}+\cdots+q+1\right) .
$$

Since $(p, p+1)=1$, it follows that $p+1=2^{t}$ for some positive integer t. Hence $p=2^{t}-1$, $q=2^{t}+1$, which is possible only if $t=2$; that is, $p=3$ and $q=5$. Then (2) becomes

$$
2^{a} 3^{b}=5^{c}-1 .
$$

Since $5^{c} \equiv 1(\bmod 3)$, we have $2 \mid c$, so we write $c=2 \gamma$ for some positive integer γ. Thus

$$
2^{a} 3^{b}=\left(5^{\gamma}-1\right)\left(5^{\gamma}+1\right) .
$$

Since $2 \| 5^{\gamma}+1$, we must have $3 \mid 5^{\gamma}+1$. Since $\left(5^{\gamma}+1,5^{\gamma}-1\right)=2$, we have $3 \nmid 5^{\gamma}-1$. Hence

$$
5^{\gamma}-1=2^{a-1}, \quad 5^{\gamma}+1=2 \cdot 3^{b}
$$

Certainly γ is odd (as $3 \nmid 5^{\gamma}-1$). Suppose $\gamma>1$. Then

$$
5^{\gamma}-1=(5-1)\left(5^{\gamma-1}+5^{\gamma-2}+\cdots+5+1\right) .
$$

But the second factor is odd, and greater than 1 ; this contradicts $5^{\gamma}-1=2^{a-1}$. Therefore $\gamma=1$, and so $c=2$. Hence (2) becomes $2^{3} \cdot 3=5^{2}-1$; that is, $a=3, b=1$, and we have the RAP2 $(24,25)$. Hence the only RAP2 of the form $\left(2^{a} p^{b}, q^{c}\right)$ is $(24,25)$.

4. RAP2s of the form $\left(q^{c}, 2^{a} p^{b}\right)$

Suppose now that

$$
\begin{equation*}
2^{a} p^{b}=q^{c}+1 \tag{3}
\end{equation*}
$$

for positive integers a, b, and c, where p and q are primes such that $p+2=q$. This case is more difficult than that in Section 3.

By (1), we see that (3) is equivalent to

$$
\begin{equation*}
2^{a} p^{b}=\prod_{\substack{d \mid 2 c \\ d \nmid c}} \Phi_{d}(q) . \tag{4}
\end{equation*}
$$

Let $h=e_{p}(q)$; we observe $h=e_{p}(2)$ as well (since $q=p+2$). By Lemmas 1 and 2, each divisor $d \mid 2 c$ such that $d \nmid c$ must either have the form $h p^{j}$ for some integer $j \geq 0$ or the form 2^{k} for some integer $k \geq 1$. Writing $c=2^{m} s$ for some integer $m \geq 0$ and odd integer s, we see that $2^{m+1} \| d$ for all divisors $d \mid 2 c$ such that $d \nmid c$. In particular $2^{m+1} \| h$.

Suppose s is composite. Then $t \mid s$ for some odd integer t such that $1<t<s$. Then by (4), $\Phi_{s}(q) \Phi_{t}(q) \mid 2^{a} p^{b}$. This is impossible as $2 \nmid \Phi_{s}(q) \Phi_{t}(q)$ by Lemma 2 , and, as $2 \mid h$, we have $h \nmid s$, and so $p \nmid \Phi_{s}(q) \Phi_{t}(q)$ by Lemma 1. Hence either s is prime or $s=1$.

Suppose s is prime. Then $h=2^{m+1} s$. For, if this were not the case then we would have $h=2^{m+1}$; since $2 \nmid \Phi_{2 c}(q)$ by Lemma 2, it follows that either $p \nmid \Phi_{2 c}(q)$ (if $s \neq p$) or $p \| \Phi_{2 c}(q)$ (if $s=p$) by Lemma 1. The former possibility clearly contradicts (4); the latter implies $\Phi_{2 c}(q)=p$, which is impossible as $\Phi_{2 c}(q)>p$ by Lemma 3 .

Therefore, since $h=2^{m+1} s$, we have

$$
\begin{equation*}
2^{a} p^{b}=\Phi_{2^{m+1} s}(q) \Phi_{2^{m+1}}(q) \tag{5}
\end{equation*}
$$

by (4). This implies $m=0$ because otherwise (5) is impossible since we have $p \nmid \Phi_{2^{m+1}}(q)$, $2 \| \Phi_{2^{m+1}}(q)$, and $\Phi_{2^{m+1}}(q)>2$ by Lemmas 1, 2, and 3 respectively. Therefore $h=2 s$ and

$$
2^{a} p^{b}=\Phi_{2}(q) \Phi_{2 s}(q),
$$

with $2^{a}=\Phi_{2}(q)=q+1$ and $p^{b}=\Phi_{2 s}(q)$. But then $q=2^{a}-1$, so that $p=2^{a}-3$. It is clear that $a>2$, hence $p \equiv 5(\bmod 8)$. Thus 2 is a quadratic nonresidue of p, and hence $2^{(p-1) / 2} \equiv-1$ $(\bmod p)$ by Euler's criterion. Since $2^{2} \mid p-1=2^{a}-4$, it follows that $2^{2} \mid e_{p}(2)$. But $e_{p}(2)=h$, and since $h=2 s$, we have $2 \| h$, a contradiction.

Therefore $s=1$ and hence $c=2^{m}$ for some integer $m \geq 0$. Thus (3) becomes

$$
\begin{equation*}
2^{a} p^{b}=q^{2^{m}}+1 \tag{6}
\end{equation*}
$$

First let us suppose that $m>1$. Then $q^{2^{m}} \equiv 1(\bmod 4)$ so that $a=1$. Hence

$$
\begin{equation*}
2 p^{b}=q^{2^{m}}+1 . \tag{7}
\end{equation*}
$$

Since $p \mid q^{2^{m}}+1=\Phi_{2^{m+1}}(q)$, it follows from Lemma 1 that $h=2^{m+1}$; recalling as well $h=e_{p}(2)$, it follows that $p \equiv 1\left(\bmod 2^{m+1}\right)$. Since $e_{p}(2)=2^{m+1}$ and $\Phi_{2^{m+1}}(2)=2^{2^{m}}+1$, it follows from Lemma 1 that

$$
\begin{equation*}
p \mid 2^{2^{m}}+1 \tag{8}
\end{equation*}
$$

Suppose $p=2^{m+1} t+1$ for some odd integer t. Then, as $2^{2^{m}} \equiv-1(\bmod p)$ by (8),

$$
2^{(p-1) / 2}=2^{2^{m} t}=\left(2^{2^{m}}\right)^{t} \equiv(-1)^{t} \equiv-1 \quad(\bmod p),
$$

and hence $\left(\frac{2}{p}\right)=-1$ by Euler's criterion, where ($(:)$ denotes the Legendre symbol. But, $p \equiv 1$ $(\bmod 8)$, which implies $\left(\frac{2}{p}\right)=+1$, a contradiction. Therefore

$$
\begin{equation*}
p \equiv 1 \quad\left(\bmod 2^{m+2}\right) \tag{9}
\end{equation*}
$$

Suppose $b>2^{m}$. Then from (7) we have

$$
2 p^{b-2^{m}}=\left(1+\frac{2}{p}\right)^{2^{m}}+\frac{1}{p^{2^{m}}}
$$

By (9), $p>2^{m+2}$, and so

$$
2 p^{b-2^{m}}<\left(1+\frac{1}{2^{m}}\right)^{2^{m}}+1<e+1<4
$$

which implies $2 p<4$, a contradiction. On the other hand, suppose $b<2^{m}$. Then by (6),

$$
2=\left(1+\frac{2}{p}\right)^{b}(p+2)^{2^{m}-b}+\frac{1}{p^{b}}>(p+2)^{2^{m}-b} \geq p+2
$$

a contradiction. Therefore we must have $b=2^{m}$, so that (7) becomes

$$
\begin{equation*}
22^{2^{m}}=q^{2^{m}}+1 . \tag{10}
\end{equation*}
$$

Since $q=p+2$, (10) becomes

$$
\begin{align*}
p^{2^{m}} & =-p^{2^{m}}+(p+2)^{2^{m}}+1 \\
& =\sum_{k=1}^{2^{m}}\binom{2^{m}}{k} p^{2^{m}-k} 2^{k}+1 . \tag{11}
\end{align*}
$$

Since by (9) $p>2^{m+2}$, we have for each k such that $1 \leq k \leq 2^{m}$,

$$
\begin{aligned}
\binom{2^{m}}{k} p^{2^{m}-k} 2^{k} & =\frac{2^{m}\left(2^{m}-1\right)\left(2^{m}-2\right) \cdots\left(2^{m}-k+1\right)}{k!} \cdot p^{2^{m}-k} 2^{k} \\
& <\frac{2^{m k}}{k!} \cdot p^{2^{m}-k} 2^{k} \\
& =\frac{1}{2^{k}} \cdot \frac{1}{k!} \cdot p^{2^{m}} .
\end{aligned}
$$

Hence by (11),

$$
p^{2^{m}}<\sum_{k=1}^{2^{m}} \frac{1}{2^{k}} \cdot \frac{1}{k!} \cdot p^{2^{m}}+1<p^{2^{m}}\left(\sqrt{e}-1+\frac{1}{p^{2^{m}}}\right)<0.8 p^{2^{m}},
$$

a contradiction.
Hence we have (6) with either $m=0$ or $m=1$. If $m=0$ then (6) becomes

$$
2^{a} p^{b}=q+1=p+3,
$$

implying $p \mid 3$, and hence $p=3, q=5$. Therefore $2^{a} 3^{b}=6$, and so $a=b=1$, and we have the RAP2 $(5,6)$.

If $m=1$ then (6) becomes

$$
2^{a} p^{b}=q^{2}+1,
$$

which implies $a=1$ since $q^{2} \equiv 1(\bmod 4)$. Therefore

$$
2 p^{b}=q^{2}+1=(p+2)^{2}+1=p^{2}+4 p+5,
$$

implying $p \mid 5$, and hence $p=5, q=7$. Therefore $2 \cdot 5^{b}=50$, and so $b=2$, and we have the RAP2 $(49,50)$. Therefore the only RAP2s of the form $\left(q^{c}, 2^{a} p^{b}\right)$ are $(5,6)$ and $(49,50)$.

We summarize our results from this and the previous section:

Theorem 1. The only RAP2s ($n, n+1$) such that $\{\omega(n), \omega(n+1)\}=\{1,2\}$ are $(5,6),(24,25)$, and $(49,50)$.

5. RAP2s of the form $\left(2^{2 n} p q, r s\right)$

We now turn our attention to RAP2s $(n, n+1)$ where $\{\omega(n), \omega(n+1)\}=\{2,3\}$. There are 88 such pairs less than 10^{9}. Of these, 41 have the form ($4 p q, r s$), six have the form ($16 p q, r s$), and three have the form ($64 p q, r s$), with $p<q, r<s$ odd primes. Among the remaining 38 pairs, no discernable patterns emerged. These data led us to narrow our investigation to those pairs of the form ($\left.2^{2 n} p q, r s\right), n \geq 1$.

Given such a pair, we have

$$
\begin{align*}
2+p+q & =r+s \tag{12}\\
2^{2 n} p q+1 & =r s \tag{13}
\end{align*}
$$

By (12) we have integers x, y, and z such that

$$
\begin{array}{rlrl}
r & =x-y, & & s=x+y, \\
p=x-1-z, & & q=x-1+z . \tag{15}
\end{array}
$$

Substituting (14) and (15) into (13), and simplifying, gives us

$$
\left(\left(2^{2 n}-1\right) x-\left(2^{2 n}+1\right)\right)(x-1)=\left(2^{n} z-y\right)\left(2^{n} z+y\right),
$$

which may be expressed as

$$
\begin{equation*}
\frac{\left(2^{2 n}-1\right) x-\left(2^{2 n}+1\right)}{2^{n} z-y}=\frac{2^{n} z+y}{x-1}=\frac{a}{b}, \tag{16}
\end{equation*}
$$

where a / b represents the fractions in (16) in their lowest terms; thus $(a, b)=1$. Separating the variables x, y, and z in (16) gives us

$$
\begin{aligned}
\left(2^{2^{n}}-1\right) b x+a y-2^{n} a z & =\left(2^{2^{n}}+1\right) b, \\
a x-b y-2^{n} b z & =a,
\end{aligned}
$$

which we solve for x, y, in terms of z :

$$
\begin{align*}
& \left(a^{2}+\left(2^{2^{n}}-1\right) b^{2}\right) x=2^{n+1} a b z+a^{2}+\left(2^{2^{n}}+1\right) b^{2} \tag{17}\\
& \left(a^{2}+\left(2^{2^{n}}-1\right) b^{2}\right) y=2^{n}\left(a^{2}-\left(2^{2^{n}}-1\right) b^{2}\right) z+2 a b . \tag{18}
\end{align*}
$$

Our data of RAP2s less than 10^{9} revealed to us many different rational numbers for the quotient a / b in (16), but some persisted more than others, especially $2 / 1$ and $7 / 4$ in the cases where $n=1$. Recognizing these values as solutions to the Pell equation $a^{2}-3 b^{2}=1$, we decided to assume that a, b, solved the Pell equation

$$
\begin{equation*}
a^{2}-\left(2^{2^{n}}-1\right) b^{2}=1 \tag{19}
\end{equation*}
$$

in the general case for $n \geq 1$. Under this hypothesis, (17) and (18) simplify to

$$
\begin{align*}
& \left(2 a^{2}-1\right) x=2^{n+1} a b z+2 a^{2}+2 b^{2}-1, \\
& \left(2 a^{2}-1\right) y=2^{n} z+2 a b . \tag{20}
\end{align*}
$$

It is well known (e.g., as shown by Shockley [7], Ch. 12) that all positive solutions to (19) are given by

$$
\begin{array}{rlrl}
a_{1} & =2^{n}, & b_{1}=1, \\
a_{j+1} & =2^{n} a_{j}+\left(2^{2^{n}}-1\right) b_{j} & & (j \geq 1), \\
b_{j+1} & =a_{j}+2^{n} b_{j} & & (j \geq 1) . \tag{21}
\end{array}
$$

One shows by induction that $2^{n} \mid a_{j} b_{j}$ for all $j \geq 1$. Hence we may parametrize z from (20): since y is an integer it follows that $2 a^{2}-1$ divides $2^{n} z+2 a b$, and since $2 a^{2}-1$ is odd we have

$$
z \equiv-\frac{2 a b}{2^{n}} \quad\left(\bmod 2 a^{2}-1\right)
$$

Thus z has the form given by

$$
\begin{equation*}
z=\left(2 a^{2}-1\right) k+2 a^{2}-1-\frac{2 a b}{2^{n}} \tag{22}
\end{equation*}
$$

for integers $k \geq 0$. Substituting (22) into (17) and (18) gives us

$$
\begin{align*}
& x=2^{n+1} a b k+2^{n+1} a b-2 b^{2}+1, \tag{23}\\
& y=2^{n} k+2^{n} . \tag{24}
\end{align*}
$$

Substituting (22), (23), and (24) into (14) and (15) gives us
Theorem 2. Let integral $n \geq 1$ be given and let a, b, be solutions to the Pell equation (19). Then $\left(2^{2 n} p q, r s\right)$ is a RAP2 if, for an integer $k \geq 0$, the following four quantities are all prime:

$$
\begin{aligned}
& p=2\left(2^{n+1} a b-2 a^{2}+1\right) k+\left(2^{n+1}-2 b^{2}-2 a^{2}+1+\frac{2 a b}{2^{n}}\right), \\
& q=2\left(2^{n+1} a b+2 a^{2}-1\right) k+\left(2^{n+1}-2 b^{2}+2 a^{2}-1-\frac{2 a b}{2^{n}}\right), \\
& r=2^{n+1}(2 a b-1) k+2^{n}(2 a b-1)-2 b^{2}+1, \\
& s=2^{n+1}(2 a b+1) k+2^{n}(2 a b+1)-2 b^{2}+1 .
\end{aligned}
$$

Note that we substituted $2 k$ instead of k to ensure p and q as given in Theorem 2 are odd. We also kept $2 a b$ in the numerators above (rather than reduce to $a b / 2^{n-1}$) since the Pell sequences (21) have the property $b_{2 j}=2 a_{j} b_{j}$ (as well as $a_{2 j}=2 a_{j}^{2}-1$). Moreover, one shows by induction that for all n and k, if $a_{3 j}, b_{3 j}$ in (21) are the solutions used in applying Theorem 2, then at least one of p, q, r, and s is divisible by 3 (hence no RAP2 is produced).

There are 149 RAP2s of the form $\left(2^{2 n} p q, r s\right)$ whose elements are less than 2^{34}. Of these, 116 correspond to $n=1$, and 16 of these involve the solutions $a_{1}=2, b_{1}=1$ of the Pell equation $a^{2}-3 b^{2}=1$, while an additional 3 involve $a_{2}=7, b_{2}=4$. Also, 16 such RAP2s correspond to $n=2,3$ of which involve the solutions $a_{1}=4, b_{1}=1$ of the equation $a^{2}-15 b^{2}=1$, and 9 of the RAP2s correspond to $n=3,3$ of which involve $a_{1}=8, b_{1}=1\left(a^{2}-63 b^{2}=1\right)$. Finally, 3 of the RAP2s involve $n=4$.

We had found the RAP2s less than 2^{34} by a straightforward computer search. Later on, we applied Theorem 2 to search for the RAP2s of the special form described in that theorem. We found literally thousands of them. We computed them on a PC, using the UBASIC software package. Primality of p, q, r, s, were verified by the APR primality test due to Adleman, Pomerance, and Rumely [1].

6. Concluding Remarks

It is unknown if there are infinitely many RAP2s. The question of infinitude also remains open for ordinary Ruth-Aaron pairs - see Pomerance [6] for a detailed history. In light of Theorem 2, fixing n at say $n=1$, if one could show that for each solution $a_{j}, b_{j}, 3 \nmid j$, to (19), there exists at least one k for which p, q, r, s, are all prime, then a proof of infinitely many RAP2s of the form $(4 p q, r s)$ would be obtained. We have not been able to produce such a proof, but we conjecture the existence of infinitely many RAP2s nonetheless.

We have also considered RAP2s $(n, n+1)$ for which $\{\omega(n), \omega(n+1)\}=\{1,4\}$. These would be obtained by finding distinct odd primes p_{1}, p_{2}, p_{3}, q, and positive integers $a, b_{1}, b_{2}, b_{3}, c$, such that

$$
\begin{equation*}
2+p_{1}+p_{2}+p_{3}=q, \tag{25}
\end{equation*}
$$

and such that

$$
\begin{equation*}
2^{a} p_{1}^{b_{1}} p_{2}^{b_{2}} p_{3}^{b_{3}}=q^{c} \pm 1 \tag{26}
\end{equation*}
$$

Let $h=\left[e_{p_{1}}(q), e_{p_{2}}(q), e_{p_{3}}(q)\right]$. Then p_{1}, p_{2}, p_{3}, all divide $q^{c}-1$ only if $h \mid c$, in which case $q^{h}-1$ divides $2^{a} p_{1}^{b_{1}} p_{2}^{b_{2}} p_{3}^{b_{3}}$. Thus if $q^{h}-1$ is found to contain any prime factors other than $2, p_{1}, p_{2}$, p_{3}, then a contradiction is obtained. Using modular arithmetic, we can find $\alpha, \beta_{1}, \beta_{2}, \beta_{3}$, such that $2^{\alpha} \| q^{h}-1$ and $p_{i}^{\beta_{i}} \| q^{h}-1(1 \leq i \leq 3)$. A contradiction is obtained if $2^{\alpha} p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} p_{3}^{\beta_{3}}<q^{h}-1$.

In the case of $q^{c}+1,(26)$ becomes

$$
2^{a} p_{1}^{b_{1}} p_{2}^{b_{2}} p_{3}^{b_{3}}=\prod_{\substack{d \mid 2 c \\ d \nmid c}} \Phi_{d}(q)
$$

by (1). By Lemma 1 , the primes p_{1}, p_{2}, p_{3}, all divide $q^{c}+1$ only if $e_{p_{1}}(q), e_{p_{2}}(q)$, and $e_{p_{3}}(q)$ are all even such that each quantity is exactly divisible by the same power of 2 . In this case we have $q^{h / 2}+1 \mid 2^{a} p_{1}^{b_{1}} p_{2}^{b_{2}} p_{3}^{b_{3}}$. Thus a contradiction is obtained if $q^{h / 2}+1$ contains any prime factors other than $2, p_{1}, p_{2}$, or p_{3}.

For all odd primes $q<20000$, we found all triples of odd primes $p_{1}<p_{2}<p_{3}$ satisfying (25), and then we disproved the possibility of (25) and (26) by computation. We conjecture the nonexistence of RAP2s $(n, n+1)$ for which $\{\omega(n), \omega(n+1)\}=\{1,4\}$, although we have not yet obtained a proof.

References

[1] L. Adleman, C. Pomerance, and R. Rumely, On distinguishing prime numbers from composite numbers, Ann. of Math. 117 (1973), no. 2, 173-206.
[2] J. Drost, Ruth/Aaron Pairs, J. Recreational Math. 28 (1996), 120-122.
[3] T. Nagell, Introduction to Number Theory, AMS Chelsea Publishing, Providence, RI, 1981.
[4] C. Nelson, D. Penney, and C. Pomerance, 714 and 715, J. Recreational Math. 7 (1974), 87-89.
[5] I. Niven, Irrational Numbers (Carus Mathematical Monograph no. 11), Mathematical Association of America (Wiley and Sons, dist.), New York, 1967.
[6] C. Pomerance, Ruth-Aaron numbers revisited, Paul Erdős and His Mathematics, I (Series: Bolyai Soc. Math. Stud., Vol. 11) (G. Halasz, L. Lovasz, M. Simonovits, and V. Sos, eds.), Springer-Verlag, New York, 2002, pp. 567-579.
[7] J. Shockley, Introduction to Number Theory, Holt, Rinehart, and Winston, Inc., New York, 1967.

