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Abstract

Let rk(n) denote the number of representations of n as a sum of k squares and tk(n) the
number of representations of n as a sum of k triangular numbers. We give an elementary,
combinatorial proof of the relations

rk(8n+ k) = cktk(n), 1 ≤ k ≤ 7,

where c1 = 2, c2 = 4, c3 = 8, c4 = 24, c5 = 112, c6 = 544 and c7 = 2368.

1. Introduction

Let rk(n) denote the number of solutions in integers of the equation

x2
1 + x2

2 + · · ·+ x2
k = n,

and let tk(n) denote the number of solutions in non-negative integers of the equation

x1(x1 + 1)

2
+
x2(x2 + 1)

2
+ · · ·+ xk(xk + 1)

2
= n.

For example,

9 = (±3)2 + 02 + 02 = 02 + (±3)2 + 02 = 02 + 02 + (±3)2

= (±2)2 + (±2)2 + (±1)2 = (±2)2 + (±1)2 + (±2)2 = (±1)2 + (±2)2 + (±2)2,
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and so r3(9) = 30. On the other hand, r3(7) = 0. Also, t3(10) = 9, because the solutions

of
x1(x1 + 1)

2
+
x2(x2 + 1)

2
+
x3(x3 + 1)

2
= 10 in non-negative integers are (x1, x2, x3) =

(4, 0, 0) (three possible permutations), and (3, 2, 1) (six possible permutations), giving a
total of nine solutions.

Geometrically, rk(n) counts the number of points with integer coordinates on the k-
dimensional sphere x2

1 +x2
2 + · · ·+x2

k = n. Similarly, 2ktk(n) counts the number of points
with integer coordinates on the k-dimensional sphere (x1+ 1

2
)2+(x2+ 1

2
)2+· · ·+(xk+ 1

2
)2 =

2n+ k
4
.

A great deal is known about rk(n) and tk(n). For example, generating functions which
yield explicit formulas for rk(n) and tk(n) for k = 2, 4, 6 and 8 in terms of the divisors of
n, were given by Jacobi [7, pp. 159–170]. On the other hand, explicit formulas for odd
values of k are much more complicated. For both even and odd values of k ≥ 9, explicit
formulas become even more complicated. For more information, see [4], [5, Chs. 6–9], [6,
Ch. 20] and [8].

In [1], a remarkable connection between tk(n) and rk(8n + k) for 1 ≤ k ≤ 7 was
observed. These relations were independently rediscovered in [3].

Theorem [1, Lemma 2.7], [3].
For any non-negative integer n,

rk(8n+ k) = 2k
(

1 +
k(k − 1)(k − 2)(k − 3)

48

)
tk(n), 1 ≤ k ≤ 7.

2

Thus for 1 ≤ k ≤ 7, in order to study the sequence {tk(n)}n≥0, it suffices to study
the subsequence {rk(8n+ k)}n≥0 of {rk(n)}n≥0.

The proof in [1] relies on Jacobi’s explicit formula for r4(n) in terms of divisors of n.
The proof in [3] uses generating functions, and depends on properties of theta functions.
The purpose of this article is to give an elementary, combinatorial proof of this theorem.

2. Proofs

Lemma. Let

An =
{

(i, j, k, l) ∈ Z4 : i+ j + k + l ≡ 0 (mod 2),

(2i+ 1)2 + (2j + 1)2 + (2k + 1)2 + (2l + 1)2 = 8n+ 4
}
,
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Bn =
{

(i, j, k, l) ∈ Z4 : i+ j + k + l ≡ 1 (mod 2),

(2i+ 1)2 + (2j + 1)2 + (2k + 1)2 + (2l + 1)2 = 8n+ 4
}
,

Cn =
{

(i, j, k, l) ∈ Z4 : (2i)2 + (2j)2 + (2k)2 + (2l)2 = 8n+ 4
}
.

Then the sets An, Bn and Cn are equinumerous. Note that for the set Cn, the condition
i+ j + k + l ≡ 1 (mod 2) also holds.

Proof. Define f : An → Bn by

f(i, j, k, l) = (i, j, k,−l − 1).

Then f is readily seen to be a bijection, and so An and Bn are equinumerous. Similarly,
define g : Bn → Cn by

g(i, j, k, l) =
1

2
(i+ j + k − l + 1, i+ j − k + l + 1, i− j + k + l + 1,−i+ j + k + l + 1).

Then it may be easily verified that

g−1(i, j, k, l) =
1

2
(i+ j + k − l− 1, i+ j − k + l− 1, i− j + k + l− 1,−i+ j + k + l− 1),

and g is a bijection. Thus Bn and Cn are equinumerous. 2

Corollary. The number of representations of 8n+ 4 as a sum of four odd squares equals
twice the number of representations of 8n+ 4 as a sum of four even squares.

Proof of the Theorem. We will show that each representation of n as a sum of k triangular

numbers gives rise to 2k
(

1 + k(k−1)(k−2)(k−3)
48

)
representations of 8n + k as a sum of k

squares, and that every representation of 8n + k as a sum of k squares arises once and
only once in this way.

Suppose

n =
x1(x1 + 1)

2
+ · · ·+ xk(xk + 1)

2
(1)

is a representation of n as a sum of k triangular numbers. Then multiplying by 8 and
completing the square gives

8n+ k = (±(2x1 + 1))2 + · · ·+ (±(2xk + 1))2. (2)

This gives rise to 2k representations of 8n + k as a sum of k odd squares, because there
are 2k possibilities for the signs. Conversely, each of the 2k representations in (2) arises
only from the corresponding representation (1).

If 1 ≤ k ≤ 3, then the only way 8n + k may be expressed as a sum of k squares is if
all the squares are odd, and so we have rk(8n+ k) = 2ktk(n) in this case.

If 4 ≤ k ≤ 7 and 8n + k is a sum of k squares, then parity considerations show that
either all k squares are odd, or k − 4 are odd and 4 are even. In the first case, equation
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(2) gives 2k representations of 8n+ k as a sum of k odd squares for each instance of (1),
and this accounts for all representations of 8n + k as a sum of k odd squares. In the

latter case, there are

(
k

4

)
orderings of x1, · · · , xk by parity, in which four of the squares

are even and the others odd. Consider the equation

x2
1 + · · ·+ x2

k = 8n+ k (3)

where x1, x2, x3 and x4 are even and the other xis are odd. The number of such
representations is half the number of representations of 8n+k as a sum of k odd squares.
To see this, rewrite (3) in the form

x2
1 + · · ·+ x2

4 = 8n+ k −
k∑
j=5

x2
j ,

and apply the corollary. It follows that the number of representations of 8n+ k as a sum

of k squares, 4 of which are even, arising from the single representation (1) is
1

2

(
k

4

)
2k.

Combining the two cases we complete the proof of the Theorem. 2

Remark. It is clear from this proof of the Theorem that extra complications will arise
if k ≥ 8. In fact, using modular forms it was shown in [2] that for each value of k ≥ 8,
rk(8n + k)/tk(n) is not a constant function of n. Therefore the Theorem does not hold
if k ≥ 8.
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