A COMBINATORIAL PROOF OF A RESULT FROM NUMBER THEORY

Shaun Cooper
Institute of Information and Mathematical Sciences, Massey University - Albany, Private Bag 102904,
North Shore Mail Centre, Auckland, New Zealand
s.cooper@massey.ac.nz
Michael Hirschhorn
School of Mathematics, UNSW, Sydney 2052, Australia
m.hirschhorn@unsw.edu.au

Received: 11/11/03, Accepted: 6/8/04, Published: 6/10/04

Abstract

Let $r_{k}(n)$ denote the number of representations of n as a sum of k squares and $t_{k}(n)$ the number of representations of n as a sum of k triangular numbers. We give an elementary, combinatorial proof of the relations $$
r_{k}(8 n+k)=c_{k} t_{k}(n), \quad 1 \leq k \leq 7
$$

where $c_{1}=2, c_{2}=4, c_{3}=8, c_{4}=24, c_{5}=112, c_{6}=544$ and $c_{7}=2368$.

1. Introduction

Let $r_{k}(n)$ denote the number of solutions in integers of the equation

$$
x_{1}^{2}+x_{2}^{2}+\cdots+x_{k}^{2}=n
$$

and let $t_{k}(n)$ denote the number of solutions in non-negative integers of the equation

$$
\frac{x_{1}\left(x_{1}+1\right)}{2}+\frac{x_{2}\left(x_{2}+1\right)}{2}+\cdots+\frac{x_{k}\left(x_{k}+1\right)}{2}=n .
$$

For example,

$$
\begin{aligned}
9 & =(\pm 3)^{2}+0^{2}+0^{2}=0^{2}+(\pm 3)^{2}+0^{2}=0^{2}+0^{2}+(\pm 3)^{2} \\
& =(\pm 2)^{2}+(\pm 2)^{2}+(\pm 1)^{2}=(\pm 2)^{2}+(\pm 1)^{2}+(\pm 2)^{2}=(\pm 1)^{2}+(\pm 2)^{2}+(\pm 2)^{2}
\end{aligned}
$$

Key words: sum of squares, sum of triangular numbers, combinatorial proof, bijective proof. 2000 Mathematics Subject Classification: Primary-11E25; Secondary-05A15
and so $r_{3}(9)=30$. On the other hand, $r_{3}(7)=0$. Also, $t_{3}(10)=9$, because the solutions of $\frac{x_{1}\left(x_{1}+1\right)}{2}+\frac{x_{2}\left(x_{2}+1\right)}{2}+\frac{x_{3}\left(x_{3}+1\right)}{2}=10$ in non-negative integers are $\left(x_{1}, x_{2}, x_{3}\right)=$ $(4,0,0)$ (three possible permutations), and $(3,2,1)$ (six possible permutations), giving a total of nine solutions.

Geometrically, $r_{k}(n)$ counts the number of points with integer coordinates on the k dimensional sphere $x_{1}^{2}+x_{2}^{2}+\cdots+x_{k}^{2}=n$. Similarly, $2^{k} t_{k}(n)$ counts the number of points with integer coordinates on the k-dimensional sphere $\left(x_{1}+\frac{1}{2}\right)^{2}+\left(x_{2}+\frac{1}{2}\right)^{2}+\cdots+\left(x_{k}+\frac{1}{2}\right)^{2}=$ $2 n+\frac{k}{4}$.

A great deal is known about $r_{k}(n)$ and $t_{k}(n)$. For example, generating functions which yield explicit formulas for $r_{k}(n)$ and $t_{k}(n)$ for $k=2,4,6$ and 8 in terms of the divisors of n, were given by Jacobi $[7, \mathrm{pp}$. 159-170]. On the other hand, explicit formulas for odd values of k are much more complicated. For both even and odd values of $k \geq 9$, explicit formulas become even more complicated. For more information, see [4], [5, Chs. 6-9], [6, Ch. 20] and [8].

In [1], a remarkable connection between $t_{k}(n)$ and $r_{k}(8 n+k)$ for $1 \leq k \leq 7$ was observed. These relations were independently rediscovered in [3].

Theorem [1, Lemma 2.7], [3].
For any non-negative integer n,

$$
r_{k}(8 n+k)=2^{k}\left(1+\frac{k(k-1)(k-2)(k-3)}{48}\right) t_{k}(n), \quad 1 \leq k \leq 7
$$

Thus for $1 \leq k \leq 7$, in order to study the sequence $\left\{t_{k}(n)\right\}_{n \geq 0}$, it suffices to study the subsequence $\left\{r_{k}(8 n+k)\right\}_{n \geq 0}$ of $\left\{r_{k}(n)\right\}_{n \geq 0}$.

The proof in [1] relies on Jacobi's explicit formula for $r_{4}(n)$ in terms of divisors of n. The proof in [3] uses generating functions, and depends on properties of theta functions. The purpose of this article is to give an elementary, combinatorial proof of this theorem.

2. Proofs

Lemma. Let

$$
\begin{aligned}
A_{n}=\{ & (i, j, k, l) \in \mathbb{Z}^{4}: i+j+k+l \equiv 0 \quad(\bmod 2), \\
& \left.(2 i+1)^{2}+(2 j+1)^{2}+(2 k+1)^{2}+(2 l+1)^{2}=8 n+4\right\}
\end{aligned}
$$

$$
\begin{aligned}
B_{n}= & \left\{(i, j, k, l) \in \mathbb{Z}^{4}: i+j+k+l \equiv 1 \quad(\bmod 2),\right. \\
& \left.(2 i+1)^{2}+(2 j+1)^{2}+(2 k+1)^{2}+(2 l+1)^{2}=8 n+4\right\}, \\
C_{n}= & \left\{(i, j, k, l) \in \mathbb{Z}^{4}:(2 i)^{2}+(2 j)^{2}+(2 k)^{2}+(2 l)^{2}=8 n+4\right\}
\end{aligned}
$$

Then the sets A_{n}, B_{n} and C_{n} are equinumerous. Note that for the set C_{n}, the condition $i+j+k+l \equiv 1 \quad(\bmod 2)$ also holds.

Proof. Define $f: A_{n} \rightarrow B_{n}$ by

$$
f(i, j, k, l)=(i, j, k,-l-1)
$$

Then f is readily seen to be a bijection, and so A_{n} and B_{n} are equinumerous. Similarly, define $g: B_{n} \rightarrow C_{n}$ by

$$
g(i, j, k, l)=\frac{1}{2}(i+j+k-l+1, i+j-k+l+1, i-j+k+l+1,-i+j+k+l+1) .
$$

Then it may be easily verified that
$g^{-1}(i, j, k, l)=\frac{1}{2}(i+j+k-l-1, i+j-k+l-1, i-j+k+l-1,-i+j+k+l-1)$, and g is a bijection. Thus B_{n} and C_{n} are equinumerous.

Corollary. The number of representations of $8 n+4$ as a sum of four odd squares equals twice the number of representations of $8 n+4$ as a sum of four even squares.

Proof of the Theorem. We will show that each representation of n as a sum of k triangular numbers gives rise to $2^{k}\left(1+\frac{k(k-1)(k-2)(k-3)}{48}\right)$ representations of $8 n+k$ as a sum of k squares, and that every representation of $8 n+k$ as a sum of k squares arises once and only once in this way.

Suppose

$$
\begin{equation*}
n=\frac{x_{1}\left(x_{1}+1\right)}{2}+\cdots+\frac{x_{k}\left(x_{k}+1\right)}{2} \tag{1}
\end{equation*}
$$

is a representation of n as a sum of k triangular numbers. Then multiplying by 8 and completing the square gives

$$
\begin{equation*}
8 n+k=\left(\pm\left(2 x_{1}+1\right)\right)^{2}+\cdots+\left(\pm\left(2 x_{k}+1\right)\right)^{2} \tag{2}
\end{equation*}
$$

This gives rise to 2^{k} representations of $8 n+k$ as a sum of k odd squares, because there are 2^{k} possibilities for the signs. Conversely, each of the 2^{k} representations in (2) arises only from the corresponding representation (1).

If $1 \leq k \leq 3$, then the only way $8 n+k$ may be expressed as a sum of k squares is if all the squares are odd, and so we have $r_{k}(8 n+k)=2^{k} t_{k}(n)$ in this case.

If $4 \leq k \leq 7$ and $8 n+k$ is a sum of k squares, then parity considerations show that either all k squares are odd, or $k-4$ are odd and 4 are even. In the first case, equation
(2) gives 2^{k} representations of $8 n+k$ as a sum of k odd squares for each instance of (1), and this accounts for all representations of $8 n+k$ as a sum of k odd squares. In the latter case, there are $\binom{k}{4}$ orderings of x_{1}, \cdots, x_{k} by parity, in which four of the squares are even and the others odd. Consider the equation

$$
\begin{equation*}
x_{1}^{2}+\cdots+x_{k}^{2}=8 n+k \tag{3}
\end{equation*}
$$

where x_{1}, x_{2}, x_{3} and x_{4} are even and the other $x_{i} \mathrm{~s}$ are odd. The number of such representations is half the number of representations of $8 n+k$ as a sum of k odd squares. To see this, rewrite (3) in the form

$$
x_{1}^{2}+\cdots+x_{4}^{2}=8 n+k-\sum_{j=5}^{k} x_{j}^{2}
$$

and apply the corollary. It follows that the number of representations of $8 n+k$ as a sum of k squares, 4 of which are even, arising from the single representation (1) is $\frac{1}{2}\binom{k}{4} 2^{k}$.

Combining the two cases we complete the proof of the Theorem.
Remark. It is clear from this proof of the Theorem that extra complications will arise if $k \geq 8$. In fact, using modular forms it was shown in [2] that for each value of $k \geq 8$, $r_{k}(8 n+k) / t_{k}(n)$ is not a constant function of n. Therefore the Theorem does not hold if $k \geq 8$.

References

[1] P. T. Bateman and M. I. Knopp, Some new old-fashioned modular identities, The Ramanujan Journal, 2 (1998), 247-269.
[2] P. T. Bateman, B. A. Datskovsky and M. I. Knopp, Sums of squares and the preservation of modularity under congruence restrictions, Symbolic computation, number theory, special functions, physics and combinatorics (Gainesville, FL, 1999), 59-71, Dev. Math., 4 Kluwer Acad. Publ., Dordrecht, 2001.
[3] P. Barrucand, S. Cooper and M. Hirschhorn, Relations between squares and triangles, Discrete Math., 248 (2002), 245-247.
[4] S. Cooper and M. Hirschhorn, On the number of primitive representations of integers as sums of squares, The Ramanujan Journal, to appear.
[5] L. E. Dickson, History of the theory of numbers, Vol. 2, Chelsea, New York, 1952.
[6] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth edition, Oxford, reprinted 1989.
[7] C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, 1829. Reprinted in C. G. J. Jacobi's Gesammelte Werke, B. 1, 49-239, (ed. K. Weierstrass), 1881; Second edition published by Chelsea, New York, 1969.
[8] S. C. Milne, Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions, The Ramanujan Journal, 6 No. 1 (2002), 7-149.

