CORRIGENDUM TO

EXTENDING A RECENT RESULT OF SANTOS ON PARTITIONS INTO ODD PARTS

James A. Sellers
Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA sellersj@math.psu.edu

Received: 4/26/04, Published: 5/14/04

Corrigendum

In Extending a Recent Result of Santos on Partitions into Odd Parts, INTEGERS 3 (2003), paper A4, the author states and proves the following theorem (which is a generalization of a theorem proven by Santos):

Theorem 1.2. Let $K=\left(k_{2}, k_{3}, k_{4}, \ldots\right)$ be an infinite vector of nonnegative integers. Define $p(n ; K)$ as the number of partitions of n of the form $p_{1}+p_{2}+p_{3}+p_{4}+\ldots$ with $p_{1} \geq p_{2} \geq p_{3} \geq p_{4} \cdots \geq 0$ and $p_{1} \geq k_{2} p_{2}+k_{3} p_{3}+k_{4} p_{4}+\ldots$. Then, for all $n \geq 0$, $p(n ; K)$ equals the number of partitions of n whose parts must be 1 's or of the form $\left(\sum_{i=2}^{m} k_{i}\right)+(m-1)$ for some integer $m \geq 2$.

It has recently been brought to the author's attention that this theorem is slightly incorrect. Namely, the parameter k_{2} must be positive; that is, we must assume $k_{2} \geq 1$. Note that all other parameters $k_{i}, i \geq 3$, are allowed to be nonnegative. Note also that the proof technique utilized in the paper is still valid (as long as $k_{2} \geq 1$). Thus, no other portions of the paper are affected by this change.

