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Abstract

Using a sum-product result due to Bourgain, Katz, and Tao, we show that for every 0 <
ε ≤ 1, and every integer k ≥ 1, there exists an integer N = N(ε, k), such that for every
prime p and every residue class a (mod p), there exist positive integers x1, ..., xN ≤ pε

satisfying

a ≡ 1

xk1
+ · · ·+ 1

xkN
(mod p).

I. Introduction

In the monograph [2], among the many questions asked by Erdős and Graham was the
following: Is it true that for every 0 < ε ≤ 1 there exists a number N such that for every
prime number p, every residue class a (mod p) can be expressed as a ≡ 1/x1+· · ·+1/xN
(mod p), where x1, ..., xk are positive integers ≤ pε? This question was answered in the
affirmative by Shparlinski [6] using a result due to Karatsuba [5] (actually, a simplified
version of Karatsuba’s result, due to Friedlander and Iwaniec [3]).

A natural question that one can ask, and which Shparlinski recently posed to me,
was whether this result can be extended to reciprocal powers. Unfortunately, in this
case, the methods of Karatsuba do not give a bound on N (at least not using an obvious
modification of his argument). Fortunately, there is a powerful result due to Bourgain,
Katz, and Tao [1] which can be used to bound certain exponential sums, and which can
be used to solve our problem:

Theorem 1 (Bourgain, Katz, Tao) Let A be a subset of a finite field Z/pZ. If pδ <
|A| < p1−δ for some δ > 0, then |A + A| + |A · A| ≥ c|A|1+θ, where θ = θ(δ) > 0 and
c = c(δ) > 0.

1Partially supported by an NSF grant.
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Using this result, we prove the following theorem, which is just a restatement of the
problem posed by Shparlinski:

Theorem 2 For every 0 < ε ≤ 1, and every integer k ≥ 1, there exists an integer
N = N(ε, k) such that for every prime p ≥ 2, and every integer 0 ≤ a ≤ p − 1, there
exist integers x1, ..., xN such that 1 ≤ xi ≤ pε, and

a ≡ 1

xk1
+ · · ·+ 1

xkN
(mod p).

Comments. A more general theorem can perhaps be proved here, as was suggested to
me by Shparlinski in an email. Basically, suppose S = S(p) ⊆ {1, ..., p− 1} is an infinite
sequence of sets, indexed by primes p satisfying the following two conditions

1. The sets S(p) are multiplicative in the sense that 1 ∈ S, and if s, t ∈ S satisfy
st ≤ p− 1, then st ∈ S; and,

2. There exists an absolute constant 0 < θ ≤ 1 so that for every 0 < ε ≤ 1, and p
sufficiently large, the set S(p) contains at least pεθ elements ≤ pε.

Then, there exists an integer J = J(ε) ≥ 1 such that for every sufficiently large prime p,
and for every residue class r (mod p), there exist integers x1, ..., xJ ∈ S(p), all of size
at most pε, such that

r ≡ 1

x1

+ · · ·+ 1

xJ
(mod p),

An example of a set S = S(p) satisfying the properties above, is the set of positive
integers ≤ p − 1 having no prime divisors greater than log2 p. It is well known that the
number of elements in this multiplicative set up to pε is at least pε/2+o(1) (see, for example,
[4])

II. Proof of Theorem 2

First, we note that it suffices to prove the result only for sufficiently large primes p, as
we may enlarge N = N(ε, k) as needed so that the theorem holds for all prime p < p0,
for some p0. We also may assume 0 < ε < ε0(k), for any function ε0(k) that we might
happen to need, since if the conclusion of the theorem holds for these smaller values of
ε, then it holds for any larger value of ε. In fact, we will use ε0(k) = 1/5k in the proof of
our theorem.

Let 0 < β < 1/5k be some parameter, to be chosen later, and let u be the largest
integer less than β−1/(2k), and consider the set

S =

{
1

pk1
+ · · ·+ 1

pku
(mod p) : 2 ≤ p1 < · · · < pu ≤ pβ, pi prime

}
,
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which will be non-empty for p sufficiently large. We claim that

|S| > p1/(2k)−β

u! logu p
(1)

for p sufficiently large, which would follow from the prime number theorem if we had
that all the sums in S were distinct modulo p. To see that they are, suppose that we had

1

pk1
+ · · ·+ 1

pku
≡ 1

qk1
+ · · ·+ 1

qku
(mod p),

where the left and right side of the congruence are elements of S, where the p1, ..., pk and
q1, ..., qk are increasing sequences. Multiplying through by (p1 · · · puq1 · · · qu)k on both
sides and moving terms to one side of the congruence, we get that

u∑
j=1

(q1 · · · qu)k
u∏
i=1
i6=j

pki − (p1 · · · pu)k
u∏
i=1
i6=j

qki

 ≡ 0 (mod p). (2)

Since all the terms in the sum are smaller than p(2u−1)kβ < p/u (for p sufficiently large),
we deduce that if (2) holds, then

u∑
j=1

(q1 · · · qu)k
u∏
i=1
i6=j

pki − (p1 · · · pu)k
u∏
i=1
i6=j

qki

 = 0;

and so,
1

pk1
+ · · ·+ 1

pku
=

1

qk1
+ · · ·+ 1

qku
.

It is obvious then that the pi = qi, and (1) now follows.

Let S0 = S, and consider the sequence of subsets of Z/pZ, which we denote by
S1, S2, ..., where

Si+1 =

{
Si + Si, if |Si + Si| > |SiSi|; and
SiSi, if |Si + Si| ≤ |SiSi|.

We continue constructing this sequence until we reach the set Sn satisfying

|Sn| > p2/3. (3)

Using Theorem 1 we can produce a non-trivial upper bound on the size of n for β < 1/5k:
Let δ = 1/4k, and let c = c(δ), θ = θ(δ) be as in Theorem 1. Then, for p sufficiently
large, we will have

pδ < |S0| = |S| < p1−δ,

and the same inequality will hold for S1, S2, ..., Sn−1. Now, applying Theorem 1, we
deduce that

|Si+1| > c|Si|1+θ;
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and so,

|S1| > c|S0|1+θ, and for j = 2, ..., n, |Sj| > c1+(1+θ)j−1|S0|(1+θ)j .

From this inequality and (3) , we deduce that(
1

2k
− β

)
(1 + θ)n + o(1) >

2

3
,

where the o(1) tends to 0 as p tends to infinity; and so, since β < 1/5k, our sequence
S0, S1, ..., Sn finishes with

n <
log(3k)

log(1 + θ)
+ 1

for p sufficiently large.

Now, every element of S0 is a sum of at most u terms; each element of S1 is a sum of
at most u2 terms; and, by an induction argument, each element of Sn is a sum of at most
u2n terms. Also, each element of Sn is a sum of terms of the form 1/qk1 · · · qk2n , where
q1 · · · q2n ≤ p2nβ.

Now, let β = ε/2n+1. If ε < 1/5k, then this value of β < 1/5k (recall we said that ε
is allowed to be bounded from above by a function of k). Let h

h = u2
d log(3k)

log(1+θ)e
,

and define

T =

{
1

qk1
+ · · ·+ 1

qkh
(mod p) : 2 ≤ q1, ..., qh ≤ pε/2

}
Here, q1, ..., qh are not restricted to being prime numbers. Since |T | ≥ |Sn|, we have that
|T | > p2/3 for p sufficiently large.

Now we use the following simple lemma, which has appeared in many works before,
and uses a standard bilinear exponential sums technique:

Lemma 1 Suppose that T ⊆ Z/pZ satisfies |T | > p1/2+β. Then, every residue class
modulo p contains an integer of the form x1 + · · ·+ xJ , where the x1, ..., xJ are all of the
form t1t2, where t1, t2 ∈ T , and where J = b2(1 + 2β)/βc+ 1.

Proof of the Lemma. First, we consider the exponential sums

h(a) =
∑
t∈T

e

(
at

p

)
,

and

f(a) =
∑

t1,t2∈T
e

(
at1t2
p

)
.
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We have from Parseval’s identity and the Cauchy-Schwarz inequality that for a 6≡ 0
(mod p),

|f(a)| ≤
∑
t1∈T

∣∣∣∣∣∑
t2∈T

e

(
at1t2
p

)∣∣∣∣∣
≤

(∑
t1∈T

1

)1/2(∑
t2∈T
|h(at2)|2

)1/2

= p1/2|T | ≤ |f(0)|(1+β)/(1+2β).

Now, if we let J be the least integer greater than

2

(
1− 1 + β

1 + 2β

)−1

=
2(1 + 2β)

β
,

then we have that for a 6≡ 0 (mod p),

|f(a)|J < |f(0)|J(1+β)/(1+2β) < |f(0)|J |f(0)|−Jβ/(1+2β)

≤ |f(0)|J−2 ≤ |f(0)|J
p

.

Thus, given an integer r, the number

#(x1, ..., xJ : xi = t1t2; t1, t2 ∈ T ; and x1 + · · ·+ xJ ≡ r (mod p))

=
1

p

p−1∑
a=0

f(a)Je(−ar/p) ≥ f(0)

p
− 1

p

∑
1≤a≤p−1

|f(a)|J

≥ f(0)

p
− (p− 1)f(0)

p2
> 0.

This proves the lemma. ¤

From this lemma, we deduce that for every residue class r modulo p, there exist
integers t1, ..., t16, such that

r ≡ t1t2 + t3t4 + · · ·+ t15t16 (mod p),

where t1, ..., t16 ∈ T . This sum can be expressed as a sum of at most 16h2 terms of the
form 1/(qq′)k, where q, q′ < pε/2. This then proves the theorem, since h depends only on
k and ε.
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