# A FINITE RING POLYNOMIAL 

B. Sury<br>Stat-Math Unit, Indian Statistical Institute, Bangalore, 560 059, India<br>sury@isibang.ac.in

Received: 1/1/04, Revised: 9/28/04, Accepted: 10/22/04, Published: 10/25/04


#### Abstract

For any finite commutative ring $A$ with unity, the polynomial $$
S_{A}(x)=\prod_{a \in A}(x-a)
$$ was considered in [1] as an analogue of the sine function and studied with reference to Kronecker's Jugendtraum. A question posed there was whether, for $A=\mathbb{Z} / n \mathbb{Z}$, the additivity $$
S_{A}(x+y)=S_{A}(x)+S_{A}(y)
$$ holds if, and only if, $n$ is a prime. We prove this very easily and show, more generally, that if additivity holds for $A$, then $A$ has characteristic a prime and, further, for the ring $A$ which is the direct sum of $r$ copies of $\mathbb{Z} / p \mathbb{Z}$ for a prime $p$, we have $$
S_{A}(x)=\left(x^{p}-x\right)^{p^{r-1}} .
$$


For any finite commutative ring $A$ with unity, consider the polynomial

$$
S_{A}(x)=\prod_{a \in A}(x-a) .
$$

This finite analogue of the sine function was studied in [1] where the question was posed for $A=\mathbb{Z} / n \mathbb{Z}$ as to whether the additivity

$$
S_{A}(x+y)=S_{A}(x)+S_{A}(y)
$$

holds if, and only if, $n$ is a prime. This is extremely easy to prove and here we observe, more generally, the following :

Theorem. Let $A$ be any finite commutative ring with unity having cardinality $n$ and let $S_{A}(x) \in A[x]$ be defined to be $\prod_{a \in A}(x-a)$. If

$$
S_{A}(x+y)=S_{A}(x)+S_{A}(y)
$$

holds, then $A$ has characteristic a prime. In particular, for $\mathbb{Z} / n \mathbb{Z}$, additivity holds if, and only if, $n$ is prime.
Further, for the ring $A$ which is the direct sum of $r$ copies of $\mathbb{Z} / p \mathbb{Z}$ for a prime $p$, we have

$$
S_{A}(x)=\left(x^{p}-x\right)^{p^{r-1}}
$$

In particular, additivity holds in all these cases.
Proof. Let us start by observing that $S_{A}(x)=x^{n}+f(x)$ where $f$ is a polynomial consisting of terms in $x$, of degree smaller than $n$.
Thus $S_{A}(x+y)$ contains the terms $\binom{n}{r} x^{r} y^{n-r}$ for $1 \leq r<n$ which, if nonzero, contribute to $S_{A}(x+y)-S_{A}(x)-S_{A}(y)$. Thus, additivity forces all the binomial coefficients $\binom{n}{r}$ to be zero in $A$ for all $1 \leq r<n$.
If $n=\prod_{i=1}^{k} p_{i}^{l_{i}}$ for different primes $p_{i}$, then since $\binom{n}{p_{i}{ }_{l}}$ is coprime to $p_{i}$ and since $n=\binom{n}{1}$ is itself zero, we obtain that $\frac{n}{p_{i}^{c_{i}}}$ is zero in $A$. But these $k$ numbers do not have a common factor, which gives a contradiction unless there is only one prime.
Let us write $n=p^{l}$. Then the binomial coefficient $\binom{p^{l}}{p^{l-1}}$ is zero in $A$. This number is of the form $p d$ for some $(p, d)=1$; hence we once again obtain, by using $p^{l}=0=p d$, that $p=0$ in $A$. This proves the first assertion and answers question 1 of [1] affirmatively.

Now, we proceed further and consider rings which are direct sums of a finite number of copies of $\mathbb{Z} / p \mathbb{Z}$ and show that in these cases, the function $S_{A}(x)=\left(x^{p}-x\right)^{p^{r-1}}$.
Let us consider $A=\mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$ first so as to make the pattern clear.
Now $S_{A}(x)=\prod_{0 \leq i, j<p}(x-(i, j))$. Further, it is trivial to see that the corresponding function of $\mathbb{Z} / p \mathbb{Z}$ is

$$
x(x-1) \cdots(x-p+1)=x^{p}-x
$$

In other words, the $k$-th symmetric polynomials $\sigma_{k}$ in the natural numbers $1,2, \cdots, p-1$ are multiples of $p$ for $1 \leq k<p-1$.
Note that, for this ring $A$,
$(x-(0,0))(x-(1,1)) \cdots(x-(p-1, p-1))=x\left(x-1_{A}\right)\left(x-2\left(1_{A}\right)\right) \cdots\left(x-(p-1) 1_{A}\right)$
where $1_{A}$ is the unity of $A$.
Hence
$x\left(x-1_{A}\right)\left(x-2\left(1_{A}\right)\right) \cdots\left(x-(p-1) 1_{A}\right)=x^{p}-\left(\sigma_{1}\right) 1_{A} x^{p-1}+\cdots-\left(\sigma_{p-2}\right) 1_{A} x^{2}-x=x^{p}-x$.
Thus, we have the subproduct

$$
S_{0}(x):=(x-(0,0))(x-(1,1)) \cdots(x-(p-1, p-1))=x^{p}-x .
$$

Now, we claim that the product $S_{A}(x)$ can be broken up into $p$ products each of which equals the above subproduct $S_{0}(x)$.
It is clear that the product of the $p-1$ factors

$$
S_{i}(x)=(x-(0, i))(x-(1, i+1)) \cdots(x-(p-1, i-1)),
$$

for $i=1,2, \cdots, p-1$, when multiplied by $S_{0}(x)$, give $S_{A}(x)$. We claim that $S_{i}=S_{0}$ for all $i$.
Clearly, $S_{i}(x)=S_{0}(y)$ where $y=x-(0, i)$. Therefore,

$$
S_{i}(x)=y^{p}-y=(x-(0, i))^{p}-(x-(0, i))=x^{p}-x .
$$

Hence, we have proved, for $A=\mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$, that $S_{A}(x)=\left(x^{p}-x\right)^{p}$.

For general $r$, the proof is essentially the same as that given for $r=2$, taking

$$
S_{0}(x)=(x-(0, \cdots, 0))(x-(1, \cdots, 1)) \cdots(x-(p-1, \cdots, p-1))
$$

except that there are now $p^{r-1}$ subproducts in the obvious manner. In fact, $\mathbb{Z} / p \mathbb{Z}$ acts on $A$ by

$$
j .\left(i_{1}, \cdots, i_{r}\right)=\left(i_{1}-j, \cdots, i_{r}-j\right)
$$

and $S_{0}$ is an orbit of the action. Since each orbit clearly has $p$ elements, there are $p^{r-1}$ orbits. Note that for any orbit $S_{i}$, the subproduct equals $x^{p}-x$ as seen before.
Hence, it follows that for the direct sum $A$ of $r$ copies of $\mathbb{Z} / p \mathbb{Z}$, we have $S_{A}(x)=$ $\left(x^{p}-x\right)^{p^{r-1}}$. This proves the theorem.

It may also be interesting to study this function for finite noncommutative rings, where we fix any order of the elements for defining the product.

## References

[1] N. Kurokawa, Eva-Marie Muller-Stuler, H. Ochiai, and M. Wakayama, Kronecker's Jugendtraum and ring sine functions, J. Ramanujan Math. Soc., Vol. 17 (2002) 211-220.

## Acknowledgments

It is a pleasure to thank Professor H. N. Ramaswamy who drew my attention to this question and gave me a copy of the paper of Kurokawa et. al.

