SOME FOURTH DEGREE DIOPHANTINE EQUATIONS IN GAUSSIAN INTEGERS

Sándor Szabó
Institute of Mathematics and Informatics, University of Pécs, Ifjúság u. 6, 7624 Pécs, HUNGARY

Received: 4/17/04, Revised: 9/10/04, Accepted: 10/20/04, Published: 10/25/04

Abstract

For certain choices of the coefficients a, b, c the solutions of the Diophantine equation $a x^{4}+b y^{4}=$ $c z^{2}$ in Gaussian integers satisfy $x y=0$.

1. Introduction

The solution $\left(x_{0}, y_{0}, z_{0}\right)$ of the equation $a x^{4}+b y^{4}=c z^{2}$ is called trivial if $x_{0}=0$ or $y_{0}=0$. P. Fermat showed that the equation $x^{4}+y^{4}=z^{2}$ has only trivial solutions in integers. D. Hilbert [2] extended this result by showing that the equation $x^{4}+y^{4}=z^{2}$ has only trivial solutions in a larger domain, namely in the integers of $Q(\sqrt{-1})$. In fact from his proof, it follows that the equation $x^{4}-y^{4}=z^{2}$ also has only trivial solutions. J. T. Cross [1] gave a new proof for Hilbert's result. We consider the following eight equations $x^{4}+m y^{4}=z^{2}$, where $m= \pm 2^{n}, 0 \leq n \leq 3$. The equations $x^{4}-2 y^{4}=z^{2}, y^{4}+8 y^{4}=z^{2}$ have nontrivial solutions in integers as shown by the solutions $(3,2,7),(1,1,3)$, respectively. We will show that the remaining six equations have only trivial solutions in the integers of the quadratic field $Q(\sqrt{-1})$. The $m= \pm 1$ case is covered by Hilbert's result, so we will deal only with four cases. It is worthwhile to point out that the equation $x^{4}+2 y^{4}=z^{2}$ has nontrivial solution in $Z[\sqrt{ \pm 2}]$, as the solution $(1, \sqrt{ \pm 2}, 3)$ shows.

It is proved in [3], among various similar results, that the equation $x^{4}-p y^{4}=z^{2}$ has only trivial solutions in integers, where p is a prime $p \equiv \pm 3,-5(\bmod 16)$. We will show that the equations $x^{4}-p y^{4}=z^{2}, x^{4}-p^{3} y^{4}=z^{2}$ have only trivial solutions in the Gaussian integers, where p is a prime $p \equiv 3 \quad(\bmod 8)$. We would like to point out that the equations $x^{4}+p y^{4}=z^{2}$, $x^{4}+p^{2} y^{4}=z^{2}$ have nontrivial integer solutions when $p=3$ as shown by the solutions $(1,1,2)$, $(2,1,5)$, respectively.

It is shown in [4] (Theorem 117, p. 230), that the equation $x^{4}-y^{4}=p z^{2}$ has only trivial solutions in integers, where p is a prime $p \equiv 3(\bmod 8)$. It is shown in [3] (p. 23) that the equation $x^{4}-p y^{4}=z^{2}$ has only trivial solutions in integers, where p is a prime $p \equiv \pm 3,-5$ (mod 16). Motivated by these results, we will show that the equations $x^{4}-y^{4}=p z^{2}, x^{4}-p^{2} y^{4}=$ z^{2} have only trivial solutions in Gaussian integers if p is a rational prime $p \equiv 3(\bmod 8)$.

We list the properties of $Q(\sqrt{-1})$ which play part later. Let $i=\sqrt{-1}$ and $\omega=1+i$. The ring of integers of $Q(i)$ is $Z[i]=\{u+v i: u, v \in Z\}$ which is a unique factorization domain. The units of $Z[i]$ are $1, i,-1,-i$. The norm of ω is 2 and consequently ω is a prime in $Z[i]$. The prime factorization of 2 is $(-i) \omega^{2}$. We will use the ideals formed by the Gaussian integer multiples of $\omega^{n}, 1 \leq n \leq 6$. Note that $\omega^{2}, \omega^{4}, \omega^{6}$ are associates of $2,4,8$, respectively, and so they span the same ideals. We will prefer to use the terminology connected with congruences instead of with ideals.

We will use the next observation several times. If α is an integer in $Q(\sqrt{-1})$ and $\alpha \equiv 1$ $(\bmod \omega)$, then $\alpha^{2} \equiv 1\left(\bmod \omega^{2}\right)$ and $\alpha^{4} \equiv 1\left(\bmod \omega^{6}\right)$. In order to verify the first claim, write α in the form $\alpha=k \omega+1$, where $k \in Z[i]$ and compute α^{2}. Since $\alpha^{2}=k^{2} \omega^{2}+2 k \omega+1$, it follows that $\alpha^{2} \equiv 1\left(\bmod \omega^{2}\right)$. In order to verify the second claim write α in the form $\alpha=k \omega^{2}+l, k, l \in Z[i]$ and compute α^{4}.

$$
\alpha^{4}=\left(k \omega^{2}\right)^{4}+4\left(k \omega^{2}\right)^{3} l+6\left(k \omega^{2}\right)^{2} l^{2}+4\left(k \omega^{2}\right) l^{3}+l^{4}
$$

This shows that $\alpha^{4} \equiv l^{4} \quad\left(\bmod \omega^{6}\right)$. Since $0,1, i, 1+i$ form a complete set of representatives modulo ω^{2} and since $\alpha \equiv 1(\bmod \omega)$ we can choose l to be either 1 or i. Therefore $\alpha^{4} \equiv 1$ $\left(\bmod \omega^{6}\right)$.

2. The equation $x^{4}-d y^{4}=z^{2}$

Theorem 1. Let p be a rational prime $p \equiv 3(\bmod 8)$ and let $d=p$ or $d=p^{3}$. The equation $x^{4}-d y^{4}=z^{2}$ has only trivial solution in $Z[i]$.

Proof. We divide the proof into 5 smaller steps.
(1) If $\left(x_{0}, y_{0}, z_{0}\right)$ is a nontrivial solution of the equation $x^{4}-d y^{4}=z^{2}$, then we may assume that x_{0}, y_{0}, z_{0} are pairwise relatively primes.

Let $\left(x_{0}, y_{0}, z_{0}\right)$ be a solution of the equation $x^{4}-d y^{4}=z^{2}$. We will call the quantity $N\left(x_{0}\right) N\left(y_{0}\right) N\left(z_{0}\right)$ the height of the solution. Here $N(u)$ is the norm of u. Choose a nontrivial solution $\left(x_{0}, y_{0}, z_{0}\right)$ such that the height of the solution is minimal.

Suppose first that x_{0} and y_{0} are not relatively prime. Let g be the greatest common divisor of x_{0} and y_{0} in $Z[i]$. As $x_{0} \neq 0$, it follows that $g \neq 0$. Dividing $x_{0}^{4}-d y_{0}^{4}=z_{0}^{2}$ by g^{4} we get
$\left(x_{0} / g\right)^{4}-d\left(y_{0} / g\right)^{4}=\left(z_{0} / g^{2}\right)^{2}$. This equation holds in $Q(i)$. The left hand side of the equation is an element of $Z[i]$. Consequently the right hand side of the equation belongs to $Z[i]$. Thus, $\left(x_{0} / g, y_{0} / g, z_{0} / g^{2}\right)$ is also a nontrivial solution of the equation $x^{4}-d y^{4}=z^{2}$ in $Z[i]$. Clearly the height of this solution is smaller than the height of $\left(x_{0}, y_{0}, z_{0}\right)$. Hence, we may assume that x_{0} and y_{0} are relatively prime in $Z[i]$. We claim that if there is a prime q of $Z[i]$ such that $q \mid x_{0}$ and $q \mid z_{0}$, then $q \mid y_{0}$. In order to verify the claim assume that q is prime that divides x_{0} and z_{0}. From the equation $x_{0}^{4}-d y_{0}^{4}=z_{0}^{2}$ it follows that $q^{2} \mid d y_{0}^{4}$. If $d=p$, then $q \mid y_{0}$ because p itself is a prime in $Z[i]$. If $d=p^{3}$, then it may be the case that $q=p$. But in this case $p^{3} \mid x_{0}^{4}$ and $p^{3} \mid d y_{0}^{4}$ so $p^{3} \mid z_{0}^{2}$, therefore $p^{2} \mid z_{0}$; hence, $p^{4} \mid z_{0}^{2}$ and since $p^{4} \mid x_{0}^{4}$, it follows that $p^{4} \mid d y_{0}^{4}$ and we can conclude that $p \mid y_{0}$.

This violates that x_{0} and y_{0} are relatively prime. Similarly, if $q \mid y_{0}$ and $q \mid z_{0}$, then $q \mid x_{0}$ violating again that x_{0} and y_{0} are relatively prime. Thus we may assume that x_{0}, y_{0}, z_{0} are pairwise relatively prime.
(2) Let $\left(x_{0}, y_{0}, z_{0}\right)$ be a nontrivial solution of the equation $x^{4}-d y^{4}=z^{2}$ in $Z[i]$ such that x_{0}, y_{0}, z_{0} are pairwise relatively prime. Note that at most one of x_{0}, y_{0}, z_{0} can be congruent to 0 modulo ω. We consider the following four cases. None of x_{0}, y_{0}, z_{0} is congruent to 0 modulo ω and three cases depending on x_{0}, y_{0}, z_{0} congruent to 0 modulo ω respectively. Table 1 summarizes the cases.

	$x_{0} \equiv$	$y_{0} \equiv$	$z_{0} \equiv$	
case 1	1	1	1	$(\bmod \omega)$
case 2	0	1	1	$(\bmod \omega)$
case 3	1	0	1	$(\bmod \omega)$
case 4	1	1	0	$(\bmod \omega)$

Table 1

In case 1 , the equation $x_{0}^{4}-d y_{0}^{4}=z_{0}^{2}$ leads to the contradiction $1-1 \equiv 1(\bmod \omega)$. In other words case 1 is merely the fact that "a sum of two odd numbers cannot be odd", where here, an odd number is a number which is not a multiple of ω. We will use this fact several times later without mentioning it explicitely.

In case 2 , write the equation $x_{0}^{4}-d y_{0}^{4}=z_{0}^{2}$ in the equivalent form $d y_{0}^{4}=\left(x_{0}^{2}-z_{0}\right)\left(x_{0}^{2}+z_{0}\right)$ and compute the greatest common divisor of $\left(x_{0}^{2}-z_{0}\right)$ and $\left(x_{0}^{2}+z_{0}\right)$. Let g be this greatest common divisor. Then $g\left|\left(x_{0}^{2}-z_{0}\right), g\right|\left(x_{0}^{2}+z_{0}\right)$ implies $g\left|\left(2 x_{0}^{2}\right), g\right|\left(2 z_{0}\right)$. As $g \mid\left(d y_{0}^{4}\right)$, it follows that $g \neq 0$. If q is a prime divisor of g, then $q \nmid \omega$ and so $q\left|x_{0}, q\right| z_{0}$. But this cannot happen as x_{0} and z_{0} are relatively prime. Thus, $g=1$. The unique factorization property in $Z[i]$ gives
that there are elements a, b, A, B and a unit ε of $Z[i]$ such that

$$
x_{0}^{2}-z_{0}=\varepsilon a^{4} A, \quad x_{0}^{2}+z_{0}=\varepsilon^{-1} b^{4} B,
$$

where

$$
A B=d, \quad a^{4} b^{4}=y_{0}^{4}
$$

Further, A and B are relatively prime, and so we may assume that either $A=1, B=d$, or $A=d, B=1$. By addition, we get that

$$
2 x_{0}^{2}=\varepsilon a^{4} A+\varepsilon^{-1} b^{4} B .
$$

Let $x_{0}=\omega^{t} x_{1}, t \geq 1, x_{1} \equiv 1 \quad(\bmod \omega)$. Writing x_{1} in the form $x_{1}=k \omega+1$ and computing x_{1}^{2},

$$
x_{1}^{2}=k^{2} \omega^{2}+2 k \omega+1,
$$

we get that $x_{0}^{2}=\omega^{2 t}\left(m \omega^{2}+1\right)$ with a suitable $m \in Z[i]$.
As $a \mid y_{0}^{4}$, it follows that $a \equiv 1(\bmod \omega)$. We then get that $a^{4} \equiv 1\left(\bmod \omega^{6}\right)$. Similarly, $b^{4} \equiv 1 \quad\left(\bmod \omega^{6}\right)$.

We focus our attention on the equation

$$
(-i) \omega^{2} \omega^{2 t}\left(m \omega^{2}+1\right)=\varepsilon a^{4} A+\varepsilon^{-1} b^{4} B
$$

modulo ω^{6}. (We remind the reader that $2=(-i) \omega^{2}$.) Let us first deal with the case when $A=d$ and $B=1$. If $t=1$, then the equation reduces to

$$
-i \omega^{4} \equiv \varepsilon(3)+\varepsilon^{-1} \quad\left(\bmod \omega^{6}\right)
$$

As ε varies over the units of $Z[i]$, we get the following contradictions.

$$
\begin{aligned}
&(-i) \omega^{4} \equiv(1)(3)+(1)\left(\bmod \omega^{6}\right), \\
&(-i) \omega^{4} \equiv(i)(3)+(-i) \quad\left(\bmod \omega^{6}\right), \\
&(-i) \omega^{4} \equiv(-1)(3)+(-1) \quad\left(\bmod \omega^{6}\right), \\
&(-i) \omega^{4} \equiv(-i)(3)+(i) \quad\left(\bmod \omega^{6}\right) .
\end{aligned}
$$

If $t \geq 2$, then the equation reduces to

$$
0 \equiv \varepsilon(3)+\varepsilon^{-1} \quad\left(\bmod \omega^{6}\right)
$$

As ε varies over the units of $Z[i]$, we get the following contradictions.

$$
\begin{aligned}
& 0 \equiv(1)(3)+(1) \quad\left(\bmod \omega^{6}\right), \\
& 0 \equiv(i)(3)+(-i) \quad\left(\bmod \omega^{6}\right), \\
& 0 \equiv(-1)(3)+(-1) \quad\left(\bmod \omega^{6}\right), \\
& 0 \equiv(-i)(3)+(i) \quad\left(\bmod \omega^{6}\right)
\end{aligned}
$$

The case when $A=1$ and $B=d$ can be settled in a similar way. This shows that case 2 is not possible.

Next, we verify that case 4 is not possible either. We write z_{0} in the form $z_{0}=\omega^{t} z_{1}, t \geq 1$, $z_{1} \equiv 1 \quad(\bmod \omega)$. We focus our attention on the equation

$$
x_{0}^{4}-d y_{0}^{4}=\omega^{2 t} z_{1}^{2}
$$

modulo ω^{4}. It leads to the contradictions $(1)-(3)(1) \equiv \omega^{2},(1)-(3)(1) \equiv 0 \quad\left(\bmod \omega^{4}\right)$ corresponding to $t=1$ or $t \geq 2$.
(3) In case 3 , let $\left(x_{1}, \omega^{t} y_{1}, z_{1}\right)$ be a solution of the equation $x^{4}-d y^{4}=z^{2}$, where $t \geq 1$, $x_{1} \equiv y_{1} \equiv z_{1} \equiv 1 \quad(\bmod \omega)$ and x_{1}, y_{1}, z_{1} are pairwise relatively prime. We will show that $z_{1} \equiv 1 \quad\left(\bmod \omega^{2}\right)$.

In order to prove this claim, write z_{1} in the form $z_{1}=k \omega^{2}+l, k, l \in Z[i]$, and compute z_{1}^{2}.

$$
z_{1}^{2}=k^{2} \omega^{4}+2 k \omega^{2} l+l^{2} .
$$

From this it follows that $z_{1}^{2} \equiv l^{2}\left(\bmod \omega^{4}\right)$. Since the elements $0,1, i, 1+i$ form a complete set of representatives modulo ω^{2}, and since $z_{1} \equiv 1(\bmod \omega)$, we may choose l to be 1 , or i. Consequently, z_{1}^{2} is congruent to 1 or -1 modulo ω^{4}. The equation $x_{1}^{4}-d \omega^{4 t} y_{1}^{4}=z_{1}^{2}$ gives that $1 \equiv z_{1}^{2} \quad\left(\bmod \omega^{4}\right)$, and so $z_{1} \equiv 1 \quad\left(\bmod \omega^{2}\right)$.
(4) We will show that there are pairwise relatively prime elements x_{2}, y_{2}, z_{2} of $Z[i]$, such that $x_{2} \equiv y_{2} \equiv z_{2} \equiv 1 \quad(\bmod \omega)$ and $\left(x_{2}, \omega^{t-1} y_{2}, z_{2}\right)$ is a solution of the equation $x^{4}-d y^{4}=z^{2}$.

In order to verify the claim, write the equation $x_{1}^{4}-d \omega^{4 t} y_{1}^{4}=z_{1}^{2}$ in the form $d \omega^{4 t} y_{1}^{4}=$ $\left(x_{1}^{2}-z_{1}\right)\left(x_{1}^{2}+z_{1}\right)$, and compute the greatest common divisor of $\left(x_{1}^{2}-z_{1}\right)$ and $\left(x_{1}^{2}+z_{1}\right)$. Let g be this greatest common divisor. As $g \mid d \omega^{4 t} y_{1}^{4}$, it follows that $g \neq 0$. Now $g \mid\left(x_{1}^{2}-z_{1}\right)$, $g \mid\left(x_{1}^{2}+z_{1}\right)$ implies that $g\left|2 x_{1}^{2}, g\right| 2 z_{1}$. If q is a prime divisor of g with $q \backslash \omega$, we then get $q \mid x_{1}$, $q \mid z_{1}$. But we know that this is not the case as x_{1} and z_{1} are relatively prime. Thus, $g=\omega^{s}$, and $0 \leq s \leq 2$ since $g \mid 2 . \operatorname{By}(3) z_{1} \equiv 1 \quad\left(\bmod \omega^{2}\right)$. This together with $x_{1}^{2} \equiv 1 \quad\left(\bmod \omega^{2}\right)$ gives that $\left(x_{1}^{2}-z_{1}\right) \equiv 0 \quad\left(\bmod \omega^{2}\right),\left(x_{1}^{2}+z_{1}\right) \equiv 0 \quad\left(\bmod \omega^{2}\right)$. Therefore, $g=\omega^{2}$. The unique factorization property in $Z[i]$ gives that there are relatively prime elements $a, b \in Z[i]$ such that

$$
x_{1}^{2}-z_{1}=\omega^{2} a, \quad x_{1}^{2}+z_{1}=\omega^{2} b .
$$

Let $a=\omega^{u} a_{1}, b=\omega^{v} b_{1}$. So $d \omega^{4 t} y_{1}^{4}=\omega^{u+v+4} a_{1} b_{1}$. By the unique factorization property in $Z[i]$, there are elements a_{2}, b_{2}, A, B and a unit ε in $Z[i]$ for which

$$
\begin{gathered}
x_{1}^{2}-z_{1}=\omega^{u+2} \varepsilon a_{2}^{4} A, \quad x_{1}^{2}+z_{1}=\omega^{v+2} \varepsilon^{-1} b_{2}^{4} B, \\
4 t=u+v+4, \quad a_{2}^{4} b_{2}^{4}=y_{1}^{4}, \quad A B=d .
\end{gathered}
$$

Here, a_{2}, b_{2} are prime to ω, and A is prime to B. It follows that $a_{2} \equiv 1(\bmod \omega), b_{2} \equiv 1$ $(\bmod \omega)$. We may choose A, B such that either $A=d, B=1$, or $A=1, B=d$. By addition, we get

$$
2 x_{1}^{2}=\omega^{v+2} \varepsilon^{-1} b_{2}^{4} B+\omega^{u+2} \varepsilon a_{2}^{4} A .
$$

After dividing by ω^{2}, we get

$$
-i x_{1}^{2}=\omega^{v} \varepsilon^{-1} b_{2}^{4} B+\omega^{u} \varepsilon a_{2}^{4} A .
$$

In the remaining part of the proof, we distinguish two cases depending on whether $A=1$, $B=d$, or $A=d, B=1$.

Let us deal with the case $A=1, B=d$ first. We distinguish two subcases depending on whether $u=0, v=4 t-4$, or $v=0, u=4 t-4$. When $u=0, v=4 t-4$, we get

$$
-i x_{1}^{2}=\omega^{4 t-4} \varepsilon^{-1} b_{2}^{4} d+\varepsilon a_{2}^{4}
$$

If $4 t-4=0$, then this relation reduces to

$$
-i \equiv \varepsilon^{-1}+\varepsilon \quad\left(\bmod \omega^{2}\right) .
$$

But this is not possible as $\varepsilon^{-1}+\varepsilon \equiv 0\left(\bmod \omega^{2}\right)$. Thus, $4 t-4 \neq 0$. Now

$$
-i \equiv \varepsilon \quad\left(\bmod \omega^{2}\right)
$$

From this, it follows that $\varepsilon= \pm i$. By multiplying it by $-\varepsilon$ we get

$$
(i \varepsilon) x_{1}^{2}=\omega^{4 t-4}\left(-\varepsilon^{-1} \varepsilon\right) b_{2}^{4} d+\left(-\varepsilon^{2}\right) a_{2}^{4} .
$$

Note that $i \varepsilon$ is a square of an element of $Z[i]$, say $i \varepsilon=\sigma^{2}$. Thus $\left(a_{2}, \omega^{t-1} b_{2}, \sigma x_{1}\right), t \geq 2$ is a nontrivial solution of the equation $x^{4}-d y^{4}=z^{2}$.

When $v=0, u=4 t-4$, we get

$$
-i x_{1}^{2}=\varepsilon^{-1} b_{2}^{4} d+\omega^{4 t-4} \varepsilon a_{2}^{4} .
$$

If $4 t-4=0$, then this reduces to

$$
-i \equiv \varepsilon^{-1}+\varepsilon \quad\left(\bmod \omega^{2}\right)
$$

But this is not possible as $\varepsilon^{-1}+\varepsilon \equiv 0\left(\bmod \omega^{2}\right)$. Thus $4 t-4 \neq 0$. Now

$$
-i \equiv \varepsilon \quad\left(\bmod \omega^{2}\right) .
$$

From this, it follows that $\varepsilon= \pm i$. By multiplying it by ε^{-1}, we get

$$
\left(-i \varepsilon^{-1}\right) x_{1}^{2}=\left(\varepsilon^{-2}\right) b_{2}^{4} d+\omega^{4 t-4}\left(\varepsilon^{-1} \varepsilon\right) a_{2}^{4}
$$

Note that $-i \varepsilon^{-1}$ is a square of an element of $Z[i]$, say $-i \varepsilon^{-1}=\sigma^{2}$. Thus ($\omega^{t-1} a_{2}, b_{2}, \sigma x_{1}$), $t \geq 2$ is a nontrivial solution of the equation $x^{4}-d y^{4}=z^{2}$. By (2), this is not possible. The case $A=d, B=1$ can be settled in a similar way.
(5) Let $\left(x_{0}, y_{0}, z_{0}\right)$ be a nontrivial solution of the equation $x^{4}-d y^{4}=z^{2}$ in $Z[i]$. By (2), there is a solution $\left(x_{1}, \omega^{t} y_{1}, z_{1}\right)$ with $x_{1}, y_{1}, z_{1} \equiv 1(\bmod \omega), t \geq 1$. Choose a solution for which t is minimal. According to (4), there is a solution $\left(x_{2}, \omega^{t-1} y_{2}, z_{2}\right)$, where $x_{2}, y_{2}, z_{1} \equiv 1$ $(\bmod \omega), t \geq 2$. This contradicts the choice of t, and so completes the proof.
3. The equations $x^{4}-y^{4}=p z^{2}$ and $x^{4}-p^{2} y^{4}=z^{2}$

Theorem 2. Let p be a rational prime $p \equiv 3(\bmod 8)$. The equations $x^{4}-y^{4}=p z^{2}$ and $x^{4}-p^{2} y^{4}=z^{2}$ have only trivial solutions in $Z[i]$.

Proof. We divide the proof into 11 steps. The first 3 steps deal with the equation $x^{4}-y^{4}=p z^{2}$, and the next 7 steps deal with the equation $x^{4}-p^{2} y^{4}=z^{2}$.
(1) If $\left(x_{0}, y_{0}, z_{0}\right)$ is a nontrivial solution of the equation $x^{4}-y^{4}=p z^{2}$, we may then assume that x_{0}, y_{0}, z_{0} are pairwise relatively prime.

Choose a nontrivial solution $\left(x_{0}, y_{0}, z_{0}\right)$ of the equation $x^{4}-y^{4}=p z^{2}$ with minimal height. Suppose first that there is a prime q in $Z[i]$ such that $q\left|x_{0}, q\right| y_{0}$. From $x_{0}^{4}-y_{0}^{4}=p z_{0}^{2}$ it follows that $q^{4} \mid p z_{0}^{2}$. If $q \wedge p$, then $q^{4} \mid z_{0}^{2}$. Now $\left(x_{0} / q\right)^{4}-\left(y_{0} / q\right)^{4}=p\left(z_{0} / q^{2}\right)^{2}$ shows that $\left(x_{0} / q, y_{0} / q, z_{0} / q^{2}\right)$ is a nontrivial solution of the equation $x^{4}-y^{4}=p z^{2}$. The height of this solution is smaller than the height of $\left(x_{0}, y_{0}, z_{0}\right)$. This is a contradiction. If $q \mid p$, then $q^{3} \mid z_{0}^{2}$. Again we conclude that that $q^{4} \mid z_{0}^{2}$ and then $\left(x_{0} / q, y_{0} / q, z_{0} / q^{2}\right)$ is a nontrivial solution of the equation $x^{4}-y^{4}=p z^{2}$. The height again decreased. Thus we may assume that if $\left(x_{0}, y_{0}, z_{0}\right)$ is a nontrivial solution of the equation $x^{4}-y^{4}=p z^{2}$, then x_{0} and y_{0} are relatively prime.

Next suppose that there is a prime q in $Z[i]$ such that $q\left|x_{0}, q\right| z_{0}$. It follows that $q \mid y_{0}$. This violates that x_{0} and y_{0} are relatively prime.

Finally suppose that there is a prime q in $Z[i]$ such that $q\left|y_{0}, q\right| z_{0}$. We get that $q \mid x_{0}$. This is a contradiction as x_{0} and y_{0} are relatively prime.
(2) Let $\left(x_{0}, y_{0}, z_{0}\right)$ be a nontrivial solution of the equation $x^{4}-y^{4}=p z^{2}$ in $Z[i]$ such that x_{0}, y_{0}, z_{0} are pairwise relatively primes. Note that at most one of x_{0}, y_{0}, z_{0} can be congruent to 0 modulo ω. We consider the four cases summarized in Table 1.

We first show that case 1 is not possible. To do this, write z_{0} in the form $z_{0}=k \omega^{2}+l$, $k, l \in Z[i]$. Computing $z_{0}^{2}, z_{0}^{2}=k^{2} \omega^{4}+2 k \omega^{2} l+l^{2}$ shows that $z_{0}^{2} \equiv l^{2}\left(\bmod \omega^{4}\right)$. As $0,1, i$, $1+i$ is a complete set of representatives modulo ω^{2}, it follows that l can be chosen to be 1 or i.

From the equation $x_{0}^{4}-y_{0}^{4}=p z_{0}^{2}$, we get that $0 \equiv 3 l^{2} \quad\left(\bmod \omega^{4}\right)$. But this is a contradiction as $l^{2}= \pm 1$.

We next show that case 3 is not possible either. Let $y_{0}=\omega^{t} y_{1}$, where $t \geq 1$ and y_{1} is prime to ω. Writing z_{0} in the form $z_{0}=k \omega^{2}+l, k, l \in Z[i]$, from the equation $x_{0}^{4}-\omega^{4 t} y_{1}^{4}=p z_{0}^{2}$, we get that $1 \equiv 3 l^{2} \quad\left(\bmod \omega^{4}\right)$. In the case $l=1$, this leads to the contradiction $1 \equiv 3 \quad\left(\bmod \omega^{4}\right)$, and so we left with the $l=i$ choice. Now writing z_{0} in the form $z_{0}=r \omega^{4}+s, r, s \in Z[i]$ and computing $z_{0}^{2}, z_{0}^{2}=r^{2} \omega^{8}+2 r \omega^{4} s+s^{2}$ gives that $z_{0}^{2} \equiv s^{2} \quad\left(\bmod \omega^{6}\right)$. From $z_{0} \equiv i \quad\left(\bmod \omega^{2}\right)$, it follows that we can choose s and s^{2} in the way summarized by Table 2.

s	i	$2+i$	$3 i$	$2+3 i$
s^{2}	-1	$3+4 i$	-9	$-5+12 i$

Table 2

From the equation $x_{0}^{4}-\omega^{4 t} y_{1}^{4}=z_{0}^{2}$, we get $1+\omega^{4 t} \equiv s^{2} \quad\left(\bmod \omega^{6}\right)$. In the case $t=1$, this leads to the contradictions

$$
1-4 \equiv-1 \quad\left(\bmod \omega^{6}\right), \quad 1-4 \equiv 3+4 i \quad\left(\bmod \omega^{6}\right) .
$$

In the case $t \geq 2$, we arrive at the contradictions

$$
1 \equiv-1 \quad\left(\bmod \omega^{6}\right), \quad 1 \equiv 3+4 i \quad\left(\bmod \omega^{6}\right)
$$

(Note that Table 2 shows four possibilities but modulo $\omega^{6}=8$ there are only two posibilities.)
Finally, notice that multiplying the equation $x_{0}^{4}-y_{0}^{4}=p z_{0}^{2}$ by (-1) gives $y_{0}^{4}-x_{0}^{4}=p\left(i z_{0}\right)^{2}$, and so case 2 reduces to case 3 .
(3) In case 4, let $\left(x_{1}, y_{1}, \omega^{t} z_{1}\right)$ be a solution of the equation $x^{4}-y^{4}=p z^{2}$, where $t \geq 1, x_{1} \equiv$ $y_{1} \equiv z_{1} \equiv 1 \quad(\bmod \omega)$, and x_{1}, y_{1}, z_{1} are pairwise relatively primes. We will show that there are pairwise relatively prime elements x_{2}, y_{2}, z_{2} of $Z[i]$ such that $x_{2} \equiv y_{2} \equiv z_{2} \equiv 1 \quad(\bmod \omega)$, and either $\left(\omega^{t-2} x_{2}, y_{2}, z_{2}\right)$ or $\left(x_{2}, \omega^{t-2} y_{2}, z_{2}\right)$ is a solution of the equation $x^{4}-p^{2} y^{4}=z^{2}$.

In order to verify the claim, write the equation $x_{1}^{4}-y_{1}^{4}=p \omega^{2 t} z_{1}^{2}$ in the form $p \omega^{2 t} z_{1}^{2}=$ $\left(x_{1}^{2}-y_{1}^{2}\right)\left(x_{1}^{2}+y_{1}^{2}\right)$, and compute the greatest common divisor of $\left(x_{1}^{2}-y_{1}^{2}\right)$ and $\left(x_{1}^{2}+y_{1}^{2}\right)$. Let g be this greatest common divisor. As $g \mid p \omega^{2 t} z_{1}^{2}$ it follows that $d \neq 0 . g\left|\left(x_{1}^{2}-y_{1}^{2}\right), g\right|\left(x_{1}^{2}+y_{1}^{2}\right)$ implies that $g\left|2 x_{1}^{2}, g\right| 2 y_{1}^{2}$. If q is a prime divisor of g with $q \nmid \omega$, we then get $q\left|x_{1}, q\right| y_{1}$. But we know that this is not the case as x_{1} and y_{1} are relatively prime. Thus, $g=\omega^{s}$ and $0 \leq s \leq 2$ since $g \mid 2$. As $\left(x_{1}^{2}-y_{1}^{2}\right) \equiv\left(x_{1}^{2}+y_{1}^{2}\right) \equiv 0 \quad\left(\bmod \omega^{2}\right)$, it follows that $g=\omega^{2}$. The unique factorization property in $Z[i]$ gives that there are relatively prime elements $a, b \in Z[i]$ such that

$$
x_{1}^{2}-y_{1}^{2}=\omega^{2} a, \quad x_{1}^{2}+y_{1}^{2}=\omega^{2} b .
$$

Let $a=\omega^{u} a_{1}, b=\omega^{v} b_{1}$. So, $p \omega^{2 t} z_{1}^{2}=\omega^{u+v+4} a_{1} b_{1}$. By the unique factorization property in $Z[i]$, there are elements $a_{2}, b_{2}, a_{3}, b_{3}$ and a unit ε in $Z[i]$ for which

$$
\begin{gathered}
x_{1}^{2}-y_{1}^{2}=\omega^{u+2} \varepsilon a_{2}^{2} a_{3}, \quad x_{1}^{2}+y_{1}^{2}=\omega^{v+2} \varepsilon^{-1} b_{2}^{2} b_{3}, \\
2 t=u+v+4, \quad a_{2}^{2} b_{2}^{2}=z_{1}^{2}, \quad a_{3} b_{3}=p .
\end{gathered}
$$

Here a_{2}, b_{2} are prime to ω. It follows that $a_{2} \equiv b_{2} \equiv 1(\bmod \omega)$. By addition and subtraction, we get

$$
\begin{aligned}
& 2 x_{1}^{2}=\omega^{v+2} \varepsilon^{-1} b_{2}^{2} b_{3}+\omega^{u+2} \varepsilon a_{2}^{2} a_{3}, \\
& 2 y_{1}^{2}=\omega^{v+2} \varepsilon^{-1} b_{2}^{2} b_{3}-\omega^{u+2} \varepsilon a_{2}^{2} a_{3} .
\end{aligned}
$$

After dividing by ω^{2}, they give

$$
\begin{aligned}
& (-i) x_{1}^{2}=\omega^{v} \varepsilon^{-1} b_{2}^{2} b_{3}+\omega^{u} \varepsilon a_{2}^{2} a_{3}, \\
& (-i) y_{1}^{2}=\omega^{v} \varepsilon^{-1} b_{2}^{2} b_{3}-\omega^{u} \varepsilon a_{2}^{2} a_{3} .
\end{aligned}
$$

By multiplying the two equations together and multiplying the result by ε^{2}, we get

$$
-\varepsilon^{2} x_{1}^{2} y_{1}^{2}=\omega^{2 v} b_{2}^{4} b_{3}^{2}-\omega^{2 u} a_{2}^{4} a_{3}^{2}
$$

We distinguish two cases depending on whether $a_{3}=1, b_{3}=p$, or $a_{3}=p, b_{3}=1$. In the case $a_{3}=1, b_{3}=p-\varepsilon^{2} x_{1}^{2} y_{1}^{2}=\omega^{2 v} b_{2}^{4} p^{2}-\omega^{2 u} a_{2}^{4}$ we distinguish two subcases depending on whether $u=0, v=2 t-4$, or $u=2 t-4, v=0$. When $u=0, v=2 t-4$, we get $-\varepsilon^{2} x_{1}^{2} y_{1}^{2}=\omega^{4 t-8} b_{2}^{4} p^{2}-a_{2}^{4}$. Thus, $\left(a_{2}, \omega^{t-2} b_{2}, \varepsilon x_{1} y_{1}\right)$, is a nontrivial solution of the equation $x^{4}-p^{2} y^{4}=z^{2}$.

When $u=2 t-4, v=0$, we get $-\varepsilon^{2} x_{1}^{2} y_{1}^{2}=b_{2}^{4} p^{2}-\omega^{4 t-8} a_{2}^{4}$. Thus, $\left(\omega^{t-2} a_{2}, b_{2}, \varepsilon x_{1} y_{1}\right)$, is a nontrivial solution of the equation $x^{4}-p^{2} y^{4}=z^{2}$. The case $a_{3}=p, b_{3}=1$ can be settled in a similar way.

We now turn our attention to the equation $x^{4}-p^{2} y^{4}=z^{2}$.
(4) If $\left(x_{0}, y_{0}, z_{0}\right)$ is a nontrivial solution of the equation $x^{4}-p^{2} y^{4}=z^{2}$, we may then assume that x_{0}, y_{0}, z_{0} are pairwise relatively prime.

Choose a nontrivial solution $\left(x_{0}, y_{0}, z_{0}\right)$ of the equation $x^{4}-p^{2} y^{4}=z^{2}$ with minimal height. First suppose that x_{0} and y_{0} are not relatively prime. Let g be a greatest common divisor of x_{0} and y_{0} in $Z[i]$. The left hand side of the equation $\left(x_{0} / g\right)^{4}-p^{2}\left(y_{0} / g\right)^{4}=\left(z_{0} / g^{2}\right)^{2}$ is an element of $Z[i]$ so the right hand side of the equation is an element of $Z[i]$. Therefore $\left(x_{0} / g, y_{0} / g, z_{0} / g^{2}\right)$ is a nontrivial solution of $x^{4}-p^{2} y^{4}=z^{2}$. By the minimality of the height we may assume that x_{0} and y_{0} are relatively prime.

Next suppose that there is a prime q in $Z[i]$ such that $q\left|y_{0}, q\right| z_{0}$. In this case we get $q \mid x_{0}$. This is a contradiction since x_{0} and y_{0} are relatively prime.

Finally suppose that there is a prime q in $Z[i]$ such that $q\left|x_{0}, q\right| z_{0}$. It follows that $q^{2} \mid p^{2} y_{0}^{4}$. If $q \mid y_{0}$, then x_{0} and y_{0} are not relatively prime. This is not the case so $q \not y_{0}$. It follows that $q^{2} \mid p^{2}$. Hence q and p are associates. Set $x_{0}=p x_{1}, z_{0}=p z_{1}$. From $p^{4} x_{1}-p^{2} y_{0}^{4}=p^{2} z_{1}$ we get

$$
\begin{aligned}
p^{2} x_{1}^{2}-y_{0}^{4} & =z_{1}^{2} \\
y_{0}^{4}-p^{2} x_{1}^{4} & =-z_{1}^{2} .
\end{aligned}
$$

Therefore $\left(y_{0}, x_{1}, i z_{1}\right)$ is a nontrivial solution of the equation $x^{4}-p^{2} y^{4}=z^{2}$. By the minimality of the height we may assume that x_{0} and z_{0} are relatively prime.
(5) Let $\left(x_{0}, y_{0}, z_{0}\right)$ be a nontrivial solution of the equation $x^{4}-p^{2} y^{4}=z^{2}$ in $Z[i]$ such that x_{0}, y_{0}, z_{0} are pairwise relatively prime. We consider the four cases listed in Table 1. In case 1 , the equation $x_{0}^{4}-p^{2} y_{0}^{4}=z_{0}^{2}$ gives the contradiction $1-1 \equiv 1(\bmod \omega)$.
(6) In case 2 , multiply the equation $x^{4}-p^{2} y^{4}=z^{2}$ by (-1) to get $-x^{4}+p^{2} y^{4}=(i z)^{2}$. Let ($\omega^{t} x_{1}, y_{1}, z_{1}$) be a solution of the equation $-x^{4}+p^{2} y^{4}=z^{2}$, where $t \geq 1, x_{1} \equiv y_{1} \equiv z_{1} \equiv 1$ $(\bmod \omega)$ and x_{1}, y_{1}, z_{1} are pairwise relatively prime. We will show that $z_{1} \equiv 1\left(\bmod \omega^{2}\right)$.

In order to prove this claim, write z_{1} in the form $z_{1}=k \omega^{2}+l, k, l \in Z[i]$. It follows that $z_{1}^{2} \equiv l^{2}\left(\bmod \omega^{4}\right)$, and we may choose l to be 1 or i. Consequently, z_{1}^{2} is congruent to 1 or -1 modulo ω^{4}. The equation $-\omega^{4 r} x_{1}^{4}+p^{2} y_{1}^{4}=z_{1}^{2}$ gives that $1 \equiv z_{1}^{2} \quad\left(\bmod \omega^{4}\right)$, and so $z_{1} \equiv 1$ $\left(\bmod \omega^{2}\right)$.
(7) In case 2 let $\left(\omega^{r} x_{1}, y_{1}, z_{1}\right)$ be a solution of the equation $-x^{4}+p^{2} y^{4}=z^{2}$, where $r \geq 1$, $x_{1} \equiv y_{1} \equiv z_{1} \equiv 1 \quad(\bmod \omega)$ and x_{1}, y_{1}, z_{1} are pairwise relatively prime. We will show that there are pairwise relatively prime elements x_{2}, y_{2}, z_{2} of $Z[i]$ such that $x_{2} \equiv y_{2} \equiv z_{2} \equiv 1$ $(\bmod \omega)$ and $\left(x_{2}, \omega^{r-1} y_{2}, z_{2}\right)$ is a solution of the equation $x^{4}-y^{4}=p z^{2}$.

In short, case 2 leads to a nontrivial solution of the equation $x^{4}-y^{4}=p z^{2}$ corresponding to cases $1-3$. By step (2), no such solution exists, and so case 2 of equation $x^{4}-p^{2} y^{4}=z^{2}$ is not possible.

From the equation $\omega^{4 t} x_{1}^{4}=\left(p y_{1}^{2}-z_{1}\right)\left(p y_{1}^{2}+z_{1}\right)$, we can deduce that

$$
\begin{aligned}
& (-i) p y_{1}^{2}=\omega^{v} \varepsilon^{-1} b_{2}^{4}+\omega^{u} \varepsilon a_{2}^{4}, \\
& 4 t=u+v+4, \quad a_{2} b_{2}=x_{1}^{4} .
\end{aligned}
$$

We distinguish two cases depending on whether $u=0, v=4 t-4$, or $u=4 t-4, v=0$. In the case $u=0, v=4 t-4,(-i) p y_{1}^{2}=\omega^{4 t-4} \varepsilon^{-1} b_{2}^{4}+\varepsilon a_{2}^{4}$. If $4 t-4=0$, then it reduces to $-i \equiv \varepsilon^{-1}+\varepsilon \quad\left(\bmod \omega^{2}\right)$. But this a contradiction as $\varepsilon^{-1}+\varepsilon \equiv 0\left(\bmod \omega^{2}\right)$. The details are given in Table 3.

ε	1	i	-1	$-i$
ε^{-1}	1	$-i$	-1	i
$\varepsilon+\varepsilon^{-1}$	2	0	-2	0

Table 3
Thus $4 t-4 \geq 2$, and $-i \equiv \varepsilon\left(\bmod \omega^{2}\right)$. From this, it follows that $\varepsilon= \pm i$, that is, either $\varepsilon=i, \varepsilon^{-1}=-i$, or $\varepsilon=-i, \varepsilon^{-1}=i$. In the first case

$$
\begin{aligned}
(-i) p y_{1}^{2} & =\omega^{4 t-4}(-i) b_{2}^{4}+(i) a_{2}^{4} \\
p y_{1}^{2} & =\omega^{4 t-4} b_{2}^{4}-a_{2}^{4}
\end{aligned}
$$

and so $\left(\omega^{t-1} b_{2}, a_{2}, y_{1}\right)$ is a solution of the equation $x^{4}-y^{4}=p z^{2}$. In the second case

$$
\begin{aligned}
(-i) p y_{1}^{2} & =\omega^{4 t-4}(i) b_{2}^{4}+(-i) a_{2}^{4} \\
p y_{1}^{2} & =-\omega^{4 t-4} b_{2}^{4}+a_{2}^{4}
\end{aligned}
$$

hence $\left(a_{2}, \omega^{t-1} b_{2}, y_{1}\right)$ is a solution of the equation $x^{4}-y^{4}=p z^{2}$. The case $u=4 t-4, v=0$ can be settled in a similar way.
(8) In case 4 , let $\left(x_{1}, y_{1}, \omega^{t} z_{1}\right)$ be a solution of the equation $x^{4}-p^{2} y^{4}=z^{2}$, where $t \geq 1$, $x_{1} \equiv y_{1} \equiv z_{1} \equiv 1 \quad(\bmod \omega)$ and x_{1}, y_{1}, z_{1} are pairwise relatively prime. It follows that $z_{1} \equiv 1$ $\left(\bmod \omega^{2}\right)$.
(9) In case 3 , let $\left(x_{1}, \omega^{t} y_{1}, z_{1}\right)$ be a solution of the equation $x^{4}-p^{2} y^{4}=z^{2}$, where $r \geq 1, x_{1} \equiv$ $y_{1} \equiv z_{1} \equiv 1 \quad(\bmod \omega)$, and x_{1}, y_{1}, z_{1} are pairwise relatively prime. We will show that there are pairwise relatively prime elements x_{2}, y_{2}, z_{2} of $Z[i]$ such that $x_{2} \equiv y_{2} \equiv z_{2} \equiv 1 \quad(\bmod \omega)$, and either $\left(\omega^{t-1} x_{2}, y_{2}, z_{2}\right)$, or $\left(x_{2}, \omega^{t-1} y_{2}, z_{2}\right)$ is a solution of the equation $x^{4}-p^{2} y^{4}=z^{2}$.

Form the equation $p^{2} \omega^{4 t} y_{1}^{4}=\left(x_{1}^{2}-z_{1}\right)\left(x_{1}^{2}+z_{1}\right)$, we deduce again that

$$
\begin{gathered}
(-i) x_{1}^{2}=\omega^{v} \varepsilon^{-1} b_{2}^{4} b_{3}+\omega^{u} \varepsilon a_{2}^{4} a_{3}, \\
4 t=u+v+4, \quad a_{2}^{4} b_{2}^{4}=y_{1}^{4}, \quad a_{3} b_{3}=p^{2} .
\end{gathered}
$$

As a_{3} and b_{3} are relatively prime, we may assume that there are two cases depending on whether $a_{3}=1, b_{3}=p^{2}$, or $a_{3}=p^{2}, b_{3}=1$. In the case $a_{3}=1, b_{3}=p^{2}$,

$$
(-i) x_{1}^{2}=\omega^{v} \varepsilon^{-1} b_{2}^{4} p^{2}+\omega^{u} \varepsilon a_{2}^{4} .
$$

We distinguish two subcases depending on whether $u=0, v=4 t-4$, or $u=4 t-4, v=0$. When $u=0, v=4 t-4$, we get $(-i) x_{1}^{2}=\omega^{4 t-4} \varepsilon^{-1} b_{2}^{4} p^{2}+\varepsilon a_{2}^{4}$. If $4 t-4=0$, then this reduces to $-i \equiv \varepsilon^{-1}+\varepsilon \quad\left(\bmod \omega^{2}\right)$, which is not possible. Thus $4 t-4 \geq 2$ and $(-i) \equiv-\varepsilon \quad\left(\bmod \omega^{2}\right)$.

From this, it follows that $\varepsilon= \pm i$, that is, either $\varepsilon=i, \varepsilon^{-1}=-i$ or $\varepsilon=-i, \varepsilon^{-1}=i$. In the first case, we get

$$
\begin{aligned}
(-i) x_{1}^{2} & =\omega^{4 t-4}(-i) b_{2}^{4} p^{2}+(i) a_{2}^{4}, \\
-x_{1}^{2} & =-\omega^{4 t-4} b_{2}^{4} p^{2}+a_{2}^{4} .
\end{aligned}
$$

Thus ($a_{2}, \omega^{t-1} b_{2}, i x_{1}$), is a nontrivial solution of the equation $x^{4}-p^{2} y^{4}=z^{2}$. In the second case, we get

$$
\begin{aligned}
(-i) x_{1}^{2} & =\omega^{4 t-2}(i) b_{2}^{4} p^{2}+(-i) a_{2}^{4}, \\
x_{1}^{2} & =-\omega^{4 t-4} b_{2}^{4} p^{2}+a_{2}^{4} .
\end{aligned}
$$

Therefore $\left(a_{2}, \omega^{t-1} b_{2}, x_{1}\right)$ is a nontrivial solution of the equation $x^{4}-p^{2} y^{4}=z^{2}$.
When $u=4 t-4, v=0$, we get $(-i) x_{1}^{2}=\varepsilon^{-1} b_{2}^{4} p^{2}+\omega^{4 t-4} \varepsilon a_{2}^{4}$. If $4 t-4=0$, then this reduces to $-i \equiv \varepsilon^{-1}+\varepsilon \quad\left(\bmod \omega^{2}\right)$, which is not possible. Thus $4 t-4 \geq 2$ and $(-i) \equiv \varepsilon^{-1} \quad\left(\bmod \omega^{2}\right)$. From this, it follows that $\varepsilon= \pm i$, that is, either $\varepsilon=i, \varepsilon^{-1}=-i$, or $\varepsilon=-i, \varepsilon^{-1}=-i$. In the first case, we get

$$
\begin{aligned}
(-i) x_{1}^{2} & =(-i) b_{2}^{4} p^{2}+\omega^{4 t-4}(i) a_{2}^{4}, \\
-x_{1}^{2} & =-b_{2}^{4} p^{2}+\omega^{4 t-4} a_{2}^{4} .
\end{aligned}
$$

Thus ($\omega^{t-1} a_{2}, b_{2}, i x_{1}$) is a nontrivial solution of the equation $x^{4}-p^{2} y^{4}=z^{2}$. In the second case, we get

$$
\begin{aligned}
(-i) x_{1}^{2} & =(i) b_{2}^{4} p^{2}+\omega^{4 t-4}(-i) a_{2}^{4}, \\
x_{1}^{2} & =-b_{2}^{4} p^{2}+\omega^{4 t-4} a_{2}^{4},
\end{aligned}
$$

and so $\left(\omega^{t-1} a_{2}, b_{2}, x_{1}\right)$ is a nontrivial solution of the equation $x^{4}-p^{2} y^{4}=z^{2}$.
The case when $a_{3}=p^{2}, b_{3}=1$ can be completed in a similar way.
(10) In case 4 , let $\left(x_{1}, y_{1}, \omega^{t} z_{1}\right)$ be a solution of the equation $x^{4}-p^{2} y^{4}=z^{2}$, where $t \geq 1$, $x_{1} \equiv y_{1} \equiv z_{1} \equiv 1(\bmod \omega)$, and x_{1}, y_{1}, z_{1} are pairwise relatively prime. We will show that there are pairwise relatively prime elements x_{2}, y_{2}, z_{2} of $Z[i]$ such that $x_{2} \equiv y_{2} \equiv z_{2} \equiv 1$ $(\bmod \omega)$ and either $\left(\omega^{t-2} x_{2}, y_{2}, z_{2}\right)$ or $\left(x_{2}, \omega^{t-2} y_{2}, z_{2}\right)$ is a solution of the equation $x^{4}-y^{4}=p z^{2}$.

The conclusion of these steps is that in case 4 we end up with a nontrivial solution of the equation $x^{4}-y^{4}=p z^{2}$ corresponding to one of cases $1-3$. Since by step (2) this is not possible, it follows that case 4 of equation $x^{4}-p^{2} y^{4}=z^{2}$ is not possible either.

From the equation $\omega^{2 t} z_{1}^{2}=\left(x_{1}^{2}-p y_{1}^{2}\right)\left(x_{1}^{2}+p y_{1}^{2}\right)$, we can deduce that

$$
\begin{aligned}
&(-i) x_{1}^{2}=\omega^{v} \varepsilon^{-1} b_{2}^{2}+\omega^{u} \varepsilon a_{2}^{2}, \\
&(-i) p y_{1}^{2}=\omega^{v} \varepsilon^{-1} b_{2}^{2}-\omega^{u} \varepsilon a_{2}^{2} \\
& 2 t=u+v+4, \quad a_{2}^{2} b_{2}^{2}=z_{1}^{2} .
\end{aligned}
$$

By multiplying the first two equations above together and multiplying the result by ε^{2}, we get

$$
-\varepsilon^{2} p x_{1}^{2} y_{1}^{2}=\omega^{2 v} b_{2}^{4}-\omega^{2 u} a_{2}^{4}
$$

We distinguish two cases depending on whether $u=0, v=2 t-4$, or $u=2 t-4, v=0$. When $u=0, v=2 t-4$, we get $-\varepsilon^{2} p x_{1}^{2} y_{1}^{2}=\omega^{4 t-8} b_{2}^{4}-a_{2}^{4}$. Thus ($a_{2}, \omega^{t-2} b_{2}, \varepsilon x_{1} y_{1}$), is a nontrivial solution of the equation $x^{4}-y^{4}=p z^{2}$.

When $u=2 t-4, v=0$, we get $-\varepsilon^{2} p x_{1}^{2} y_{1}^{2}=b_{2}^{4}-\omega^{4 t-8} a_{2}^{4}$. Thus, $\left(\omega^{t-2} a_{2}, b_{2}, \varepsilon x_{1} y_{1}\right)$ is a nontrivial solution of the equation $x^{4}-y^{4}=p z^{2}$.
(11) Let $\left(x_{0}, y_{0}, z_{0}\right)$ be a nontrivial solution of the equation $x^{4}-p^{2} y^{4}=z^{2}$ in $Z[i]$. By steps (5), (7) and (10), cases 1,2 and 4 are not possible, and so there is a solution $\left(x_{1}, \omega^{t} y_{1}, z_{1}\right)$ with $x_{1}, y_{1}, z_{1} \equiv 1 \quad(\bmod \omega), t \geq 1$. Choose a solution for which t is minimal. According to step (9), there is a solution either of the form $\left(\omega^{t-1} x_{2}, y_{2}, z_{2}\right)$, or of the form $\left(x_{2}, \omega^{t-1} y_{2}, z_{2}\right)$, where $x_{2}, y_{2}, z_{2} \equiv 1 \quad(\bmod \omega), t \geq 2$. The first case is not possible. The second case contradicts the choice of t, and so we conclude that the equation $x^{4}-p^{2} y^{4}=z^{2}$ has no nontrivial solutions in $Z[i]$.

By step (3), a nontrivial solution of the equation $x^{4}-y^{4}=p z^{2}$ leads to a nontrivial solution of the equation $x^{4}-p^{2} y^{4}=z^{2}$. Thus the equation $x^{4}-y^{4}=p z^{2}$ does not have nontrivial solutions in $Z[i]$. This completes the proof.

We may describe the combinatorial content of our argument in the following way. We consider a directed graph Γ whose vertices and edges are labeled. To a nontrivial solution $\left(x_{0}, y_{0}, z_{0}\right)$ of the equation $E: a x^{4}+b y^{4}=c z^{2}$, we assign a type T depending on the residues of x_{0}, y_{0}, z_{0} modulo ω. (There are only a limited number of possibilities for T.) The nodes of Γ are the pairs (E, T), where E is an equation and T is a possible solution type. We label the node (E, T) impossible if the equation E has no nontrivial solution of type T. We draw an arrow from the node $\left(E_{1}, T_{1}\right)$ to the node $\left(E_{2}, T_{2}\right)$ if a nontrivial solution of E_{1} with type T_{1} gives rise to a nontrivial solution of E_{2} with type T_{2}. We label an arrow with a $-\operatorname{sign}$ if a quantity associated with a solution decreases. If each path starting with a node (E, T_{i}) terminates at a node labeled impossible or eventually reaches $\left(E, T_{i}\right)$ again but the edges are labeled with - signs, then the equation cannot have nontrivial solutions.

4. The equation $x^{4}+m y^{4}=z^{2}$

If (x_{0}, y_{0}, z_{0}) is a nontrivial solution either one of the equations

$$
x^{4}+4 y^{4}=z^{2}, \quad x^{4}-4 y^{4}=z^{2}, \quad x^{4}-8 y^{4}=z^{2},
$$

then $\left(x_{0}, \omega y_{0}, z_{0}\right)$ is a nontrivial solution one of the equations

$$
x^{4}-y^{4}=z^{2}, \quad x^{4}+y^{4}=z^{2}, \quad x^{4}+2 y^{4}=z^{2},
$$

respectively, as the first three equations can be written in the forms

$$
x^{4}-\omega^{4} y^{4}=z^{2}, \quad x^{4}+\omega^{4} y^{4}=z^{2}, \quad x^{4}+2 \omega^{4} y^{4}=z^{2},
$$

respectively. Thus, it will be enough to prove that the equation $x^{4}+2 y^{4}=z^{2}$ has only trivial solutions in $Z[i]$.

Theorem 3. The equation $x^{4}+2 y^{4}=z^{2}$ has only trivial solutions in $Z[i]$.
Proof. We divide the proof into 5 steps.
(1) If $\left(x_{0}, y_{0}, z_{0}\right)$ is a nontrivial solution of the equation $x^{4}+2 y^{4}=z^{2}$, then we may assume that x_{0}, y_{0}, z_{0} are pairwise relatively prime.
(1.a) Choose a nontrivial solution $\left(x_{0}, y_{0}, z_{0}\right)$ of the equation $x^{4}+2 y^{4}=z^{2}$ with minimal height. Suppose first that x_{0} and y_{0} are not relatively prime and let g be a greatest common divisor of x_{0} and y_{0}. The left hand side of the equation $\left(x_{0} / q\right)^{4}+2\left(y_{0} / g\right)^{4}=\left(z_{0} / g^{2}\right)^{2}$ is an element of $Z[i]$ and so the right hand side of the equation is an element of $Z[i]$. Hence $\left(x_{0} / g, y_{0} / g, z_{0} / g^{2}\right)$ is a nontrivial solution of $x^{4}+2 y^{4}=z^{2}$. By the minimality of the height we may assume that x_{0} and y_{0} are relatively prime.

Assume next that there is a prime q in $Z[i]$ such that $q\left|x_{0}, q\right| z_{0}$. It follows that $q \mid x_{0}$. This is a contradiction since x_{0}, y_{0} are relatively prime.

Finally suppose there is a prime q in $Z[i]$ such that $q\left|x_{0}, q\right| z_{0}$. We get that $q^{2} \mid 2 y_{0}$. If $q \mid y_{0}$ we get the contradiction that x_{0} and y_{0} are not relatively prime. Thus $q \nmid y_{0}$ and consequently $q^{2} \mid 2$. We get that q is an associate of ω. Set $x_{0}=\omega x_{1}, z_{0}=\omega z_{1}$. From $\omega^{4} x_{1}^{4}+2 y_{0}^{4}=\omega^{2} z_{1}^{2}$ we get

$$
\begin{aligned}
\omega^{4} x_{1}^{4}-i \omega^{2} y_{0}^{4} & =\omega^{2} z_{1}^{2}, \\
\omega^{2} x_{1}^{4}-i y_{0}^{4} & =z_{1}^{2}, \\
(-i) \omega^{2} x_{1}^{4}+y_{0}^{4} & =(-i) z_{1}^{2}, \\
y_{0}^{4}+2 x_{1}^{4} & =-i z_{1}^{2} .
\end{aligned}
$$

Therefore $\left(y_{0}, x_{1}, i z_{1}\right)$ is a nontrivial solution of the equation $x^{4}+2 y^{4}=i z^{2}$.
(1.b) Pick a nontrivial solution of $\left(x_{0}, y_{0}, z_{0}\right)$ of the equation $x^{4}+2 y^{4}=i z^{2}$ with minimal height. Using the argument we have seen in step (1.a) we may assume that x_{0} and y_{0} are relatively prime. The assumption that there is a prime q with $q\left|y_{0}, q\right| z_{0}$ gives the contradiction that x_{0} and y_{0} are not relatively prime.

Finally suppose that there is a prime q such that $q\left|x_{0}, q\right| z_{0}$. We get that $q^{2} \mid 2 y_{0}^{4}$. Here $q \mid y_{0}$ leads to the contradiction that x_{0} and y_{0} are not relatively prime. Thus $q^{2} \mid 2$ and so q and ω
are associates. Set $x_{0}=\omega x_{1}, z_{0}=\omega z_{1}$. From $\omega^{4} x_{1}^{4}+2 y_{0}^{4}=i \omega^{2} z_{1}^{2}$ we get

$$
\begin{aligned}
\omega^{4} x_{1}^{4}-i \omega^{2} y_{0}^{4} & =i \omega^{2} z_{1}^{2}, \\
\omega^{2} x_{1}^{4}-i y_{0}^{4} & =i z_{1}^{2}, \\
(-i) \omega^{2} x_{1}^{4}-y_{0}^{4} & =i z_{1}^{2}, \\
2 x_{1}^{4}-y_{0}^{4} & =i z^{2} \\
y_{0}^{4}-2 x_{1}^{4} & =-i z_{1}^{2} .
\end{aligned}
$$

Hence $\left(y_{0}, x_{1}, i z_{1}\right)$ is a nontrivial solution of the equation $x^{4}-2 y^{4}=i z^{2}$.
(1.c) Choose a nontrivial solution $\left(x_{0}, y_{0}, z_{0}\right)$ of the equation $x^{4}-2 y^{4}=i z^{2}$ with minimal height. As before we may assume that x_{0} and y_{0} are relatively prime. If there is a prime q with $q\left|y_{0}, q\right| z_{0}$ we get the contradiction that x_{0} and y_{0} are not relatively prime.

Finally consider the case when there is a prime q with $q\left|x_{0}, q\right| z_{0}$. It follows that $q^{2} \mid 2 y_{0}^{4}$. If $q \mid y_{0}$, then we get that x_{0} and y_{0} are not relatively prime. This is not the case. So $q^{2} \mid 2$ and we get that q and ω are associates. Setting $x_{0}=\omega x_{1}, z_{0}=\omega z_{1}$ from $\omega^{4}-2 y_{0}^{4}=i \omega^{2} z_{1}^{2}$ we get

$$
\begin{aligned}
\omega^{4} x_{1}^{4}+i \omega^{2} y_{0}^{4} & =i \omega^{2} z_{1}^{2} \\
\omega^{2} x_{1}^{4}+i y_{0}^{4} & =i z_{1}^{2} \\
(-i) \omega^{2} x_{1}^{4}+y_{0}^{4} & =z_{1}^{2} \\
y_{0}^{4}+2 x_{1}^{4} & =z_{1}^{2}
\end{aligned}
$$

Hence (y_{0}, x_{1}, z_{1}) is a nontrivial solution of $x^{4}+2 y^{4}=z^{2}$. The minimality of the height in (1.a) gives that we may assume that x_{0}, y_{0}, z_{0} are relatively prime in (1.a).
(2) Let $\left(x_{0}, y_{0}, z_{0}\right)$ be a nontrivial solution of the equation $x^{4}+2 y^{4}=z^{2}$ in $Z[i]$ such that x_{0}, y_{0}, z_{0} are pairwise relatively prime. Note that at most one of x_{0}, y_{0}, z_{0} can be congruent to 0 modulo ω. We consider the four cases listed in Table 1.

In cases 2 and 4 , the equation $x_{0}^{4}+2 y_{0}^{4}=z_{0}^{2}$ leads to the contradictions $0+0 \equiv 1 \quad(\bmod \omega)$ and $1+0 \equiv 0 \quad(\bmod \omega)$, respectively.

We next show that case 1 is not possible either. To do this, write z_{0} in the form $z_{0}=k \omega^{2}+l$, $k, l \in Z[i]$. Computing $z_{0}^{2}, z_{0}^{2}=k^{2} \omega^{4}+2 k \omega^{2} l+l^{2}$ shows that $z_{0}^{2} \equiv l^{2}\left(\bmod \omega^{4}\right)$. As $0,1, i$, $1+i$ is a complete set of representatives modulo ω^{2}, it follows that l can be chosen to be 1 or i. From the equation $x_{0}^{4}+2 y_{0}^{4}=z_{0}^{2}$ we get that $1+2 \equiv l^{2}\left(\bmod \omega^{4}\right)$. In the case $l=1$ this leads to the contradiction $1+2 \equiv 1\left(\bmod \omega^{4}\right)$ and so we left with the choice $l=i$. Now writing z_{0} in the form $z_{0}=r \omega^{4}+s, r, s \in Z[i]$ and computing $z_{0}^{2}, z_{0}^{2}=r^{2} \omega^{8}+2 r \omega^{4} s+s^{2}$ gives that $z_{0}^{2} \equiv s^{2} \quad\left(\bmod \omega^{6}\right)$. From $z_{0} \equiv i \quad\left(\bmod \omega^{2}\right)$, it follows that we can choose s and s^{2} in the way summarized by Table 2. From the equation $x_{0}^{4}+2 y_{0}^{4}=z_{0}^{2}$, we get the contradictions

$$
3 \equiv-1 \quad\left(\bmod \omega^{6}\right), \quad 3 \equiv 3+4 i \quad\left(\bmod \omega^{6}\right)
$$

(3) In case 3 , let $\left(x_{1}, \omega^{r} y_{1}, z_{1}\right)$ be a solution of the equation $x^{4}+2 y^{4}=z^{2}$, where $r \geq 1$, $x_{1} \equiv y_{1} \equiv z_{1} \equiv 1 \quad(\bmod \omega)$, and x_{1}, y_{1}, z_{1} are pairwise relatively prime. We will show that $z_{1} \equiv 1 \quad\left(\bmod \omega^{2}\right)$.

In order to prove this claim, write z_{1} in the form $z_{1}=k \omega^{2}+l, k, l \in Z[i]$, and compute z_{1}^{2}.

$$
z_{1}^{2}=k^{2} \omega^{4}+2 k \omega^{2} l+l^{2} .
$$

From this, it follows that $z_{1}^{2} \equiv l^{2} \quad\left(\bmod \omega^{4}\right)$ Since the elements $0,1, i, 1+i$ form a complete set of representatives modulo ω^{2}, and since $z_{1} \equiv 1(\bmod \omega)$, we may choose l to be 1 or i. Consequently, z_{1}^{2} is congruent to 1 or -1 modulo ω^{4}. The equation $x_{1}^{4}+2 \omega^{4 r} y_{1}^{4}=z_{1}^{2}$ gives that $1 \equiv z_{1}^{2} \quad\left(\bmod \omega^{4}\right)$, and so $z_{1} \equiv 1 \quad\left(\bmod \omega^{2}\right)$.
(4) We will show that there are pairwise relatively prime elements x_{2}, y_{2}, z_{2} of $Z[i]$, such that $x_{2} \equiv y_{2} \equiv z_{2} \equiv 1 \quad(\bmod \omega)$, and $\left(x_{2}, \omega^{r-1} y_{2}, z_{2}\right)$ is a solution of the equation $x^{4}+2 y^{4}=z^{2}$.

In order to verify the claim, write the equation $x_{1}^{4}+2 \omega^{4 r} y_{1}^{4}=z_{1}^{2}$ in the form $2 \omega^{4 r} y_{1}^{4}=$ $\left(z_{1}-x_{1}^{2}\right)\left(z_{1}+x_{1}^{2}\right)$, and compute the greatest common divisor of $\left(z_{1}-x_{1}^{2}\right)$ and $\left(z_{1}+x_{1}^{2}\right)$. Let g be this greatest common divisor. As $g \mid \omega^{4 r} y_{1}^{4}$, it follows that $g \neq 0$. Since $g\left|\left(z_{1}-x_{1}^{2}\right), g\right|\left(z_{1}+x_{1}^{2}\right)$ we get that $g\left|2 x_{1}^{2}, g\right| 2 z_{1}$. If q is a prime divisor of g with $q \nmid \omega$, we then get $q\left|x_{1}, q\right| z_{1}$. But we know that this is not the case as x_{1} and z_{1} are relatively prime. Thus, $g=\omega^{s}$ and $0 \leq s \leq 2$ since $g \mid 2$. By step $(3) z_{1} \equiv 1\left(\bmod \omega^{2}\right)$. This together with $x_{1}^{2} \equiv 1\left(\bmod \omega^{2}\right)$, gives that $\left(z_{1}-x_{1}^{2}\right) \equiv\left(z_{1}+x_{1}^{2}\right) \equiv 0 \quad\left(\bmod \omega^{2}\right)$. Therefore $g=\omega^{2}$. The unique factorization property in $Z[i]$ implies that there are relatively prime elements $a, b \in Z[i]$ such that

$$
z_{1}-x_{1}^{2}=\omega^{2} a, \quad z_{1}+x_{1}^{2}=\omega^{2} b
$$

Let $a=\omega^{u} a_{1}, b=\omega^{v} b_{1}$. So $(-i) \omega^{4 r+2} y_{1}^{4}=\omega^{u+v+4} a_{1} b_{1}$. By the unique factorization property in $Z[i]$, there are elements a_{2}, b_{2} and units ε, μ in $Z[i]$ for which

$$
\begin{gathered}
z_{1}-x_{1}^{2}=\omega^{u+2} \varepsilon a_{2}^{4}, \quad z_{1}+x_{1}^{2}=\omega^{v+2} \mu b_{2}^{4}, \\
4 r+2=u+v+4, \quad a_{2}^{4} b_{2}^{4}=y_{1}^{4}, \quad \varepsilon \mu=-i .
\end{gathered}
$$

Here, a_{2}, b_{2} are prime to ω. It follows that $a_{2} \equiv b_{2} \equiv 1(\bmod \omega)$. By addition, we get

$$
2 x_{1}^{2}=\omega^{v+2} \mu b_{2}^{4}-\omega^{u+2} \varepsilon a_{2}^{4} .
$$

After dividing it by ω^{2}, we get

$$
(-i) x_{1}^{2}=\omega^{v} \mu b_{2}^{4}-\omega^{u} \varepsilon a_{2}^{4} .
$$

We distinguish two cases depending on whether $u=0, v=4 r-2$, or $v=0, u=4 r-2$. When $u=0, v=4 r-2$, we get

$$
(-i) x_{1}^{2}=\omega^{4 r-2} \mu b_{2}^{4}-\varepsilon a_{2}^{4} .
$$

This reduces to $(-i) \equiv-\varepsilon\left(\bmod \omega^{2}\right)$. From this, it follows that $\varepsilon= \pm i$, that is, either $\varepsilon=i$, $\mu=-1$, or $\varepsilon=-i, \mu=1$. In the first case, we get

$$
\begin{aligned}
(-i) x_{1}^{2} & =\omega^{4 r-2}(-1) b_{2}^{4}-(i) a_{2}^{4}, \\
x_{1}^{2} & =(-i) \omega^{2} \omega^{4 r-4} b_{2}^{4}+a_{2}^{4}, \\
x_{1}^{2} & =2 \omega^{4 r-4} b_{2}^{4}+a_{2}^{4} .
\end{aligned}
$$

Thus, $\left(a_{2}, \omega^{r-1} b_{2}, x_{1}\right)$ is a nontrivial solution of the equation $x^{4}+2 y^{4}=z^{2}$. In the second case, we get

$$
\begin{aligned}
(-i) x_{1}^{2} & =\omega^{4 r-2}(-1) b_{2}^{4}-(i) a_{2}^{4} \\
-x_{1}^{2} & =(-i) \omega^{2} \omega^{4 r-4} b_{2}^{4}+a_{2}^{4} \\
-x_{1}^{2} & =2 \omega^{4 r-4} b_{2}^{4}+a_{2}^{4} .
\end{aligned}
$$

Therefore, $\left(a_{2}, \omega^{r-1} b_{2}, i x_{1}\right)$ is a nontrivial solution of the equation $x^{4}+2 y^{4}=z^{2}$.
When $v=0, u=4 r-2$, we get

$$
(-i) x_{1}^{2}=\mu b_{2}^{4}-\omega^{4 r-2} \varepsilon a_{2}^{4} .
$$

This reduces to $(-i) \equiv \mu \quad\left(\bmod \omega^{2}\right)$. From this, it follows that $\mu= \pm i$, that is, either $\varepsilon=-1$, $\mu=i$, or $\varepsilon=1, \mu=-i$. In the first case, we get

$$
\begin{aligned}
(-i) x_{1}^{2} & =(i) b_{2}^{4}-\omega^{4 r-2}(-1) a_{2}^{4} \\
-x_{1}^{2} & =b_{2}^{4}+(-i) \omega^{2} \omega^{4 r-4} a_{2}^{4} \\
-x_{1}^{2} & =b_{2}^{4}+2 \omega^{4 r-4} a_{2}^{4} .
\end{aligned}
$$

Thus, $\left(b_{2}, \omega^{r-1} a_{2}, i x_{1}\right)$ is a nontrivial solution of the equation $x^{4}+2 y^{4}=z^{2}$. In the second case, we get

$$
\begin{aligned}
(-i) x_{1}^{2} & =(-i) b_{2}^{4}-\omega^{4 r-2} a_{2}^{4}, \\
x_{1}^{2} & =b_{2}^{4}+(-i) \omega^{2} \omega^{4 r-4} a_{2}^{4}, \\
x_{1}^{2} & =b_{2}^{4}+2 \omega^{4 r-4} a_{2}^{4},
\end{aligned}
$$

and so $\left(b_{2}, \omega^{r-1} a_{2}, x_{1}\right)$ is a nontrivial solution of the equation $x^{4}+2 y^{4}=z^{2}$.
(5) Let $\left(x_{0}, y_{0}, z_{0}\right)$ be a nontrivial solution of the equation $x^{4}+2 y^{4}=z^{2}$ in $Z[i]$. By step (2), there is a solution $\left(x_{1}, \omega^{r} y_{1}, z_{1}\right)$ with $x_{1}, y_{1}, z_{1} \equiv 1(\bmod \omega), r \geq 1$. Choose a solution for which r is minimal. According to step (4), there is a solution $\left(x_{2}, \omega^{r-1} y_{2}, z_{2}\right)$, where $x_{2}, y_{2}, z_{2} \equiv 1(\bmod \omega), r \geq 2$. This contradicts the choice of r and so completes the proof.

References

1. J. T. Cross, In the Gaussian integers $\alpha^{4}+\beta^{4} \neq \gamma^{4}$, Math. Magazine, 66 (1993), 105-108.
2. D. Hilbert, Jahresbericht d. Deutschen Math.-Vereinigung, 4, 1894-1895, 517-525.
3. L. J. Mordell, Diophantine Equations, Academic Press, New York, 1969, 116-117.
4. T. Nagell, Introduction to Number Theory, Chelsea Publ. Comp., New York, 1981.
