A VARIATION ON PERFECT NUMBERS

Roger Woodford ${ }^{1}$
Department of Mathematics, University of Manitoba, Winnipeg, MB R3M 2N2, Canada
rogerw@math.ubc.ca

Received: 7/28/03, Revised: 3/4/04, Accepted: 7/6/04, Published: 7/9/04

Abstract

For $k \in \mathbb{N}$ we define a new divisor function s_{k} called the $k^{t h}$ prime symmetric function. By analogy with the sum of divisors function σ, we use the functions s_{k} to consider variations on perfect numbers, namely k-symmetric-perfect numbers as well as k-cycles. We find all k-symmetric-perfect numbers for $k=1,2,3$. We also consider the problem of whether a natural number n can be expressed in the form $s_{k}(n)$, and show that for n large enough, it always can be for $k=1,2$.

1. Introduction

Definition 1: Let k be a nonnegative integer. We define $s_{k}: \mathbb{N} \rightarrow \mathbb{N} \cup\{0\}$ as follows: If $k=0, s_{k}(n) \equiv 1$. If $k>0$, and $n=p_{1} \cdots p_{r}$, where $r=\Omega(n)$ is the number of prime factors (with multiplicity) of n, then

$$
s_{k}(n)=\sum p_{i_{1}} \cdots p_{i_{k}}
$$

where the sum is taken over all products of k prime factors from the set $\left\{p_{1}, \ldots, p_{r}\right\}$. We say s_{k} is the $k^{t h}$ prime symmetric function.

Note that if $\Omega(n)<k$, we have $s_{k}(n)=0$.
There is an alternate way of defining the functions s_{k}. Given $n=p_{1} \cdots p_{r} \in \mathbb{N}$, set

$$
S_{n}(x)=\prod_{i=1}^{r}\left(x+p_{i}\right)
$$

Then $s_{k}(n)$ is the coefficient of x^{r-k} in $S_{n}(x)$. The empty product is taken to be 1 .
Example 1: $s_{0}(12)=1, s_{1}(12)=2+2+3=7, s_{2}(12)=2 \cdot 2+2 \cdot 3+2 \cdot 3=16$, $s_{3}(12)=12$, and $s_{4}(12)=0$.

[^0]Several good texts detailing the basic theory of perfect numbers exist, see for instance [1], [4], [7], and [13]. In addition, many variations on perfect numbers have been defined and studied. For examples, see the remaining references. We now define a new variation of perfect, defective, and excessive numbers using the divisor functions s_{k}.

Definition 2: Let $n \in \mathbb{N}$. If $s_{k}(n)<n$, we say n is k-symmetric-defective. If $s_{k}(n)>n$, we say n is k-symmetric-excessive. If $s_{k}(n)=n$, and $\Omega(n)=k$, we say n is trivially k-symmetric-perfect. If $s_{k}(n)=n$, and $\Omega(n)>k$, we say n is k-symmetric-perfect. If n is k-symmetric-perfect or k-symmetric-excessive, we say n is k-symmetric-special.

Notation: For the sake of brevity we write k-SD for k-symmetric-defective, k-SP for k-symmetric-perfect, k-SE for k-symmetric-excessive, and k-SS for k-symmetric-special.

Example 2: If p is prime, then p^{p} is a $(p-1)$-SP number, since

$$
s_{p-1}\left(p^{p}\right)=\binom{p}{p-1} p^{p-1}=p^{p}
$$

In fact, this example has a form of converse:
Theorem 1: The prime power p^{α} is k-SP if and only if $\alpha=p$ and $k=p-1$.
Proof. We have seen that this is sufficient, now suppose $k<\alpha$, and $s_{k}\left(p^{\alpha}\right)=p^{\alpha}$. Then

$$
\begin{equation*}
\binom{\alpha}{k}=p^{\alpha-k} . \tag{1}
\end{equation*}
$$

For $1<k<\alpha-1,\binom{\alpha}{k}$ is divisible by two distinct prime factors, hence we must have $k=1$ or $\alpha-1$. Now $4=2^{2}$, is the only 1 -SP number, and corresponds to the case where $k=1=\alpha-1$. Hence we may assume $k=\alpha-1$, which from (1) implies that $\alpha=p$ and $k=p-1$. This proves the theorem.

Definition 3: A finite sequence $\left\{n_{0}, \ldots, n_{\ell}\right\}$ is called a k-cycle if the following conditions are satisfied:

1. $\ell>1$,
2. $n_{0}, \ldots, n_{\ell-1}$ are distinct and $n_{\ell}=n_{0}$, and
3. $s_{k}\left(n_{i}\right)=n_{i+1}$, for $i=0,1, \ldots, \ell-1$.

2. Basic Properties of Prime Symmetric Functions

The following proposition is an immediate consequence of the definition.

Proposition 2: If $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$, then

$$
s_{k}(n)=\sum_{\substack{i_{1}+\cdots+i_{r}=k \\ i_{1}, \ldots, i_{r} \geq 0}}\binom{\alpha_{1}}{i_{1}} \cdots\binom{\alpha_{r}}{i_{r}} p_{1}^{i_{1}} \cdots p_{r}^{i_{r}} .
$$

Proposition 3:

$$
s_{k}(m n)=\sum_{i=0}^{k} s_{k-i}(m) s_{i}(n)
$$

Proof. If $m=1$, or $n=1$, the result is immediate, as it is if $k=0$. If $k>0, m=p_{1} \cdots p_{r}$, and $n=q_{1} \cdots q_{s}$, let

$$
S=\left\{p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{s}\right\}
$$

Then

$$
s_{k}(m n)=\sum_{\left\{r_{1}, \ldots, r_{k}\right\} \subset S} r_{1} \cdots r_{k}
$$

We collect the terms of this sum having $k-i$ factors from m, and i factors from n. The sum of these is equal to $s_{k-i}(m) s_{i}(n)$. Summing as i ranges from 0 to k gives the desired result.

Corollary 4: Let $n, k \in \mathbb{N}$, and let p and q be primes, with $p<q$, and suppose $\Omega(p n)>k$. If $p n-s_{k}(p n)>0$, then $p n-s_{k}(p n)<q n-s_{k}(q n)$.

Proof. The following inequality

$$
\begin{aligned}
q n-s_{k}(q n) & =q n-q s_{k-1}(n)-s_{k}(n) \\
& >p n-p s_{k-1}(n)-s_{k}(n) \\
& =p n-s_{k}(p n)
\end{aligned}
$$

is true if $n>s_{k-1}(n)$. But

$$
p n-s_{k}(p n)=p n-p s_{k-1}(n)-s_{k}(n)>0
$$

by assumption, so

$$
n>s_{k-1}(n)+s_{k}(n) / p>s_{k-1}(n)
$$

In searching for k-cycles and k-SP numbers, it is essential to know when $s_{k}(n) \geq n$. We search by fixing $\Omega(n)$, and systematically checking all products of $\Omega(n)$ primes. The corollary tells us that if $s_{k}(p n)<p n$, then for any $q>p, q n$ is also k-SD.

Lemma 5: Let $k, n \in \mathbb{N}$. Then there exists an $r>k$ such that if $\Omega(n) \geq r$, then n is k-SD. Let $r(k)$ denote the least such r. Then

$$
r(k)=\min \left\{r:\binom{r}{k}<2^{r-k}\right\} .
$$

Proof. There is an $r>k$ such that the function

$$
f(t)=\binom{t}{k}
$$

satisfies $f(t)<g(t)$ for all $t \geq r$, where

$$
g(t)=2^{t-k}
$$

since f is a polynomial, and g is an exponential function. Now suppose $t \geq r$, and let p_{1}, \ldots, p_{t} be t primes. Then

$$
\binom{t}{k}=\binom{t}{t-k}<2^{t-k}, \text { which implies } \sum \frac{1}{p_{i_{1}} \cdots p_{i_{t-k}}} \leq\binom{ t}{t-k} \frac{1}{2^{t-k}}<1
$$

where the sum is taken over all i_{1}, \ldots, i_{t-k} such that $1 \leq i_{1}<\cdots<i_{t-k} \leq t$. This implies

$$
\sum p_{i_{1}} \cdots p_{i_{k}}<p_{1} \cdots p_{t}
$$

where the sum is taken over all i_{1}, \ldots, i_{k} such that $1 \leq i_{1}<\cdots<i_{k} \leq t$. This in turn implies that

$$
s_{k}\left(p_{1} \cdots p_{t}\right)<p_{1} \cdots p_{t}
$$

Now we prove the second statement. The inequality

$$
\binom{2 k}{k} \geq 2^{k}
$$

holds for all $k \geq 1$, and so $r(k)>2 k$. This in mind, let $r(k)$ be as claimed in the statement of the theorem. We argue inductively. Let $t>r$, and suppose that

$$
\binom{t-1}{k}<2^{t-1-k}
$$

Then

$$
2\binom{t-1}{k}<2^{t-k}
$$

Since $t>2 k$, we have $t<2(t-k)$, and so

$$
\binom{t}{k}=\frac{t(t-1) \cdots(t-k+1)}{k!}<\frac{2(t-1)(t-2) \cdots(t-k)}{k!}=2\binom{t-1}{k} .
$$

Hence

$$
\binom{t}{k}<2\binom{t-1}{k}<2^{t-k},
$$

and the proof is complete by induction.
The first few values of $r(k)$ are given in the following table:

k	$r(k)$
1	3
2	6
3	10
4	14
5	19
6	23
7	27
8	31
9	36
10	40

The properties of 1 -symmetric-perfection etc. corresponding to the first prime symmetric function s_{1} are easily characterized. The primes are the trivial 1-SP numbers, 4 is the only 1-SP number, and all other numbers are 1-SD. Clearly there are no 1-cycles. We now investigate these properties in the second prime symmetric function.

3. The Second Prime Symmetric Function

Let n be an integer greater than 1 . By a family $E_{k}(n, r)$ of k-SS numbers, we mean a set

$$
E_{k}(n, r)=\left\{n p_{1} \cdots p_{r} \mid p_{1}, \ldots, p_{r} \text { are primes }\right\}
$$

such that if $m \in E_{k}(n, r)$, then m is k-SS. The family $E_{2}(4,1)$ of numbers of the form $4 p$, where p is prime, is one such set, since the elements satisfy $s_{2}(4 p)=4 p+4>4 p$. $E_{k}(n, 0)$ merely denotes the singleton set of a k-SS number. To find all 2-SP numbers and all 2-cycles we need to find all numbers n such that $2<\Omega(n)<6$, with $s_{2}(n) \geq n$, since $r(2)=6$. To do this we use the algorithm mentioned after Corollary 4.
3.1. $\Omega(n)=3$

$$
\begin{aligned}
& s_{2}(2 \cdot 2 \cdot p)=4 p+4>4 p \\
& s_{2}(2 \cdot 3 \cdot p)=5 p+6<6 p, \text { when } p>6
\end{aligned}
$$

This shows that there are no other infinite families of 2-SS numbers satisfying $\Omega(n)=3$. Below we find all 2-SS numbers not belonging to this family.

$$
\begin{aligned}
& s_{2}(2 \cdot 3 \cdot 3)=21>18, \\
& s_{2}(2 \cdot 3 \cdot 5)=31>30, \\
& s_{2}(2 \cdot 3 \cdot 7)=41<42, \\
& s_{2}(3 \cdot 3 \cdot 3)=27, \\
& s_{2}(3 \cdot 3 \cdot 5)=39<45 .
\end{aligned}
$$

Thus 27 is the only 2 -SP number satisfying $\Omega(n)=3$. Iterating on the above 2 - SE numbers shows none belong to 2 -cycles. For example

$$
18 \xrightarrow{s_{2}} 21 \xrightarrow{s_{2}} 10 \xrightarrow{s_{2}} 10 \xrightarrow{s_{2}} \cdots
$$

3.2. $\Omega(n)=4$

$$
s_{2}(2 \cdot 2 \cdot 2 \cdot p)=6 p+12<8 p, \text { when } p>6
$$

Thus there are no infinite families of 2 -SS numbers with $\Omega(n)=4$. Iterating on $8 p$ for $p=2,3,5$, shows that none belong to a 2 -cycle. Checking other cases:

$$
\begin{aligned}
& s_{2}(2 \cdot 2 \cdot 3 \cdot 3)=37>36, \\
& s_{2}(2 \cdot 2 \cdot 3 \cdot 5)=51<60, \\
& s_{2}(2 \cdot 3 \cdot 3 \cdot 3)=45<54 .
\end{aligned}
$$

Hence there are no 2-SP numbers satisfying $\Omega(n)=4$. Iterating on the above 2-SE numbers shows that none belong to a 2-cycle.
3.3. $\Omega(n)=5$

$$
s_{2}(2 \cdot 2 \cdot 2 \cdot 2 \cdot p)=8 p+24<16 p, \text { when } p>3
$$

Thus there are no infinite families of 2-SS numbers with $\Omega(n)=5$. Iterating on $16 p$ for $p=2,3$, shows that 48 is in fact $2-\mathrm{SP}$, and 32 , which is 2 -SE, does not belong to a 2-cycle. Checking other cases:

$$
s_{2}(2 \cdot 2 \cdot 2 \cdot 3 \cdot 3)=57<72
$$

Hence 48 is the only 2-SP number satisfying $\Omega(n)=5$. We have proved the following theorem.

Theorem 6: 27 and 48 are the only 2-SP numbers.
Theorem 7: There are no 2-cycles.
Proof. A 2-cycle must have a least element that is 2-SE. We have shown that any such element must belong to the family of numbers of the form $4 p$. We will show that in all but a few trivial cases $s_{2}\left(s_{2}(4 p)\right)<4 p$, giving a contradiction. Now, $s_{2}(4 p)=8((p+1) / 2)$. We may assume that p is odd, and set $m=(p+1) / 2$. Thus we will have a contradiction if the following holds:

$$
s_{2}(8 m)<8 m-4
$$

This is equivalent to

$$
\begin{equation*}
12+6 s_{1}(m)+s_{2}(m)<8 m-4, \tag{2}
\end{equation*}
$$

which is equivalent to

$$
\frac{16}{p_{1} \cdots p_{s}}+6 \sum_{i=1}^{s} \frac{1}{p_{1} \cdots \hat{p}_{i} \cdots p_{s}}+\sum_{1 \leq i<j \leq s} \frac{1}{p_{1} \cdots \hat{p}_{i} \cdots \hat{p}_{j} \cdots p_{s}}<8
$$

where $m=p_{1} \cdots p_{s}$. Here $p_{1} \cdots \hat{p}_{i} \cdots p_{s}$ is defined to be $p_{1} \cdots p_{s} / p_{i}$, and $p_{1} \cdots \hat{p}_{i} \cdots \hat{p}_{j} \cdots p_{s}$ is defined to be $p_{1} \cdots p_{s} / p_{i} p_{j}$.

Since $p_{i} \geq 2$, this expression is implied by:

$$
\frac{16}{2^{s}}+\frac{6 s}{2^{s-1}}+\frac{s(s-1)}{2} \frac{1}{2^{s-2}}<8
$$

which holds for all $s \geq 4$. If $s=1$, then $m=p$ is prime, and so condition (2) becomes:

$$
12+6 p<8 p-4
$$

which holds for all $p>8$. It is easily verified for $p=2,3,5$ and 7 , that $8 p$ does not belong to a 2-cycle.

For $s=2$, we can write $m=p q$. The only values of m for which (2) fails are determined by the prime pairs $(p, q)=(2,2),(2,3)$. In both cases, $8 m$ does not belong to a 2-cycle.

Finally for $s=3$, if $m=p q r$, only for the triple $(p, q, r)=(2,2,2)$ does m fail to satisfy (2). Again, in this case, $8 m$ does not belong to a 2-cycle.

Definition 4: A sequence $\left\{n_{i}\right\}$ (finite or infinite) is called a k-ascending sequence if $n_{i}<s_{k}\left(n_{i}\right)=n_{i+1}$. If $\left\{n_{i}\right\}=\left\{n_{i}\right\}_{i=0}^{t}$, then $\left\{n_{i}\right\}$ is said to have length t.

Remark: The longest 2-ascending sequence is

$$
8 \xrightarrow{s_{2}} 12 \xrightarrow{s_{2}} 16 \xrightarrow{s_{2}} 24 \xrightarrow{s_{2}} 30 \xrightarrow{s_{2}} 31 .
$$

Definition 5: Let $k \in \mathbb{N} \cup\{0\}$. We define $r_{k}: \mathbb{N} \rightarrow \mathbb{N} \cup\{0\}$ by

$$
r_{k}(n)=\mid\left\{s_{k}^{-1}[\{n\}] \mid\right.
$$

Example 3: $r_{1}(1)=0$, but for all $n \geq 2, r_{1}(n) \geq 1$. In fact, $\lim _{n \rightarrow \infty} r_{1}(n)=\infty$. To see this, simply set

$$
n=s_{1}\left(2^{a} 3^{b}\right)=2 a+3 b
$$

and observe that the number of pairs (a, b) satisfying this equation can be made arbitrarily large for all n sufficiently large.

We prove a weaker result for r_{2}.
Theorem 8: There exists an $N \in \mathbb{N}$ such that for all $m \geq N, r_{2}(m) \geq 1$.
Proof. It suffices to show that for m sufficiently large, $m=s_{2}\left(2^{a} 3^{b} 5^{c} 7^{d}\right)$, for some a, b, c, and $d \geq 0$. In general,

$$
\begin{aligned}
s_{2}\left(2^{a} 3^{b} 5^{c} 7^{d}\right) & =4\binom{a}{2}+9\binom{b}{2}+25\binom{c}{2}+49\binom{d}{2} \\
& +6\binom{a}{1}\binom{b}{1}+10\binom{a}{1}\binom{c}{1}+14\binom{a}{1}\binom{d}{1} \\
& +15\binom{b}{1}\binom{c}{1}+21\binom{b}{1}\binom{d}{1}+35\binom{c}{1}\binom{d}{1} \\
& =\frac{1}{2}\left[(2 a+3 b+5 c+7 d)^{2}-(4 a+9 b+25 c+49 d)\right]
\end{aligned}
$$

So, given m, we need only find solutions to the equations:

$$
\begin{aligned}
2 a+3 b+5 c+7 d & =R \\
4 a+9 b+25 c+49 d & =R^{2}-2 m
\end{aligned}
$$

with nonnegative integers a, b, c, d, and $R \in \mathbb{N}$. These equations are equivalent to:

$$
\begin{align*}
2 a-10 c-28 d & =3 R-R^{2}+2 m \tag{3}\\
3 b+15 c+35 d & =R^{2}-2 R-2 m \tag{4}
\end{align*}
$$

Since a and b must be nonnegative integers, we have the following necessary and sufficient conditions for a solution to (3) and (4):

1. $2 m \equiv R^{2}+R+d(\bmod 3)$,
2. $R^{2}-3 R-10 c-28 d \leq 2 m$,
3. $2 m \leq R^{2}-2 R-15 c-35 d$.

Note that equation (3) is always satisfied modulo 2. Condition 1 results from taking equation (4) modulo 3, and conditions 2 and 3 are derived from the fact that $a, b \geq 0$.

Consider the interval

$$
I_{R}(c, d)=\left[R^{2}-3 R-10 c-28 d, R^{2}-2 R-15 c-35 d\right]
$$

For fixed d, let $c_{R}(d)$ be the least c such that $\ell\left(I_{R}(c, d)\right)<15$, where $\ell(I)$ denotes the length of an interval I. We use the notation $L(I)$ and $R(I)$ to denote the left and right endpoints of an interval I, respectively. Since $R\left(I_{R}(c, d)\right)=R\left(I_{R}(c+1, d)\right)+15$, when they exist, we have that

$$
\bigcup_{c=0}^{c_{R}(d)} I_{R}(c, d)=\left[R^{2}-3 R-10 c_{R}(d)-28 d, R^{2}-2 R-35 d\right] .
$$

Denote the above interval by $\mathcal{I}_{R}(d)$. By definition of $c_{R}(d)$,

$$
\ell\left(I_{R}\left(c_{R}(d), d\right)\right)=R-5 c_{R}(d)-7 d<15, \text { so } \quad-10 c_{R}(d)<-2 R+30+14 d
$$

and $c_{R}(d)$ is the least such c. Consider the interval $\bigcap_{d=0}^{2} \mathcal{I}_{R}(d)$. Clearly $R\left(\bigcap_{d=0}^{2} \mathcal{I}_{R}(d)\right)=$ $R^{2}-2 R-70$. We now wish to find an upper bound for $L\left(\bigcap_{d=0}^{2} \mathcal{I}_{R}(d)\right)$. From the above inequality, we have that

$$
L\left(\mathcal{I}_{R}(d)\right)=R^{2}-3 R-10 c_{R}(d)-28 d<R^{2}-5 R-14 d+30
$$

Thus

$$
\begin{aligned}
L\left(\bigcap_{d=0}^{2} \mathcal{I}_{R}(d)\right) & =\max \left\{R^{2}-3 R-10 c_{R}(d)-28 d \mid d=0,1,2\right\} \\
& <\max \left\{R^{2}-5 R-14 d+30 \mid d=0,1,2\right\} \\
& =R^{2}-5 R+30
\end{aligned}
$$

Let $J_{R}=\left[R^{2}-5 R+30, R^{2}-2 R-70\right]$. Then $J_{R} \subset \bigcap_{d=0}^{2} \mathcal{I}_{R}(d)$. Now

$$
L\left(J_{R+1}\right) \leq R\left(J_{R}\right), \text { if and only if } R^{2}-3 R+26 \leq R^{2}-2 R-70,
$$

which holds for all $R \geq 96$. So if $2 m \geq L\left(J_{96}\right)=8766$, then there is an $R \geq 96$ such that $2 m \in J_{R} \subset \bigcap_{d=0}^{2} \mathcal{I}_{R}(d)$. Choose $d \in\{0,1,2\}$ such that condition 1 is satisfied. Since $2 m \in \mathcal{I}_{R}(d)$, there is a $c \geq 0$ such that $2 m \in I_{R}(c, d)$. For these values of R, c, and d, conditions 2 and 3 are satisfied. In other words, there exists an n such that $m=s_{2}(n)$. This completes the proof.

We end this section with a conjecture.
Conjecture 1: For every $k \in \mathbb{N}, \lim _{n \rightarrow \infty} r_{k}(n)=\infty$.

4. Higher Prime Symmetric Functions

Theorem 9: (1) Let $n \in \mathbb{N}$. If n is k-SS then $p n$ is $(k+1)$-SE for every prime p.
(2) If $p n$ is $(k+1)$-SS for every prime p, then n is k-SS, and hence by (1), $p n$ is $(k+1)$-SE for every prime p.

Proof. (1) Suppose n is k-SS. Then since $\Omega(n)>k$, we have $s_{k+1}(n)>0$. So

$$
\begin{aligned}
s_{k+1}(p n) & =p s_{k}(n)+s_{k+1}(n) \\
& \geq p n+s_{k+1}(n) \\
& >p n .
\end{aligned}
$$

(2) If $s_{k+1}(p n)=p s_{k}(n)+s_{k+1}(n) \geq p n$, for every prime p, then $s_{k}(n) \geq n-s_{k+1}(n) / p$. Letting $p \rightarrow \infty$, we have $s_{k}(n) \geq n$.

Corollary 10: For $k \in \mathbb{N}$, there are only finitely many k-SP numbers.
Proof. By the previous theorem, any family $E_{k+1}(n, r+1)$ is of the form $p E_{k}(n, r)$, where p ranges over the primes. Furthermore, this family contains only $(k+1)$-SE numbers. There are only finitely many $(k+1)$-SS numbers not belonging to any such family.

Thus the infinite families of 3-SE numbers are: $E_{3}(4,2), E_{3}(16,1), E_{3}(18,1), E_{3}(24,1)$, $E_{3}(27,1), E_{3}(30,1), E_{3}(32,1), E_{3}(36,1), E_{3}(40,1), E_{3}(48,1)$.

By exhaustive search (as was done with $k=2$), all other 3-SS numbers can be found. They constitute the following set:

$$
\begin{aligned}
& \{42 p \mid p=7,11, \ldots, 41\} \cup\{56 p \mid p=7,11, \ldots, 43\} \cup\{64 p \mid p=2,3, \ldots, 37\} \cup \\
& \{726,858,250,350,225,315,968,1144,300,420,162,270,378,243,400,560 \\
& 216,360,504,324,288,480,672,432,256,384,640,576,512,768\}
\end{aligned}
$$

None of the elements in the above sets are 3-SP, hence there are no 3-SP numbers. The diversity of possible 3 -ascending sequences makes it difficult to rule out the existence of 3 -cycles as we did 2 -cycles. This is illustrated in the following example.

Example 4: If p_{1}, q_{1} are odd primes, then $s_{3}\left(4 p_{1} q_{1}\right)=4\left(p_{1} q_{1}+p_{1}+q_{1}\right)$. It is possible that $p_{1} q_{1}+p_{1}+q_{1}=p_{2} q_{2}$, where p_{2}, q_{2} are again odd primes, and so on. Several such sequences exist the longest one with $p_{1} q_{1}<50000$, and $p_{i}, q_{i}>3$ is:

$$
\begin{aligned}
184892 & =4 \cdot 17 \cdot 2719 \xrightarrow{s_{3}} 195836=4 \cdot 173 \cdot 283 \xrightarrow{s_{3}} 197660=4 \cdot 5 \cdot 9883 \\
\xrightarrow{s_{3}} 237212 & =4 \cdot 31 \cdot 1913 \xrightarrow{s_{3}} 244988=4 \cdot 73 \cdot 839 \xrightarrow{s_{3}} 248636=4 \cdot 61 \cdot 1019 \\
\xrightarrow{s_{3}} 252956 & =4 \cdot 11 \cdot 5749 \xrightarrow{s_{3}} 275996=4 \cdot 7 \cdot 9857 \xrightarrow{s_{3}} 315452=4 \cdot 17 \cdot 4639 \\
\xrightarrow{s_{3}} 334076 & =4 \cdot 47 \cdot 1777 \xrightarrow{s_{3}} 341372=4 \cdot 31 \cdot 2753 \xrightarrow{s_{3}} 352508=4 \cdot 13 \cdot 6779 \\
\xrightarrow{s_{3}} 379676 & =4 \cdot 11 \cdot 8629 \xrightarrow{s_{3}} 414236=4 \cdot 29 \cdot 3571 \xrightarrow{s_{3}} 428636=4 \cdot 13 \cdot 8243 \\
\xrightarrow{s_{3}} 461660 & =4 \cdot 5 \cdot 41 \cdot 563 .
\end{aligned}
$$

It seems highly unlikely, however, that a 3 -ascending sequence be infinite. This is part of our final conjecture:

Conjecture 2: Any k-ascending sequence is finite.

References

[1] Burton, D. M., Elementary Number Theory, Allan and Bacon, Inc. Boston-London-Sydney, 1976.
[2] Chandran, V. R., On generalized unitary perfect numbers, Math. Student, 61 (1992), 54-56.
[3] Cohen G. L. and te Riele, H. J. J., Iterating the sum of divisors function, Experiment. Math., 5 (1996), 91-100.
[4] Dunham, W., Euler The Master of Us All, The Mathematical Association of America, 1999.
[5] Hardy, B. E. and Subbarao, M. V., On hyperperfect numbers, Congr. Numer., 42 (1984), 183-198.
[6] Hunsucker, J. L. and Pomerance, C., There are no odd super perfect numbers less than 7 $\times 10^{24}$, Indian J. Math. 17 (1975), 107-120.
[7] Loweke, G. P., The Lore of Prime Numbers, Vantage Press, New York-Washington-AtlantaLos Angeles-Chicago, 1982.
[8] McCranie, J. S., A study of hyperperfect numbers, J. of Integer Seq., 3 (2000), 153-157.
[9] Minoli, D., Issues in nonlinear hyperperfect numbers, Mathematics of Computation, 34 (1980), 639-645.
[10] Pomerance, C., Multiply perfect numbers, Mersenne primes and effective computability, Math. Ann. 226 (1977), 195-206.
[11] Suryanarayana, D., Superperfect Numbers, Elem. Math., 24 (1967), 16-17.
[12] te Riele, H. J. J., Hyperperfect numbers with three different prime factors, Mathematics of Computation, 36 (1981), 297-298.
[13] Tattersall, J. J., Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999.

[^0]: ${ }^{1}$ Supported by an NSERC undergraduate student research award.

