THE RAMSEY NUMBERS OF LARGE CYCLES VERSUS SMALL WHEELS

Surahmat ${ }^{1}$
Department of Mathematics Education, Islamic University of Malang, Malang 65144, Indonesia kana_s@dns.math.itb.ac.id
E.T. Baskoro
Department of Mathematics, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, Indonesia ebaskoro@dns.math.itb.ac.id
\section*{H.J. Broersma}
Department of Applied Mathematics, University of Twente, 7500 AE Enschede, The Netherlands broersma@math.utwente.nl

Received: 6/27/02, Revised: 4/29/04, Accepted: 6/22/04, Published: 6/29/04

Abstract

For two given graphs G and H, the Ramsey number $R(G, H)$ is the smallest positive integer N such that for every graph F of order N the following holds: either F contains G as a subgraph or the complement of F contains H as a subgraph. In this paper, we determine the Ramsey number $R\left(C_{n}, W_{m}\right)$ for $m=4$ and $m=5$. We show that $R\left(C_{n}, W_{4}\right)=2 n-1$ and $R\left(C_{n}, W_{5}\right)=3 n-2$ for $n \geq 5$. For larger wheels it remains an open problem to determine $R\left(C_{n}, W_{m}\right)$.

1. Introduction

Throughout the paper, all graphs are finite and simple. Let G be such a graph. We write $V(G)$ or V for the vertex set of G and $E(G)$ or E for the edge set of G. The graph \bar{G} is the complement of the graph G, i.e., the graph obtained from the complete graph $K_{|V(G)|}$ on $|V(G)|$ vertices by deleting the edges of G.

The graph $H=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of $G=(V, E)$ if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. For any nonempty subset $S \subset V$, the induced subgraph by S is the maximal subgraph of G with vertex set S; it is denoted by $G[S]$.

[^0]If $e=\{u, v\} \in E$ (in short, $e=u v$), then u is called adjacent to v, and u and v are called neighbors. For $x \in V$ and a subgraph B of G, define $N_{B}(x)=\{y \in V(B): x y \in E\}$ and $N_{B}[x]=N_{B}(x) \cup\{x\}$. The degree $d(x)$ of a vertex x is $\left|N_{G}(x)\right| ; \delta(G)$ denotes the minimum degree in G.

A cycle C_{n} of length $n \geq 3$ is a connected graph on n vertices in which every vertex has degree two. A wheel W_{n} is a graph on $n+1$ vertices obtained from a C_{n} by adding one vertex x, called the $h u b$ of the wheel, and making x adjacent to all vertices of the C_{n}, called the rim of the wheel.

Given two graphs G and H, the Ramsey number $R(G, H)$ is defined as the smallest natural number N such that every graph F on N vertices satisfies the following condition: F contains G as a subgraph or \bar{F} contains H as a subgraph.

We will also use the short notations $H \subseteq F, F \supseteq H, H \nsubseteq F$, and $F \nsupseteq H$ to denote that H is (not) a subgraph of F, with the obvious meanings.

Several results have been obtained for wheels. For instance, Burr and Erdős [1] showed that $R\left(C_{3}, W_{m}\right)=2 m+1$ for each $m \geq 5$.

Ten years later Radziszowski and Xia [9] gave a simple and unified method to establish the Ramsey number $R\left(G, C_{3}\right)$, where G is either a path, a cycle or a wheel.

Hendry [5] showed $R\left(C_{5}, W_{4}\right)=9$. Jayawardane and Rousseau [6] showed $R\left(C_{5}, W_{5}\right)=$ 11. Surahmat et al. [13] showed $R\left(C_{4}, W_{m}\right)=9,10$ and 9 for $m=4,5$ and 6 respectively. Independently, Tse [14] showed $R\left(C_{4}, W_{m}\right)=9,10,9,11,12,13,14,15$ and 17 for $m=4,5,6,7,8,9,10,11$ and 12 , respectively.

Recently, in [11], it was shown that the Ramsey number $R\left(S_{n}, W_{4}\right)=2 n-1$ if $n \geq 3$ and n is odd, $R\left(S_{n}, W_{4}\right)=2 n+1$ if $n \geq 4$ and n is even, and $R\left(S_{n}, W_{5}\right)=3 n-2$ for each $n \geq 3$. Here S_{n} denotes a star on n vertices (i.e., $S_{n}=K_{1, n-1}$).

In [12] several Ramsey numbers of star-like trees versus large odd wheels were established, e.g., it was shown that $R\left(S_{n}, W_{m}\right)=3 n-2$ for $n \geq 2 m-4, m \geq 5$ and m odd.

More information about the Ramsey numbers of other graph combinations can be found in [8].

2. Main Results

The aim of this paper is to determine the Ramsey number of a cycle C_{n} versus W_{4} or W_{5}. We will show that $R\left(C_{n}, W_{4}\right)=2 n-1$ and $R\left(C_{n}, W_{5}\right)=3 n-2$ for $n \geq 5$.

For given graphs G and H, Chvátal and Harary [3] established the lower bound
$R(G, H) \geq(c(G)-1)(\chi(H)-1)+1$, where $c(G)$ is the number of vertices of the largest component of G and $\chi(H)$ is the chromatic number of H. In particular, if $n \geq 5$, $G=C_{n}$ and $H=W_{4}$ or W_{5}, then we have $R\left(C_{n}, W_{4}\right) \geq 2 n-1$ and $R\left(C_{n}, W_{5}\right) \geq 3 n-2$, respectively.

For the upper bounds we will present proofs by induction. In order to prove the main results of this paper, we need the following known results and lemmas.

Theorem 1 (Ore [7]).
If G is a graph of order $n \geq 3$ such that for all distinct nonadjacent vertices u and v, $d(u)+d(v) \geq n$, then G is hamiltonian.

Theorem 2 (Faudree and Schelp [4]; Rosta [10]).

$$
R\left(C_{n}, C_{m}\right)=\left\{\begin{array}{l}
2 n-1 \text { for } 3 \leq m \leq n, m \text { odd, }(n, m) \neq(3,3) \\
n+\frac{m}{2}-1 \text { for } 4 \leq m \leq n, m \text { even and } n \text { even, }(n, m) \neq(4,4) \\
\max \left\{n+\frac{m}{2}-1,2 m-1\right\} \text { for } 4 \leq m<n, m \text { even and } n \text { odd. }
\end{array}\right.
$$

Lemma 1 (Chvátal and Erdős [2]; Zhou [15]).
If $H=C_{s} \subseteq F$ for a graph F, while $F \nsupseteq C_{s+1}$ and $\bar{F} \nsupseteq K_{r}$, then $\left|N_{H}(x)\right| \leq r-2$ for each $x \in V(F) \backslash V(H)$.

Lemma 2 Let F be a graph with $|V(F)| \geq R\left(C_{n}, C_{m}\right)+1$. If there is a vertex $x \in V(F)$ such that $\left|N_{F}[x]\right| \leq|V(F)|-R\left(C_{n}, C_{m}\right)$ and $F \nsupseteq C_{n}$, then $\bar{F} \supseteq W_{m}$.

Proof. Let $A=V(F) \backslash N_{F}[x]$ and so $|A| \geq R\left(C_{n}, C_{m}\right)$. If the subgraph $F[A]$ of F induced by A contains no C_{n}, then by the definition of $R\left(C_{n}, C_{m}\right)$ we get that $\bar{F}[A]$ contains a C_{m} and hence \bar{F} contains a W_{m} (with hub x).

Lemma 3 Let F and G be graphs with $2 n-1$ and $3 n-2$ vertices without a C_{n}, respectively. If \bar{F} and \bar{G} contain no W_{m}, then $\delta(F) \geq n-\frac{m}{2}$ for even $m \geq 4$ and $n \geq \frac{3 m}{2}$, and $\delta(G) \geq n-1$ for odd $m \geq 5$ and $n \geq m$.

Proof. By contraposition. Suppose $\delta(F)<n-\frac{m}{2}$ for $m \geq 4$ even and $n \geq \frac{3 m}{2}$. Then, there exists a vertex $x \in V(F)$ such that $\left|N_{F}[x]\right|=d_{F}(x)+1=\delta(F)+1 \leq n-\frac{m}{2}=$ $(2 n-1)-\left(n+\frac{m}{2}-1\right)$. Using Theorem 2 we get that $N_{F}[x] \leq|V(F)|-R\left(C_{n}, C_{m}\right)$. By Lemma 2, we conclude that \bar{F} contains a W_{m} with hub x.

Now, suppose $\delta(G)<n-1$ for m odd and $n \geq m$. Then, similarly, using Theorem 2 there exists a vertex $y \in V(G)$ such that $\left|N_{G}[y]\right| \leq n-1=(3 n-2)-(2 n-1)=$ $|V(G)|-R\left(C_{n}, C_{m}\right)$. By Lemma 2, we conclude that \bar{F} contains a W_{m} with hub y.

Before we deal with the general case of a cycle and W_{4}, we will first separately prove that $R\left(C_{6}, W_{4}\right)=11$ and $R\left(C_{7}, W_{4}\right)=13$.

Theorem $3 R\left(C_{6}, W_{4}\right)=11$.

Proof. Let F be a graph on 11 vertices containing no C_{6}. We will show that \bar{F} contains W_{4}. To the contrary, assume \bar{F} contains no W_{4}. It is known from [5] that $R\left(C_{5}, W_{4}\right)=9$, implying that F contains C_{5}. Let $A=\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ be the set of vertices of $C_{5} \subseteq F$ in a cyclic ordering, and let $B=V(F) \backslash A$. Then $|B|=6$. By Theorem 1 , there exists a vertex $b \in B$ such that $\left|N_{B}(b)\right| \leq 2$, since otherwise $F[B]$, and hence F, contains C_{6}. By Lemma $3, \delta(F) \geq 6-\frac{4}{2}=4$, implying that $\left|N_{A}(b)\right| \geq 2$. If b is adjacent to x_{i} and x_{i+1} (indices modulo 5), then clearly $C_{6} \subseteq F$. So we may assume without loss of generality that $N_{A}(b)=\left\{x_{1}, x_{3}\right\}$. Let $\left\{b_{1}, b_{2}, b_{3}\right\}$ denote the three vertices of $B \backslash N_{B}(b)$. Our next observation is that $x_{2} x_{4} \notin E(F)$; otherwise we obtain a C_{6} with edge set $\left(E\left(C_{5}\right) \backslash\left\{x_{1} x_{2}, x_{3} x_{4}\right\}\right) \cup\left\{x_{1} b, b x_{3}, x_{2} x_{4}\right\}$. Similarly, $x_{0} x_{2} \notin E(F)$.

Since F contains no C_{6}, we have $\left|N_{\left\{b_{1}, b_{2}\right\}}\left(x_{i}\right) \cap N_{\left\{b_{1}, b_{2}\right\}}\left(x_{j}\right)\right|=0$ for $i=0,2,4$ and $i \neq j$. This implies that there exists an $x_{i}(i \in\{0,2,4\})$ with no neighbor in $\left\{b_{1}, b_{2}\right\}$, say x_{4}. Since \bar{F} contains no W_{4}, x_{0} must be adjacent to both b_{1} and b_{2}. This implies that x_{2} has no neighbor in $\left\{b_{1}, b_{2}\right\}$; otherwise F contains a C_{6}. Thus \bar{F} contains a W_{4} with hub b and rim $b_{1} x_{4} b_{2} x_{2} b_{1}$, our final contradiction.

Theorem $4 R\left(C_{7}, W_{4}\right)=13$.

Proof. Let F be a graph on 13 vertices containing no C_{7}. We will show that \bar{F} contains W_{4}. To the contrary, assume \bar{F} contains no W_{4}. By the previous result, we know that F contains C_{6}. Let $A=\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ be the set of vertices of $C_{6} \subseteq F$ in a cyclic ordering, and let $B=V(F) \backslash A$. Then $|B|=7$. By Theorem 1, there exists a vertex $b \in B$ such that $\left|N_{B}(b)\right| \leq 3$, since otherwise $F[B]$ and hence F contains C_{7}. By Lemma 3, $\delta(F) \geq 7-\frac{4}{2}=5$, implying that $\left|N_{A}(b)\right| \geq 2$. If b is adjacent to x_{i} and x_{i+1} (indices modulo 5), then clearly $C_{7} \subseteq F$. Now we distinguish three cases.

Case 1: b has two neighbors in A at distance 3 along the C_{6}.
We may assume without loss of generality that $N_{A}(b)=\left\{x_{1}, x_{4}\right\}$. Let b_{1}, b_{2}, b_{3} denote three vertices of $B \backslash N_{B}(b)$. As in the proof of Theorem 3, we observe that $x_{0} x_{3} \notin E(F)$; otherwise we obtain a C_{7}. Similarly, $x_{2} x_{5} \notin E(F)$. Now one of $x_{0} x_{2}, x_{3} x_{5}$ is an edge of F; otherwise we obtain a W_{4} in \bar{F} with hub b and rim $x_{0} x_{3} x_{5} x_{2} x_{0}$. We next observe that precisely one of these edges exists in F; otherwise $x_{0} x_{2} x_{3} x_{5} x_{4} b x_{1} x_{0}$ is a C_{7} in F. We may assume without loss of generality that $x_{0} x_{2} \in E(F)$ and $x_{3} x_{5} \notin E(F)$. Since $x_{0} x_{3}, x_{3} x_{5} \notin E(F)$, at least one of x_{0} and x_{5} is a neighbor of b_{i} in $F(i=1,2,3)$. Suppose $x_{0} b_{1}, x_{0} b_{2} \in E(F)$. Since there is no C_{7} in F, we easily get that $x_{5} b_{1}, x_{5} b_{2} \notin E(F)$. Now at least one of $x_{2} b_{1}, x_{2} b_{2}$ is an edge of F; otherwise we obtain a W_{4} in \bar{F} as in the proof of Theorem 3. But then $x_{0} b_{i} x_{2} x_{3} x_{4} b x_{1} x_{0}$ is a C_{7} in F for $i=1$ or $i=2$, a contradiction. Since we do not use the edge $x_{0} x_{2}$ in the last arguments, the case that $x_{5} b_{1}, x_{5} b_{2} \in E(F)$ is symmetric. This completes Case 1.

Case 2: b has three neighbors in A.
We may assume without loss of generality that $N_{A}(b)=\left\{x_{1}, x_{3}, x_{5}\right\}$. Let b_{1}, b_{2}, b_{3} denote three vertices of $B \backslash N_{B}(b)$. As in the proof of Theorem 3, we observe that $x_{0} x_{2} \notin E(F)$; otherwise we obtain a C_{7}. Similarly, $x_{2} x_{4}, x_{4} x_{0} \notin E(F)$. Since $x_{0} x_{2}, x_{2} x_{4} \notin E(F)$, at least one of x_{0} and x_{4} is a neighbor of b_{i} in $F(i=1,2,3)$. Suppose by symmetry that $x_{0} b_{1}, x_{0} b_{2} \in E(F)$. Similarly, at least one of $x_{2} b_{1}, x_{4} b_{1} \in E(F)$. By symmetry and possibly reversing the orientation of the C_{6}, we may assume $x_{2} b_{1} \in E(F)$. Clearly, $b_{1} x_{1}, b_{1} x_{3}, b_{1} x_{5}, b_{2} x_{1}, b_{2} x_{5}, x_{1} x_{3}, x_{1} x_{5} \notin E(F)$. Also $x_{3} x_{5} \notin E(F)$; otherwise $x_{5} x_{3} b x_{1} x_{2} b_{1} x_{0} x_{5}$ is a C_{7} in F. Now $b_{1} b_{2} \in E(F)$; otherwise we obtain a W_{4} in \bar{F} with hub b_{1} and rim $b_{2} x_{1} x_{3} x_{5} b_{2}$. We conclude that $x_{0} b_{2} b_{1} x_{2} x_{3} x_{4} x_{5} x_{0}$ is a C_{7} in F. This completes Case 2.

Case 3: b has exactly two neighbors in A at distance 2 along the C_{6}.
We may assume without loss of generality that $N_{A}(b)=\left\{x_{1}, x_{3}\right\}$. Let b_{1}, b_{2}, b_{3} denote vertices of $B \backslash N_{B}(b)$. As in the proof of Theorem 3, we observe that $x_{0} x_{2} \notin E(F)$; otherwise we obtain a C_{7}. Similarly, $x_{2} x_{4} \notin E(F)$. Since $x_{0} x_{2}, x_{2} x_{4} \notin E(F)$, at least one of x_{0} and x_{4} is a neighbor of b_{1} in F. Suppose by symmetry that $x_{0} b_{1} \in E(F)$.

Since $x_{0} x_{2}, x_{2} x_{4} \notin E(F)$ and \bar{F} contains no W_{4}, by the Pigeonhole Principle, there exists an $x \in\left\{x_{0}, x_{4}\right\}$ such that x is adjacent to at least two vertices in $\left\{b_{1}, b_{2}, b_{3}\right\}$. Let x_{0} be adjacent to b_{1} and b_{2}. If $x_{1} x_{5} \in E(F)$, then x_{2} and x_{4} are not adjacent to b_{1} and b_{2}, since otherwise F contains a C_{7}, so \bar{F} contains a W_{4} with hub b and rim $b_{1} x_{4} b_{2} x_{2} b_{1}$. In case $x_{1} x_{5} \notin E(F)$, we get that $x_{5} b \in E(F)$, since otherwise we have a W_{4} in \bar{F} with hub x_{5} and rim $b_{1} x_{1} b_{2} b b_{1}$. The case is now similar to Case 2. This completes Case 3 and the proof of Theorem 4.

Lemma 4 Let F be a graph on $2 n-1$ vertices with $n \geq 8$, and suppose \bar{F} contains no W_{4}. If $C_{n-1} \subseteq F$ and $F \nsupseteq C_{n}$, then $\left|N_{\mathcal{A}}(x)\right| \leq 2$ for each $x \in V(F) \backslash \mathcal{A}$, where $\mathcal{A}=V\left(C_{n-1}\right)$.

Proof. Let $\mathcal{A}=\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\}$ be the set of vertices of a cycle C_{n-1} in F in a cyclic ordering, and let $\mathcal{B}=V(F) \backslash \mathcal{A}$. Suppose there exists a vertex $b_{1} \in \mathcal{B}$ with $\left|N_{\mathcal{A}}\left(b_{1}\right)\right| \geq 3$. Clearly, $b_{1} x_{i+1} \notin E(F)$ whenever $b_{1} x_{i} \in E(F)$ (indices modulo $n-1$). Since $n \geq 8$, $|\mathcal{A}| \geq 7$, and hence we can choose two neighbors x_{i} and x_{j} of b_{1} in \mathcal{A} such that $x_{i+1} \neq x_{j-1}$ and $x_{i-1} \neq x_{j+1}$ (indices modulo $n-1$). Let $A=\left\{x_{i-1}, x_{i+1}, x_{j-1}, x_{j+1}\right\}$. Then $|A|=4$ and $x b_{1} \notin E(F)$ for each $x \in A$. Moreover, since F contains no C_{n}, by standard long cycle arguments $x_{i-1} x_{j-1}, x_{i+1} x_{j+1} \notin E(F)$, If $\left|N_{A}(x)\right| \leq 1$ for all $x \in A$, then in \bar{F} all vertices of A have at least $2=\frac{1}{2}|A|$ neighbors, implying that \bar{F} contains a W_{4} with hub b_{1}. Hence $\left|N_{A}(x)\right| \geq 2$ for some $x \in A$. By symmetry, considering the two possible orientations of C_{n-1}, we may assume without loss of generality that $\left|N_{A}\left(x_{i+1}\right)\right| \geq 2$, hence $x_{i-1} x_{i+1}, x_{i+1} x_{j-1} \in E(F)$. Then $x_{i} x_{j-1} \notin E(F)$; otherwise we can obtain a C_{n} from $E\left(C_{n-1}\right) \backslash\left\{x_{j-1} x_{j}, x_{i} x_{i+1}, x_{i-1} x_{i}\right\} \cup\left\{x_{j} b_{1}, b_{1} x_{i}, x_{i} x_{j-1}\right\}$. Similarly, $x_{i} x_{j+1} \notin E(F)$. Since $\delta(F) \geq n-2$ by Lemma 3 and $\left|N_{\mathcal{A}}(b)\right| \leq 5-2=3$ for each $b \in \mathcal{B}$ by Lemma 1 , there
exist distinct vertices $b_{2}, b_{3} \in \mathcal{B}$ such that $b_{1} b_{2}, b_{1} b_{3} \in E(F)$. This implies that x_{j-1} and x_{j+1} are not adjacent to any vertex in $\left\{b_{2}, b_{3}\right\}$ since otherwise F contains a C_{n} (extending the C_{n-1} by including b_{1} and b_{2} or b_{3}, while skipping x_{i}). Now, we will distinguish the following two cases.

Case 1: $x_{j-1} x_{j+1} \notin E(F)$.
Since \bar{F} contains no $W_{4}, x_{t} b_{2}, x_{t} b_{3} \in E(F)$ for each $t \in\{i-1, i+1\}$. Suppose to the contrary, e.g., that $x_{i-1} b_{2} \notin E(F)$. Then \bar{F} contains a W_{4} with hub x_{j-1} and rim $\left\{x_{i-1}, b_{2}, x_{j+1}, b_{1}\right\}$. The other cases are symmetric. See Figure 1.

Figure 1: The proof of Lemma 4 for Case 1.

Clearly then $x_{i} b_{2}, x_{i} b_{3} \notin E(F)$ since $F \nsupseteq C_{n}$. Thus, we have a W_{4} in \bar{F} with hub x_{i} and $\operatorname{rim}\left\{x_{j-1}, b_{2}, x_{j+1}, b_{3}\right\}$, a contradiction.

Case 2: $x_{j-1} x_{j+1} \in E(F)$.
If $b_{2} x_{i-1} \in E(F)$, then we obtain a C_{n} in F with edge set
$E\left(C_{n-1}\right) \backslash\left\{x_{j-1} x_{j}, x_{j} x_{j+1}, x_{i-1} x_{i}\right\} \cup\left\{x_{i-1} b_{2}, b_{2} b_{1}, b_{1} x_{i}, x_{j-1} x_{j+1}\right\}$.
Hence $b_{2} x_{i-1} \notin E(F)$. Similarly, $b_{2} x_{i+1}, b_{3} x_{i-1}, b_{3} x_{i+1} \notin E(F)$. If $x_{j} x_{i-1} \in E(F)$, we obtain a C_{n} with edge set
$E\left(C_{n-1}\right) \backslash\left\{x_{j} x_{j+1}, x_{j-1} x_{j}, x_{i-1} x_{i}\right\} \cup\left\{x_{j} b_{1}, b_{1} x_{i}, x_{j-1} x_{j+1}\right\}$.
Hence, by symmetry, $x_{j} x_{i-1}, x_{j} x_{i+1} \notin E(F)$. Since \bar{F} contains no W_{4} (with hub x_{i} and $\left.\operatorname{rim}\left\{x_{j+1}, b_{2}, x_{j-1}, b_{3}\right\}\right), x_{i}$ is adjacent to a vertex in $\left\{b_{2}, b_{3}\right\}$. Without loss of generality, let $x_{i} b_{2} \in E(F)$. Since $\delta(F) \geq n-2$ by Lemma $3, x_{i+1}$ must be adjacent to two vertices in $\mathcal{B} \backslash\left\{b_{1}, b_{2}, b_{3}\right\}$. Let $x_{i+1} b_{4}, x_{i+1} b_{5} \in E(F)$ for $b_{4}, b_{5} \in \mathcal{B}$. By similar arguments as before, $C_{n} \nsubseteq F$ implies $b_{1} b, b_{2} b \notin E(F)$ for each $b \in\left\{b_{4}, b_{5}\right\}$. Suppose $b_{4} x_{i-1} \notin E(F)$. Then we have a W_{4} in \bar{F} with hub x_{i-1} and $\operatorname{rim}\left\{b_{4}, b_{1}, x_{j-1}, b_{2}\right\}$. Similar case analyses
show that $b_{4} x, b_{5} x \in E(F)$ for each $x \in\left\{x_{i-1}, x_{j-1}\right\}$. Since F contains no C_{n}, we clearly have $b_{4} b_{5} \notin E(F)$, and also $x_{i} x_{j} \notin E(F)$ (otherwise consider $E\left(C_{n-1}\right) \backslash\left\{x_{j-1} x_{j}, x_{i-1} x_{i}\right\} \cup$ $\left.\left\{x_{i} x_{j}, x_{i-1} b_{4}, b_{4} x_{j-1}\right\}\right)$. Since $\delta(F) \geq n-2$ by Lemma 3, there exists a vertex $b_{6} \in$ $\mathcal{B} \backslash\left\{b_{1}, \ldots, b_{5}\right\}$ such that $b_{4} b_{6} \in E(F)$. This clearly implies $b_{6} x_{i}, b_{6} x_{j}, b_{6} b_{5} \notin E(F)$. See Figure 2.

Figure 2: The proof of Lemma 4 for Case 2.

Thus, \bar{F} contains a W_{4} with hub b_{5} and $\operatorname{rim}\left\{x_{i}, b_{6}, x_{j}, b_{4}\right\}$, a contradiction. This completes the proof.

Theorem $5 R\left(C_{n}, W_{4}\right)=2 n-1$ for $n \geq 5$.

Proof. We use induction on $n \geq 5$. We already know that $R\left(C_{n}, W_{4}\right) \geq 2 n-1$ for $n \geq 5$. For $n=5,6$, and 7 , we respectively know from [5], Theorem 3, and Theorem 4 that $R\left(C_{n}, W_{4}\right)=2 n-1$. Now assume that $R\left(C_{n}, W_{4}\right)=2 n-1$ for $n<k$ with $k \geq 8$ and let F be a graph on $2 k-1$ vertices containing no C_{k}. We shall show that \bar{F} contains W_{4}. To the contrary, assume \bar{F} contains no W_{4}. By the induction hypothesis, we have $F \supseteq C_{k-1}$. Let $A=V\left(C_{k-1}\right), B=V(F) \backslash V\left(C_{k-1}\right)$ and so $|B|=k$. By Lemma 4, we have $\left|N_{A}(x)\right| \leq 2$ for each $x \in B$. Since by Lemma $3, \delta(F) \geq k-2$, we obtain $\left|N_{B}(x)\right| \geq k-2-2=k-4 \geq \frac{1}{2} k=\frac{1}{2}|B|$ for all $x \in B$. Now $F[B]$ and hence F contains a C_{k} by Theorem 1, a contradiction. This completes the proof.

Theorem $6 R\left(C_{n}, W_{5}\right)=3 n-2$ for $n \geq 5$.

Proof. We use induction on n. We already know that $R\left(C_{n}, W_{5}\right) \geq 3 n-2$ for $n \geq 5$. For $n=5$, we know from [6] that $R\left(C_{5}, W_{5}\right)=3.5-2$. Assume the theorem holds for $n<k$ with $k \geq 6$ and let F be a graph on $3 k-2$ vertices containing no C_{k}. We shall show that \bar{F} contains W_{5}. To the contrary, assume that \bar{F} contains no W_{5}. Consequently, F must contain a C_{k-1}, and we let $A=\left\{a_{1}, a_{2}, \ldots, a_{k-1}\right\}$ denote the set of vertices of a cycle C_{k-1} in F, in a cyclic ordering. Let $B=V(F) \backslash A$, so $|B|=2 k-1$. Then, by Theorem 5 , the complement of the subgraph $F[B]$ of F induced by B must contain a W_{4}. Let x_{0} be the hub and $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ be the rim of a W_{4} in $\bar{F}[B]$. We distinguish the following cases.

Case 1: k is even.

Since F contains no C_{k}, within $F:\left|N_{A}(z)\right| \leq\left\lfloor\frac{k-1}{2}\right\rfloor$ for each $z \in B$. This implies that there exist vertices $a_{j}, a_{j+1} \in A$ for some $j \in\{1,2, \ldots, k-1\}$ such that $a_{j} x_{0}, a_{j+1} x_{0} \notin$ $E(F)$. No C_{k} in F also implies $N_{X}\left(a_{j}\right) \cap N_{X}\left(a_{j+1}\right)=\emptyset$. No W_{5} in \bar{F} implies in $F:\left|N_{X}\left(a_{j}\right)\right| \geq 2$ and $\left|N_{X}\left(a_{j+1}\right)\right| \geq 2$, and without loss of generality we may assume a_{j} is adjacent to x_{1} and x_{3}, and a_{j+1} is adjacent to x_{2} and x_{4}. This implies $x_{1} x_{3}, x_{2} x_{4}, x_{0} a_{j+2}, x_{0} a_{j-1} \in E(F)$ since otherwise $\bar{F} \supseteq W_{5}$ (Note that $F \nsupseteq C_{k}$ implies neither of a_{j-1} and a_{j+2} is adjacent to a vertex in X). Since F contains no C_{k}, it is not difficult to check $x_{0} a_{j-2}, a_{j-2} x_{1}, a_{j+1} a_{j-2} \notin E(F)$. This implies $\bar{F} \supseteq W_{5}$ with hub x_{0} and $\operatorname{rim}\left\{x_{3}, a_{j+1}, a_{j-2}, x_{1}, x_{2}\right\}$, a contradiction.

Case 2: k is odd.
We may assume $a_{i} x_{0} \in E(F)$ for each odd $i \in\{1,2, \ldots, k-1\}$, since otherwise we can use the same arguments as in the first case. Since F contains no $C_{k}, a_{j} a_{h} \notin E(F)$ for all even $j, h \in\{1,2, \ldots, k-1\}$. If $k \geq 11$, we have K_{6} in \bar{F} which implies $\bar{F} \supseteq W_{5}$, a contradiction. Now assume $7 \leq k<11$. In F we have $\left|N_{X}\left(a_{j}\right)\right| \geq 2$ for all even $j \in\{1,2, \ldots, k-1\}$, since otherwise $\bar{F} \supseteq W_{5}$. By the same token, we may assume without loss of generality that a_{j} is adjacent to x_{1} and x_{3} for some even $j \in\{1,2, \ldots, k-1\}$. We distinguish two subcases.

Subcase 2.1: x_{1} is adjacent to x_{3}.
Then x_{1} and x_{3} are not adjacent to any vertex in $\left\{a_{j-1}, a_{j-2}, a_{j+1}, a_{j+2}\right\}$, since otherwise F clearly contains a C_{k}. Thus, we get $\bar{F} \supseteq W_{5}$ with hub x_{0} and rim $\left\{x_{3}, a_{j+2}, a_{j-2}, x_{1}, x_{2}\right\}$, a contradiction.

Subcase 2.2: x_{1} is not adjacent to x_{3}.
This implies x_{2} and x_{4} are adjacent to all vertices in $\left\{a_{j-1}, a_{j+1}\right\}$, since otherwise $\bar{F} \supseteq W_{5}$. Suppose, e.g., $x_{2} a_{j-1} \notin E(F)$. Then $\bar{F} \supseteq W_{5}$ with hub x_{1} and $\operatorname{rim}\left\{a_{j-1}, x_{2}, x_{0}, x_{3}, a_{j+1}\right\}$; the other cases are similar. Thus, we get $x_{2} a_{j}, x_{4} a_{j+2} \notin E(F)$; otherwise a C_{k} in F is immediate. Thus, we get $\bar{F} \supseteq W_{5}$ with hub x_{0} and $\operatorname{rim}\left\{x_{4}, a_{j+2}, a_{j}, x_{2}, x_{3}\right\}$, our final contradiction.

This completes the proof.

3. Problem

We conclude the paper with the following open problem:
Find the Ramsey number $R\left(C_{n}, W_{m}\right)$ for $n \geq m \geq 6$.

References

[1] S. A. Burr and P. Erdős, Generalization of a Ramsey-theoretic result of Chvátal, Journal of Graph Theory 7 (1983) 39-51.
[2] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111-113.
[3] V. Chvátal and F. Harary, Generalized Ramsey theory for graphs, III. Small off-diagonal numbers, Pac. Journal Math. 41 (1972) 335-345.
[4] R. J. Faudree and R. H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Mathematics 8 (1974) 313-329.
[5] G.R.T. Hendry, Ramsey numbers for graphs with five vertices, Journal Graph Theory 13 (1989) 181-203.
[6] C. J. Jayawardene and C. C. Rousseau, Ramsey number $R\left(C_{5}, G\right)$ for all graphs G of order six, Ars Combinatoria 57 (2000) 163-173.
[7] O. Ore, Note on hamilton circuits, American Mathematical Monthly 67 (1960) 55.
[8] S. P. Radziszowski, Small Ramsey numbers, Electronic Journal of Combinatorics (2001) DS1.8.
[9] S. P. Radziszowski and J. Xia, Paths, cycles and wheels without antitriangles, Australasian Journal of Combinatorics 9 (1994) 221-232.
[10] V. Rosta, On a Ramsey type problem of J.A. Bondy and P. Erdős, I \& II, Journal of Combinatorial Theory (B) 15 (1973) 94-120.
[11] Surahmat and E.T. Baskoro, On the Ramsey number of a path or a star versus W_{4} or W_{5}, Proceedings of the 12-th Australasian Workshop on Combinatorial Algorithms, Bandung, Indonesia, July 14-17 (2001) 174-179.
[12] Surahmat, E.T. Baskoro and H.J. Broersma, The Ramsey numbers of large star-like trees versus large odd wheels, Preprint (2002).
[13] Surahmat, E.T. Baskoro and S.M. Nababan, The Ramsey numbers for a cycle of length four versus a small wheel, Proceedings of the 11-th Conference Indonesian Mathematics, Malang, Indonesia, July 22-25 (2002) 172-178.
[14] Kung-Kuen Tse, On the Ramsey number of the quadrilateral versus the book and the wheel, Australasian Journal of Combinatorics, 27 (2003) 163-167.
[15] H. L. Zhou, The Ramsey number of an odd cycle with respect to a wheel (in Chinese), Journal of Mathematics, Shuxu Zazhi (Wuhan) 15 (1995) 119-120.

[^0]: ${ }^{1}$ Part of the work was done while the first author was visiting the University of Twente.

