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Abstract

Poset games are two-player impartial combinatorial games, with normal play convention.
Starting with any poset, the players take turns picking an element of the poset, and
removing that and all larger elements from the poset. Examples of poset games include
Chomp, Nim, Hackendot, Subset-Takeaway, and others. We prove a general theorem
about poset games, which we call the Poset Game Perioidicity Theorem: as a poset ex-
pands along two chains, positions of the associated poset games with any fixed g-value
have a regular, periodic structure. We also prove several corollaries, including appli-
cations to Chomp, and results concerning the computational complexity of calculating
g-values in poset games.

1 Introduction

1.1 Posets

A partially-ordered set (poset) is a set and a relation among its elements satisfying
irreflexivity, transitivity, and antisymmetry. In the sequel, the relation will always be
denoted < (“less than”). For any set S, we will abbreviate the poset (S,<) as just S (it
will be clear from context whether we are talking about poset or the set). We define >,
≤, and ≥ as would be expected (in terms of <). We say a ‖ b (“a is incomparable to b”)
if and only if neither a ≤ b nor a ≥ b. A chain in a poset is a subset containing no pair
of incomparable elements. For convenience later on, we will use the following notation
to compare elements of X to subsets of X: for a ∈ X and S ⊆ X, a < S if and only if
a < x for each x ∈ S; a > S and a ‖ S are defined similarly.

1This paper was written and submitted while the author was a senior at the Roxbury Latin School,
West Roxbury, MA, USA, and revised for publication while a freshman at Harvard College, Cambridge,
MA, USA.
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1.2 How to Play a Poset Game

In order to play a poset game, given any poset A, two players take turns making moves.
On each move, a player picks an element x ∈ A, and removes all the elements of A greater
than or equal to x from the set A, to form a smaller poset A′. This becomes the new
A, then the other player picks an element, and so on. The player unable to move (when
A = ∅) loses. For the purposes of this paper, we will only consider poset games on finite
posets.

1.3 Poset Game Background

Over the past century, many types of poset games have been named and studied. All
poset game literature and research has been directed at the study of these specific games,
each in isolation from the others — before this paper, no major theorem was known that
applied to all poset games. We will now discuss some of these specific results.

For some specific poset games, efficient (polynomial-time) winning strategies have
been found. Such games include Nim [1], Von Neumann’s Hackendot [2], and impartial
Hackenbush on trees [3]. For each of these three poset games, the poset is N-free (that is,
it has no four elements a, b, c, d satisfying a ‖ b, a < c, a < d, b ‖ c, b < d, and c ‖ d). In
fact, a polynomial-time winning strategy for any poset game on an N-free poset is given
in [4].

However, other well-known poset games (which, of course, are not N-free) have re-
mained unsolved for as many as fifty years, with neither a known polynomial-time winning
strategy, nor a demonstration that none exists.

One such unsolved poset game is called Chomp, proposed in 1974 by D. Gale [5], and
named later by M. Gardner [6]. An m× n bar of chocolate is divided into unit squares,
and the top-left square is poisoned. On each turn, a player bites off a square, along with
all the squares directly below it, directly to the right of it, and below and to the right of
it. Eventually, one player is forced to eat the poisoned square, thus losing the game. If
we remove the poisoned square from the set and say that one chocolate square is greater
than or equal to another if the former is below and/or to the right of the latter, then we
see that this is in fact a poset game.

Two other well-known unsolved poset games are Schuh’s Game of Divisors and Subset
Takeaway (also called the superset game). The former starts with the poset consisting of
the positive divisors of a fixed integer n, excluding 1, partially ordered by divisibility, and
was proposed in 1952 by F. Schuh [7]. The latter starts with the poset consisting of all
subsets of a given set, excluding the null set, partially ordered by set inclusion, and was
proposed in 1982 by D. Gale [8]. Interestingly, both Subset Takeaway and Chomp are
isomorphic to special cases of Schuh’s Game of Divisors, where the integer n is square-free
or has at most two prime divisors, respectively.
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In Chomp, two special cases of the Poset Game Periodicity Theorem have already
been stated as conjectures. Based on previous work by D. Zeilberger [9], X. Sun wrote a
Maple program that calculated P-positions in Chomp by searching for periodic patterns
with all but the top two rows fixed [10]. The success of that algorithm led him to
conjecture that, when all but the top two rows are fixed, the difference in length between
the top two rows in P-positions is eventually periodic with respect to the length of the
second row. A. Brouwer [11] verified that conjecture by computer in the special case of
3-rowed Chomp positions with at most 90, 000 squares in the bottom row. Later, X. Sun
wrote another Maple program, which calculated g-values for Chomp positions [12]. In the
data generated, he found a periodic relation between the length of the top row and the
g-value, when all other rows are fixed, and conjectured that this always holds. We will
see that both of these conjectures are corollaries of the Poset Game Periodicity Theorem,
proposed and proved in this paper.

Finally, it is known that, if a poset X has a largest or smallest element, the associated
poset game is in anN -position. The proof is short but clever. If X has a smallest element,
taking that would be the winning move. If X has a largest element a, the first player can
take a on the first move. Either that leaves a P-position, or else the second player has
a winning response b. The first player therefore always has a winning opening move – a
in the first case, b in the second – so X is always an N -position. In particular, Schuh’s
Game of Divisors, Chomp, and Subset-Takeaway are all first-player wins (since they have
largest elements), but the nonconstructive nature of the proof says nothing about what
the strategy is.

1.4 Game Theory Background

Since poset games are finite, impartial, combinatorial games, they are described by the
Sprague-Grundy Theory of Games. The essential property of a position is its g-value
(also called grundy-value, nim-value, or Sprague-Grundy function), and understanding
the structure of the g-values of a game’s positions is essential for understanding that
game.

Let the mex (“minimal excluded value”) of any set be the smallest nonnegative integer
not in the set. The g-value of any position in a game is recursively defined as the mex
of the set of g-values of all game-positions that can remain after exactly one move. (In
particular, P-positions are those with g-value 0.) In other words, g-values have two
properties: First, if we start from a position with g-value k, then, for any integer n,
0 ≤ n ≤ k− 1, there is some move that leaves a position with g-value n. Second, there is
no move from a position with g-value k to another with g-value k. (For a more complete
explanation of g-values, see [3].) For any finite poset P , let g(P ) be the g-value of the
position P in a poset game.
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2 Statement of the Periodicity Theorem

In an infinite poset X, suppose we have two infinite chains C (c1 < c2 < · · · ) and D
(d1 < d2 < · · · ), and a finite subset A, all pairwise disjoint, and assume that no element
of C is less than an element of D (Figure 2 displays an example). Let

Am,n = A ∪ C ∪D − {x ∈ X | x ≥ cm+1} − {x ∈ X | x ≥ dn+1}

(that is, Am,n is the position that results from starting with the poset A ∪ C ∪ D,
then making the two moves cm+1 and dn+1). Let k be a nonnegative integer. Then the
Poset Game Periodicity Theorem states that either: (1) there are only finitely many
different Am,n with g-value k; or (2) we can find a positive integer p such that, for large
enough n, g(Am,n) = k if and only if g(Am+p,n+p) = k. Thus, as the poset A expands
along the chains C and D, positions with any fixed g-value have a regular structure.

An example of a poset game (Chomp) to which the Periodicity Theorem applies

The paper will proceed as follows: in Section 3, we define terms and prove nine
lemmas; in Section 4, we use these tools to prove the periodicity theorem; in Section 5,
we provide some corollaries and implications of the theorem; and in Section 6, we suggest
possible avenues for future work.

3 Preliminaries for the Periodicity Theorem

For the rest of the paper, we will assume the following:

(X,<) is an infinite poset, containing two infinite chains C and D, and a

finite subset A, all pairwise disjoint; C = {c1, c2, . . . , } with c1 < c2 < · · · ;
D = {d1, d2, . . . , } with d1 < d2 < · · · ; and if c ∈ C and d ∈ D, then c 6< d. (1)

For m,n ∈ N0, let

Am,n = A ∪ C ∪D − {x ∈ X | x ≥ cm+1} − {x ∈ X | x ≥ dn+1}

and let

Q(A) = {k ∈ N0 | only finitely many different positions of the form Am,n have g-value k}.
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Note that this is not the same as saying that there are only finitely many solutions
(m,n) to g(Am,n) = k. For example, if c2 > d2, then A1,1, A2,1, A3,1, etc. are all the same
position.

Lemma 1. Suppose (m1, n1) 6= (m2, n2). Then Am1,n1 = Am2,n2 if and only if n1 = n2,
cm1+1 > dn1+1, and cm2+1 > dn1+1.

Proof. Suppose (m1, n1) 6= (m2, n2) and Am1,n1 = Am2,n2 . Since no element ofD is greater
than any element of C, Am,n∩D = ∅ if and only if n = 0, and max(Am,n∩D) = di if and
only if i = n. Hence, we can recover n from the position Am,n, so if Am1,n1 = Am2,n2 then
n1 = n2 = n. Since (m1, n) 6= (m2, n), m1 6= m2, so without loss of generality, assume
m1 > m2. If cm2+1 6> dn+1 then cm2+1 would be in Am1,n but not Am2,n, contradicting the
fact that they are equal. Hence, cm2+1 > dn1+1 and cm1+1 > cm2+1 > dn1+1. Conversely,
suppose n1 = n2 = n, cm1+1 > dn+1, and cm2+1 > dn+1. Then

Am1,n1 = Am1,n = A ∪ C ∪D − {x ∈ X | x ≥ dn+1} = Am2,n = Am2,n2 .

Lemma 2. If n1 6= n2, then g(Am,n1) 6= g(Am,n2).

Proof. Without loss of generality, assume n1 < n2. Since dn1+1 ∈ Am,n2 , if we start with
Am,n2 and make the move dn1+1, the resulting position is

A ∪ C ∪D − {x ∈ X | x ≥ cm+1} − {x ∈ X | x ≥ dn2+1} − {x ∈ X | x ≥ dn1+1}
= A ∪ C ∪D − {x ∈ X | x ≥ cm+1} − {x ∈ X | x ≥ dn1+1}
= Am,n1 .

Since we can get from Am,n2 to Am,n1 in one move, their g-values must differ.

Lemma 3. If cm1+1 6> dn+1 and m1 6= m2, then g(Am1,n) 6= g(Am2,n).

Proof. This proof is similar to the proof of Lemma 2. If m2 < m1, then, since cm2+1 <
cm1+1, cm2+1 6> dn+1 also. Hence, without loss of generality, assume m1 < m2. Since
cm1+1 6> dn+1, cm1+1 ∈ Am2,n. Thus, if we start with Am2,n, we can make the move cm1+1

and get Am1,n. Since there is a move from Am2,n to Am1,n, their g-values must differ.

Lemma 4. k ∈ Q(A) if and only if one of the following is true: (i) There exists m,n ∈
N0 such that cm+1 > dn+1 and g(Am,n) = k, or (ii) there exists an a ∈ A, m,n ∈ N0 with
a < cm+1, a < dn+1, and g(Am,n − {x ∈ X | x ≥ a}) = k.

Proof. First, suppose cm+1 > dn+1 and g(Am,n) = k. Let P = Am,n. By Lemma 1, for
any i ≥ m, P = Ai,n. By Lemma 2, for each i ≥ m, P = Ai,n is the only position Ai,y
that has g-value k. Also by Lemma 2, there are at most m positions of the form Ai,y
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with g-value k for 0 ≤ i ≤ m − 1 (at most one for each such i). Thus, in total, there
are at most m + 1 different positions of the form Ax,y with g-value k, which is finite, so
k ∈ Q(A).

Second, suppose (ii) holds. If we make the move a from the position Am′,n′ for m′ > m
and n′ > n, we will get a position with g-value k. Hence, if m′ > m and n′ > n, then
g(Am′,n′) 6= k. For each m′ ≤ m, by Lemma 2, there is at most one position Am′,n′ with
g-value k. For each n′ ≤ n, by Lemmas 1 and 3, there is at most one position of the form
Am′,n′ with g-value k. Hence, there are at most m + n + 2 positions of the form Am′,n′

with g-value k, so k ∈ Q(A).

Finally, suppose that k ∈ Q(A). Since any Am,n is finite, we can find an M and N
such that, if cM ∈ Am,n or if dN ∈ Am,n, then g(Am,n) 6= k. By Lemma 2, we can find a
y > N such that g(AM,y) > k. Let z be a move that takes AM,y to a position with g-value
k. Since dN and cM are not in the resulting position, z < dN , and either dy+1 < cM or
z < cM . Since dN < dy+1, we get z < dN and z < cM . Since z < dN , either z ∈ D, in
which case (i) holds, or z ∈ A, in which case (ii) holds.

If k ∈ Q(A), whether (i) or (ii) occurs, there is a number T (A, k) ∈ N0 such that,
if n ≥ T (A, k), then there is a move from Am,n to a position with g-value k, no matter
what the value of m. If (i) holds, then cm′+1 > dn′+1 with g(Am′,n′) = k, and if (ii) holds,
then, for some a ∈ A, a < cm′+1, a < dn′+1, and g(Am′,n′ − {x ∈ X | x ≥ a}) = k. For
each m, by Lemma 2, there exists an nm such that, if n ≥ nm, then g(Am,n) > k. If we
let T (A, k) = max(n0, n1, . . . , nm′ , n

′ + 1), it will have the desired property. Now, let

W (A, k) = max({T (B, j) | B ⊆ A, j ≤ k, j ∈ Q(B)})

with max(∅) interpreted as 0. We will use this function later.

Lemma 5. If g(Am,n) = k, then n−m ≤ |A|+ k. Also, if k 6∈ Q(A), or if cm+1 6> dn+1,
then |n−m| ≤ |A|+ k.

Proof. Suppose g(Am,n) = k. Let

S = {n′ ∈ N0 | 0 ≤ n′ ≤ n− 1, g(Am,n′) > k}.

For each n′ ∈ S, there is at least one move from Am,n′ to a position with g-value k. Pick
one such move, and call that move f(n′). If f(n′) < dn′+1, then we could have made the
move f(n′) from Am,n directly, which would be a move from a position with g-value k to
another with g-value k, which is impossible. Hence,

f(n′) 6< dn′+1. (2)

Suppose that f(n′1) = f(n′2) = x, for n′1 > n′2. Since dn′2+1 6> x by (2), we can start
with Am,n′1 and make the move x, leaving a position with g-value k, then make the move
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dn′2+1, leaving another position with g-value k, a contradiction. Hence, if we view f as
a function f : S → X, then f is injective. From (2), f(n′) 6∈ D, so the image of f is in
A ∪ {c1, . . . , cm}. Since f is injective, |S| ≤ |A| + m. By Lemma 2, at most k values
of n′ < n satisfy g(Am,n′) < k, and none satisfy g(Am,n′) = k. Hence, |S| ≥ n − k, so
n−m ≤ |A|+ k.

If k 6∈ Q(A), then, by Lemma 4, cm+1 6> dn+1. Thus, to finish the proof, we only need
to show that, if cm+1 6> dn+1, then m− n ≤ |A|+ k. The proof runs exactly like the one
above, but switching the roles of C and D, and using Lemma 3 instead of Lemma 2.

We will now add another assumption to (1), which will apply to the rest of this section:

For each a ∈ A, either a < C or a ‖ C, and either a < D or a ‖ D. (3)

Lemma 6. Assume (3). If k 6∈ Q(A), and if m ≥ |A| + k, then there exists a unique
n ∈ N0 such that g(Am,n) = k.

Proof. Suppose that k 6∈ Q(A) and m ≥ |A| + k. By Lemma 5, g(Am,m+|A|+k+1) > k.
Hence, there is a move z ∈ Am,m+|A|+k+1 that takes Am,m+|A|+k+1 to a position with
g-value k. We have six cases:

• z ∈ A, z < C, z < D: This is impossible, by Lemma 4, since k 6∈ Q(A).

• z ∈ A, z < C, z ‖ D: This is impossible, since the resulting position is B0,m+|A|+k+1,
for some B ⊂ A. By Lemma 5, this has g-value greater than k.

• z ∈ A, z ‖ C, z < D: This is impossible, since the resulting position is Bm,0, for
some B ⊂ A. Since cm+1 ‖ z < d1, cm+1 6> d1, so, by Lemma 5, since m ≥ |A|+k >
|B|+ k, g(Bm,0) > k.

• z ∈ A, z ‖ C, z ‖ D: This is impossible, since the resulting position is Bm,m+|A|+k+1,
for some B ⊂ A. By Lemma 5, this has g-value greater than k.

• z ∈ C: This is impossible, since the resulting position is Am′,m+|A|+k+1, for some
0 ≤ m′ ≤ m− 1. By Lemma 5, this has g-value greater than k.

• z ∈ D: In this case, z = dn+1 for some n ∈ N0, so g(Am,n) = k.

By process of elimination, the last case must occur, so, for any m ≥ |A|+ k, there exists
an n ∈ N0 such that g(Am,n) = k. Uniqueness follows from Lemma 2.

Let fA,k(m) be the unique (by Lemma 2) value satisfying g(Am,fA,k(m)) = k, whenever
it exists. We will abuse notation slightly in order to handle the case that fA,k(m) does
not exist. If α(B, j,m) is some set of conditions on B, j, and m, we will let

{fB,j(m) | α(B, j,m)} = {i | ∃B, j,m with α(B, j,m) and fB,j(m) = i}.
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This allows the set on the left to still be defined, even if fB,j(m) does not always exist.

Finally, let T = {a ∈ A | a ‖ C, a ‖ D}, and let

H = {A− {x ∈ A | x ≥ a} | a ∈ T}.

Lemma 7. Assume (3). For j ∈ N0, j 6∈ Q(A), m ≥ |A| + j, and n ≥ max(|A| +
j,W (A, j)), there is a move from Am,n to a position with g-value j if and only if

n ∈ {fA,j(i) | 0 ≤ i ≤ m− 1} ∪ {fB,j(m) | B ∈ H, j 6∈ Q(B)} ∪ {i | i > fA,j(m)}. (4)

Proof. From Am,n, for m ≥ |A| + j and n ≥ max(|A| + j,W (A, j)), suppose we make
move z. Then z will satisfy exactly one of the following: (I) z ∈ A and z < C, z < D;
(II) z ∈ A and z < C, z ‖ D; (III) z ∈ A and z ‖ C, z < D; (IV) z ∈ A and z ‖ C,
z ‖ D; (V) z ∈ C; or (VI) z ∈ D.

After a move of type (I), by Lemma 4, since j 6∈ Q(A), we can never be in a position
with g-value j.

After a move of type (II), Am,n becomes B0,n, for some B ⊂ A. Since n ≥ |A| + j >
|B|+ j, Lemma 5 gives us g(B0,n) 6= j.

After a move of type (III), Am,n becomes Bm,0, for some B ⊂ A. Since z ‖ cm+1 and
z < d1, cm+1 6> d1. Since m ≥ |A|+ j > |B|+ j, Lemma 5 gives us g(Bm,0) 6= j.

After a move of type (IV), Am,n can become Bm,n, for any B ⊂ A, B ∈ H. Since
n ≥ W (A, j), if j ∈ Q(B) then g(Bm,n) 6= j. Hence, we need only look at sets B with
j 6∈ Q(B). Thus, there is a move of type (IV) from Am,n that leaves a position with
g-value j if and only if n ∈ {fB,j(m) | B ∈ H, j 6∈ Q(B)}.

After a move of type (V), Am,n can become Ai,n for any 0 ≤ i ≤ m − 1. Hence,
there is a move of type (V) from Am,n that leaves a position with g-value j if and only if
n ∈ {fA,j(i) | 0 ≤ i ≤ m− 1}.

After a move of type (VI), Am,n can become Am,i for any 0 ≤ i ≤ n − 1. Hence,
there is a move of type (VI) from Am,n that leaves a position with g-value j if and only
if n > fA,j(m) (fA,j(m) exists by Lemma 6), or, equivalently, n ∈ {i | i > fA,j(m)}.

Combining these results, we see that there is a move from Am,n to a position with
g-value j if and only if (4) holds.
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Lemma 8. Assume (3). For k 6∈ Q(A) and m ≥ |A|+ k + max(|A|+ k,W (A, k)),

fA,k(m)−m = min

(
{−|A| − k,−|A| − k + 1, . . . , |A|+ k}∩⋂

0≤j≤k−1
j 6∈Q(A)

(
{fA,j(i)−m | m− 2|A| − 2k ≤ i ≤ m− 1}

∪ {fB,j(m)−m | B ∈ H, j 6∈ Q(B)} ∪ {i | i > fA,j(m)−m}
)

− {fA,k(i)−m | 0 ≤ i ≤ m− 1, fA,k(i)−m ≥ −|A| − k}

−{fB,k(m)−m | B ∈ H, k 6∈ Q(B)}
)
. (5)

Proof. By Lemma 6, fA,k(m) exists, and Lemma 5 constrains its possible values to the set
{m−|A|−k,m−|A|−k+1, . . . ,m+|A|+k}. For each n ∈ {m−|A|−k, . . . ,m+|A|+k},
we need to check if Am,n can become a position with g-value j in one move for each j
with 0 ≤ j ≤ k − 1, and we need to check if Am,n can become a position with g-value k
in one move. The n which satisfies the first condition but not the second is the value of
fA,k(m). Since m ≥ |A|+ k + max(|A|+ k,W (A, k)), n ≥ max(|A|+ k,W (A, k)). Since
n ≥ W (A, k), Am,n can, in one move, become a position with g-value j for any j ∈ Q(A).
Thus, we need only check the values of j for which 0 ≤ j ≤ k − 1 and j 6∈ Q(A). Since
n ≥ max(|A|+ k,W (A, k)) ≥ max(|A|+ j,W (A, j)), we can apply Lemma 7. The values
of n (in the appropriate range) such that, in one move, Am,n can become a position with
g-value j for every 0 ≤ j ≤ k − 1 are:

{m− |A| − k,m− |A| − k + 1, . . . ,m+ |A|+ k} ∩⋂
0≤j≤k−1
j 6∈Q(A)

(
{fA,j(i) | 0 ≤ i ≤ m− 1} ∪ {fB,j(m) | B ∈ H, j 6∈ Q(B)} ∪ {i | i > fA,j(m)}

)
(6)

For j < k and j 6∈ Q(A), if i ≤ m− 2|A| − 2k, then, by Lemma 5,

fA,j(i) ≤ i+ |A|+ j ≤ (m− 2|A| − 2k) + |A|+ (k − 1) = m− |A| − k − 1,

so fA,j(i) 6∈ {m − |A| − k,m − |A| − k + 1, . . . ,m + |A| + k}. Thus, we can add the
restriction i ≥ m − 2|A| − 2k + 1 to the set {fA,j(i) | 0 ≤ i ≤ m − 1} without affecting
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the set (6). Since m− 2|A| − 2k + 1 ≥ 0, we see that the set (6) is equal to:

{m− |A| − k,m− |A| − k + 1, . . . ,m+ |A|+ k} ∩⋂
0≤j≤k−1
j 6∈Q(A)

(
{fA,j(i) | m− 2|A| − 2k + 1 ≤ i ≤ m− 1}

∪ {fB,j(m) | B ∈ H, j 6∈ Q(B)} ∪ {i | i > fA,j(m)}
)

(7)

Next, we need to eliminate the n for which there is a move from Am,n to a position
with g-value k. Since k 6∈ Q(A), m ≥ |A|+ k, and n ≥ max(|A|+ k,W (A, k)), Lemma 7
says that there is a move from Am,n to a position with g-value k if and only if

n ∈ {fA,k(i) | 0 ≤ i ≤ m− 1} ∪ {fB,k(m) | B ∈ H, k 6∈ Q(B)} ∪ {i | i > fA,k(m)}. (8)

Combining (7) with (8), fA,k(m) is the single element of

{m− |A| − k,m− |A| − k + 1, . . . ,m+ |A|+ k} ∩⋂
0≤j≤k−1
j 6∈Q(A)

(
{fA,j(i) | m− 2|A| − 2k + 1 ≤ i ≤ m− 1}

∪ {fB,j(m) | B ∈ H, j 6∈ Q(B)} ∪ {i | i > fA,j(m)}
)

− {fA,k(i) | 0 ≤ i ≤ m− 1} − {fB,k(m) | B ∈ H, k 6∈ Q(B)} − {i | i > fA,k(m)}

(this set consists of all n such that g(Am,n) = k, and thus has the one element fA,k(m)).
Equivalently, fA,k(m) is the smallest element of

{m− |A| − k,m− |A| − k + 1, . . . ,m+ |A|+ k} ∩⋂
0≤j≤k−1
j 6∈Q(A)

(
{fA,j(i) | m− 2|A| − 2k + 1 ≤ i ≤ m− 1}

∪ {fB,j(m) | B ∈ H, j 6∈ Q(B)} ∪ {i | i > fA,j(m)}
)

− {fA,k(i) | 0 ≤ i ≤ m− 1} − {fB,k(m) | B ∈ H, k 6∈ Q(B)}.
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This set is clearly the same as

{m− |A| − k,m− |A| − k + 1, . . . ,m+ |A|+ k} ∩⋂
0≤j≤k−1
j 6∈Q(A)

(
{fA,j(i) | m− 2|A| − 2k + 1 ≤ i ≤ m− 1}

∪ {fB,j(m) | B ∈ H, j 6∈ Q(B)} ∪ {i | i > fA,j(m)}
)

− {fA,k(i) | 0 ≤ i ≤ m− 1, fA,k(i) ≥ m− |A| − k} − {fB,k(m) | B ∈ H, k 6∈ Q(B)}.
Subtracting m gives equation (5).

Lemma 9. Assume (3). For any A and k, with k 6∈ Q(A), there exists NA,k ∈ N0, pA,k ∈
N such that, if m ≥ NA,k, then fA,k(m)−m = fA,k(m+ pA,k)− (m+ pA,k).

Proof. We will prove this by strong double-induction on |A| and k—for some A and k,
assume that the lemma holds for all pairs (B, j) with B ⊂ A (in particular, for B ∈ H),
j ≤ k, and j 6∈ Q(B), and also that it holds for all pairs (A, j) with j < k and j 6∈ Q(A).
In the base case for the induction, these assumptions are vacuously true. Let

p = lcm({pB,j | B ∈ H, j ≤ k, j 6∈ Q(B)} ∪ {pA,j | j < k, j 6∈ Q(A)})
with lcm(∅) interpreted as 1, and let

N = max({NB,j | B ∈ H, j ≤ k, j 6∈ Q(B)} ∪ {NA,j | j < k, j 6∈ Q(A)})
+ |A|+ k + max(|A|+ k,W (A, k))

with max(∅) interpreted as 0. For m ≥ N , from Lemma 8, we have the recursion (5).

Let S(m) = {fA,k(i)−m | 0 ≤ i ≤ m− 1, fA,k(i)−m ≥ −|A| − k}. From Lemma 5,
if i ≤ m − 1, then fA,k(i) − m ≤ fA,k(i) − i − 1 ≤ |A| + k − 1. Hence, S(m) ⊆
{−|A|−k, . . . , |A|+k−1}. This means that there are at most 22|A|+2k = 4|A|+k possibilities
for S(m). Let mp be the smallest nonnegative residue of m (mod p). There are clearly
p possibilities for mp, so there are at most 4|A|+kp possible pairs (S(m),mp). By the
pigeonhole principle, there are two different numbers m1,m2 with N ≤ m1 < m2 ≤
N + 4|A|+kp such that S(m1) = S(m2) and (m1)p = (m2)p.

By the construction of p andN , form ≥ N , all the sets on the right side of equation (5)
other than S(m), when viewed as functions of m, repeat with period p. Since (m1)p =
(m2)p and S(m1) = S(m2), equation (5) implies that fA,k(m1)−m1 = fA,k(m2)−m2 = r.
We also have S(m1 + 1) = S(m2 + 1), since they can both be computed by inserting the
element r into S(m1) = S(m2), then subtracting 1 from every element of the resulting set,
then eliminating from the set any element less than (−|A| − k). Furthermore, clearly,
(m1 + 1)p = (m2 + 1)p. Again, equation 5 implies that fA,k(m1 + 1) − (m1 + 1) =
fA,k(m2 + 1) − (m2 + 1). Repeating this argument, we get fA,k(m1 + i) − (m1 + i) =
fA,k(m2 + i) − (m2 + i) for all i ≥ 0. Letting NA,k = m1 and pA,k = m2 − m1, we get
fA,k(m)−m = fA,k(m+ pA,k)− (m+ pA,k) for all m ≥ NA,k.
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4 Periodicity Theorem

Now that we have proven Lemma 9, we will drop the assumption (3) and prove our
general theorem.

Poset Game Periodicity Theorem. Assume (1). For any k ∈ N0, either there are
only finitely many positions of the form Am,n with g-value k, or else there exists N ∈
N0, p ∈ N such that, for m ≥ N , fA,k(m)−m = fA,k(m+ p)− (m+ p).

Proof. Note that the theorem holds for the sets C, D, A if and only if it holds for the sets
C ′ = C − {c1, . . . , cα}, D′ = D − {d1, . . . , dβ}, and A′ = A ∪ {c1, . . . , cα} ∪ {d1, . . . dβ}.
This occurs because, for n ≥ α, fA,k(n)− n = (fA′,k(n− α)− (n− α)) + (β − α), so the
left side is eventually periodic if and only if the right side is too; and, by Lemmas 1–3,
there are only finitely many positions of the form Am,n with g-value k if and only if there
are only finitely many positions of the form Am,n with g-value k and with m > α, n > β,
so Q(A) = Q(A′). By moving elements of C and D into A, we will show that we can
assume (3), so that the theorem follows from Lemma 9.

Assume that k 6∈ Q(A). If, for some i, ci > D, then by Lemmas 2 and 4, k ∈ Q(A),
a contradiction. If, for any a ∈ A, a > C or a > D, then a 6∈ Am,n for any m,n. Hence,
removing a from A will have no effect on the truth or falsity or the theorem, so we can
assume that no element of A is greater than all of C or all of D. We may thus assume
that every element of A ∪ C ∪D is greater than only a finite number of other elements
of A ∪ C ∪D.

We have four steps. In the first step, we move all of the elements of C∪D that are less
than an element of A into A, to get the new sets A(1) ⊇ A, C(1) ⊆ C, D(1) ⊆ D. For each
a ∈ A(1), either a ‖ D, or a < di for all sufficiently large i. Thus, in the second step, we
can move elements of D(1) into A(1) (making A(2) ⊇ A(1), C(2) = C(1), and D(2) ⊆ D(1))
so that, for each a ∈ A(1), a ‖ D(2) or a < D(2). By the same reasoning, in the third step,
we can move elements of C(2) into A(2) so that, for each a ∈ A(2), a < C(3) or a ‖ C(3).
Finally, in the fourth step, we move all elements of D(3) that are less than an element of
(C(2) − C(3)) into A(3), to get A(4), C(4), D(4). Note that each of these steps moves only
a finite number of elements.

From any a ∈ A(1), a < C(4) or a ‖ C(4) (from the third step), and a < D(4) or
a ‖ D(4) (from the second step). For any a ∈ (A(2) − A(1)) = (D(1) −D(2)), a < C(4) or
a ‖ C(4) (from the third step), and a < D(4). For any a ∈ (A(3) − A(2)) = (C(2) − C(3)),
a < C(4), and a ‖ D(4) (from the fourth step and the fact that ci 6> dj). For any
a ∈ (A(4) − A(3)) = (D(3) −D(4)), a < C(4) and a < D(4). Hence, the assumption (3) is
satisfied by A(4), C(4), D(4). As noted above, replacing A, C, D by A(4), C(4), D(4) gives
an equivalent problem, and by Lemma 9, we are done.
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5 Consequences of the Periodicity Theorem

In the special case where k = 0, D is the top row in Chomp, and C is the second-to-top
row in Chomp, this theorem resolves X. Sun’s conjecture about the periodic behavior of
P-positions in Chomp [10].

By Lemma 4 and the Poset Game Periodicity Theorem, for any A and k, we can find
an M ∈ N0 such that one of the following is true: (I) fA,k(m) does not exist for any
m ≥M ; (II) fA,k(m) is constant for m ≥M ; or (III) fA,k(m)−m is periodic for m ≥M ,
with some period p.

We will say we have solved fA,k if we, in case (I), calculate fA,k(m) for every m
where fA,k(m) is defined; in case (II), calculate M and fA,k(m) for all m ≤M for which
fA,k(m) is defined; or in case (III), calculate M , p, and fA,k(m) for all m < M + p for
which fA,k(m) is defined.

Lemma 10. Given A, C, D ⊂ X satisfying (1) and given k ∈ N0, we can solve fA,k in
a finite amount of time.

Proof. We will proceed by strong double-induction on |A| and k. Assume (vacuously in
the base case, and by the induction hypothesis otherwise) that we can solve fB,j in a finite
amount of time for all B ⊆ A and j ≤ k (besides when B = A and j = k). Any solution
to fB,j can be represented by a finite set of integers. Hence, we can test a solution to fA,k
in a finite amount of time (by symbolically checking the recursive definition of g-value
given in Section 1.4). If we systematically try the countable number of possible solutions
to fA,k (of types (I), (II), and (III)), we will eventually find one that works, in a finite
amount of time.

Corollary 1. Given A, C, D ⊂ X satisfying (1) and given k ∈ N0, we can calculate
fA,k(m) (or show that it does not exist) in O(logm) time.

Proof. By Lemma 10, after some finite amount of time independent of m, we can solve
fA,k. After that, if fA,k is type (I) or (II), fA,k(m) can be trivially calculated in O(1)
time. If fA,k is type (III), for large m, we can reduce (m−M) (mod p) in O(logm) time
(cf. [13]), and then calculate fA,k(m) = fA,k(M + (m−M)p) in O(1) time. Thus, in any
case, fA,k(m) can be calculated (or shown not to exist) in O(logm) time.

Corollary 2. Given A, C, D ⊂ X satisfying (1) and given k ∈ N0, and letting m and n
vary, we can check whether g(Am,n) = k in O(logm) time.

Proof. By Corollary 1, we can calculate fA,k(m) in O(logm) time. By Lemma 5, if it
exists, fA,k(m) ≤ m+|A|+k. Hence, we can check if n = fA,k(m) in O(log(m+|A|+k)) =
O(logm) time. In total, then, we can check in O(logm) time.
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Corollary 3. Given A, C, D ⊂ X satisfying (1), the poset game starting with Am,n for
any m, n ∈ N0 has a polynomial-time winning strategy.

Proof. Any game position in such a game can be written as Bi,j for B ⊆ A and i, j ∈ N0.
Hence, the size of the input of a position Bi,j is (2|A| + log i+ log j).

By basic properties of g-values, in order to win, we must ensure that, after each
move we make, the new position has g-value 0. Suppose we are in a position Bi,j with
g(Bi,j) > 0. We must find a winning move x, in O(log ij) time, that leaves a position
with g-value 0. Before we start, we solve fA′,0 for each A′ ⊆ A. By Lemma 10, this takes
a fixed, finite amount of time. Next, we calculate t = fB,0(i). If t < j, then x = dt+1.
Otherwise, calculate fA,0(m) for j − |A| ≤ m ≤ j + |A|. If we get fA,0(m) = j and
cm+1 ∈ Bi,j, then x = cm+1. There are at most |A| more possible winning moves x, and
each leaves a position A′i′,j′ for A′ ⊂ A, i′ ≤ i, j′ ≤ j. We check if any of these has g-value
0 to find a winning move x. By Corollary 2, we have taken (3|A|+ 2)O(log i) = O(log i)
time, which is polynomial with respect to the input, so this is a polynomial-time winning
strategy.

Corollary 4. In an infinite poset X, suppose there is an infinite chain C (c1 < c2 < · · · ),
and a finite subset A disjoint from C. For n ∈ N0, let An = A∪C−{x ∈ X | x ≥ cn+1}.
For large enough n, g(An)− n is periodic with respect to n.

Proof. Create a new poset X ′ as the disjoint union of X with an infinite set {d1, d2, . . . }.
In X ′, any element of D is incomparable to any element of X, the elements of X are
ordered as they were before, and the elements of D form a chain d1 < d2 < · · · . The
poset game on a finite subset of X ′ is the disjoint sum of two games: the game with
elements of D (a game of Nim), and the game with elements of A ∪ C. We know that
g({d1, . . . , dn}) = n, since the g-value of a nim-heap of size n is n. Hence, by elementary
properties of g-values, g(Am) = n if and only if g(Am,n) = 0 if and only if fA,0(m) = n,
which means g(Am) = fA,0(m). The corollary now follows directly from the Poset Game
Periodicity Theorem.

Note that in the case where the chain C is the top row in Chomp, this corollary proves
a conjecture stated by X. Sun in [12].

Corollary 5. Given A, C ⊂ X, we can calculate g(An) in O(log n) time.

Proof. From the proof of Corollary 4, calculating g(An) is the same as calculating fA,0(n)
in a different poset X ′. Hence, this corollary follows from Corollary 1.
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6 Future Work

The Poset Game Periodicity Theorem creates several avenues for possible future work:

First, the realm of poset games contains several long-unsolved, well-studied games.
In this paper, we mentioned some applications of the theorem to one such game, Chomp.
We expect that the theorem will have applications to other such games as well, like
Subset-Takeaway [8] or Schuh’s Game of Divisors [7], and also infinite poset games such
as Transfinite Chomp [14].

Second, we proved, in Corollary 2, that, given A, C, D, and k, one can check if
g(Am,n) = k in polynomial time. A possible extension of this result, which would shed
additional light on poset games, would be to show that the problem of calculating g(Am,n)
is in the complexity class NP (nondeterministic polynomial), by establishing a polynomial
time limit that holds for all k at once.

Third, from the proof of the Poset Game Periodicity Theorem, explicit bounds could
likely be calculated for both the starting point of periodic behavior and the period length,
in any particular case. This would likely be useful both for theoretical and computational
studies of these games.

Fourth, X. Sun’s algorithm to calculate g-values in Chomp [12] could be made more
efficient by implementing Corollary 4. Also, by the Poset Game Periodicity Theorem, his
algorithm for calculating P-positions in Chomp [10] could be altered to calculate positions
with any fixed, small g-value, since these also have periodic patterns. Furthermore,
if explicit bounds are calculated (as mentioned above), these might also aid in such
algorithms.

Fifth, allowing n chains instead of only two adds a degree of complexity to the set of
positions that result. Nevertheless, it is plausible that an analogue of the Poset Game
Periodicity Theorem could hold in this case as well. If so, several poset games, like
Schuh’s Game of Divisors (which has been unsolved for half a century), could finally be
completely solved, with a general polynomial-time winning strategy.

Finally, and most importantly, the Poset Game Periodicity Theorem shows that poset
games are connected not only by common rules, but also by common structure, turning
these seemingly unrelated problems into a unified field. Using this theorem as a founda-
tion and starting point, we anticipate further study of the commonalities of poset games,
extending the power and reach of this new field of combinatorial game theory.
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