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Abstract

In this note we generalize the plane partition diamonds of Andrews, Paule, and Riese
to plane partition polygons and plane tree diamonds and show how to compute their
generating functions.

1. Introduction

In [1], Andrews, Paule, and Riese introduce the family of plane partition diamonds. A
plane partition diamond of length n is a sequence of length 3n+1 of nonnegative integers
a = (a1, . . . , a3n+1) satisfying, for 0 ≤ i ≤ n− 1,

a3i+1 ≥ a3i+2, a3i+1 ≥ a3i+3, a3i+2 ≥ a3i+4, a3i+3 ≥ a3i+4.

This is shown graphically below.

The configuration (7, 5, 5, 5, 4, 5, 2, 1, 1, 0, 0, 0, 0) is a plane partition diamond of length
4 :
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Using partition analysis, the authors in [1] find the generating function of these con-
figurations. Let Dn be the set of all plane partition diamonds of length n. Their result
is as follows :

Theorem 1 [1] For n ≥ 1,

Dn(x1, . . . , x3n+1) :=
∑
a∈Dn

3n+1∏
i=1

xaii =
3n+1∏
i=1

1

1−Xi

n∏
i=1

1−X3i−2X3i

1−X3i/x3i−1

,

where Xk = x1 . . . xk.

Note that when xi = q, 1 ≤ i ≤ 3n+ 1, Theorem 1 gives∑
a∈Dn

qa1+···+a3n+1 =

∏n
i=1(1 + q3i−1)∏3n+1
i=1 (1− qi)

.

In this note we give a combinatorial proof of this generating function in Section 2 and
exhibit some natural generalizations in Sections 3 and 4.

2. Plane Partition Diamonds

We give a combinatorial proof of Theorem 1. Let D̃n be the set of diamonds in Dn such
that a3n+1 = 0 and let D̃n(x1, . . . , x3n) be the associated generating function. First we
study D̃1.

Lemma 2

D̃1(x1, x2, x3) =
1− x2

1x2x3

(1− x1)(1− x1x2)(1− x1x3)(1− x1x2x3)
.

Proof. These configurations are such that a1 ≥ a2 ≥ 0, a1 ≥ a3 ≥ 0. We consider three
cases :

• a1 ≥ a2 ≥ a3. These configurations correspond to partitions into at most three
parts which have generating function

S1(x1, x2, x3) = 1/((1− x1)(1− x1x2)(1− x1x2x3)).
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• a1 ≥ a3 ≥ a2. These configurations have generating function

S2(x1, x2, x3) = 1/((1− x1)(1− x1x3)(1− x1x2x3)).

• a1 ≥ a3 = a2. These configurations have generating function

S3(x1, x2, x3) = 1/((1− x1)(1− x1x2x3)).

It easy to see that D̃1 is equal to S1 + S2 − S3. 2

We next show how to get from D̃n to Dn for n ≥ 1. (This lemma is analogous to
Corollary 2.2 in [1].)

Lemma 3

Dn(x1, . . . , x3n+1) =
D̃n(x1, . . . , x3n)

(1−X3n+1)
.

Proof. Starting with a diamond a = (a1, . . . , a3n+1) in Dn, corresponding to the term∏3n+1
i=1 xaii , we can associate to it in D̃n the diamond ã = (a1−a3n+1, a2−a3n+1, . . . , a3n−

a3n+1, 0), corresponding to the term
∏3n+1

i=1 xaii /X
a3n+1

3n+1 . 2

Finally we decompose a diamond in Dn into a diamond in D̃1 and a diamond in Dn−1.

Lemma 4 For n > 1,

Dn(x1, . . . , x3n+1) = D̃1(x1, x2, x3)Dn−1(x1x2x3x4, x5, x6, . . . , x3n+1).

Proof. Given a diamond a = (a1, a2, a3, 0) in D̃1 and a diamond b = (b1, . . . , b3(n−1)+1)
in Dn−1, we map them to the diamond c = (c1, . . . , c3n+1) with ci = ai + b1 for 1 ≤ i ≤ 3
and ci = bi−3 for 4 ≤ i ≤ 3n + 1. It is easy to check that c ∈ Dn and that this map is
reversible. 2

Combining the three lemmas gives the proof of Theorem 1.

3. Generalization : The Plane Partition Polygons

Let us now generalize. Let m and l be integers. An (m, l)-gon is a sequence of length
m+ l + 2 of nonnegative integers a = (a1, . . . , am+l+2) such that

aj ≥ aj+1, 1 ≤ j ≤ m; am+1 ≥ am+l+2
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a1 ≥ am+2; am+k ≥ am+k+1, 2 ≤ k ≤ m+ l + 1,

as illustrated below.

The case m = l = 1 corresponds to the diamonds of length 1. Two examples are
shown below, a (3, 1)-gon (7, 6, 6, 5, 6, 5) and a (4, 4)-gon, (5, 5, 4, 4, 3, 5, 4, 3, 2, 1).

Given two lists of natural numbers of length n > 0, s = (s1, . . . , sn) and v =
(v1, . . . , vn), below we will define a plane partition polygon as a sequence of integers
satisfying constraints corresponding to a linear arrangment of (sj, vj)-gons, 1 ≤ j ≤ n.
In order to reference the starting index of each (sj, vj)-gon in the sequence of integers,
define `j for 0 ≤ j ≤ n by `j = j + 1 +

∑j
i=1(sj + vj).

Definition 5 An (s, v)-plane partition polygon is a configuration a = (a1, a2, . . .) of
length `n such that

(a`j , a`j+1, . . . , a`j+1
)

is an (sj+1, vj+1)-gon for all 0 ≤ j ≤ n− 1.

In the example pictured below, if n = 4 and s = (3, 4, 1, 3) and v = (1, 4, 1, 1)
then a = (7, 6, 6, 5, 6, 5, 5, 4, 4, 3, 5, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0) is an (s, v)-plane partition
polygon, as (7, 6, 6, 5, 6, 5) is a (3, 1)-gon (5, 5, 4, 4, 3, 5, 4, 3, 2, 1) is a (4, 4)-gon (1, 1, 1, 1)
is a (1, 1)-gon and (1, 1, 1, 1, 0, 0) is a (3, 1)-gon.

Remark. The plane partition diamonds of length n are the (s, v)-plane partition poly-
gons with si = vi = 1, 1 ≤ i ≤ n.

Let Ds,v be the set of (s, v)-plane partition polygons and let D̃s,v be the subset of Ds,v
consisting of those configurations whose last entry is 0.
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Remark. Here we do not exhibit the `n-variable generating function, although it should
be possible to do so.

Let Ds,v(z, q) and D̃s,v(z, q) be the generating functions

Ds,v(z, q) =
∑
a∈Ds,v

za1q
∑`n
i=1 ai , D̃s,v(z, q) =

∑
a∈D̃s,v

za1q
∑`n
i=1 ai .

We show the following :

Theorem 6 The generating function for Ds,v(z, q) is :

Ds,v(z, q) =

∏n
i=1 Hsi,vi(zq

`i−1−1, q)

(zq; q)`n
,

with

Hm,l(z, q) = 1 +

min(m,l)∑
k=1

zkqk(k+1)

[
m
k

]
q

[
l
k

]
q

,

where (z; q)m =
∏m−1

i=0 (1− zqi) and

[
m
k

]
q

= (qm+1−k; q)k/(q; q)k.

To get a proof of Theorem 6, we use a generalization of the previous arguments for
diamonds. First consider the case n = 1 and s = (m) and v = (l).

Lemma 7 For m, l ≥ 0

D̃(m),(l)(z, q) =
Hm,l(z, q)

(zq; q)m+l+1

.

Proof. We know that if a1 = k then (a2, . . . , am+1) is a partition into m nonnegative
parts less than or equal to k, and (am+2, . . . , am+l+1) is a partition into l nonnegative

parts less than or equal to k, and these sets have generating functions

[
m+ k
k

]
q

, and[
l + k
k

]
q

, respectively. So

D̃m,l(z, q) = 1 +
∞∑
k=1

zkqk
[
m+ k
k

]
q

[
l + k
k

]
q

.

It is possible to give a pure combinatorial argument, but we will make use of the
(third version of) Heine’s transformation [2] :∑

k≥0

(a, b; q)kz
k

(c, q; q)k
=

(abz/c; q)∞
(z; q)∞

×
∑
k≥0

(c/a, c/b; q)k(abz/c)
k

(c, q; q)k
,
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where (a, b; q)k = (a; q)k(b; q)k. Setting a = qm+1, b = ql+1, z = zq, c = q gives

∞∑
k=0

zkqk
[
m+ k
k

]
q

[
l + k
k

]
q

=
1

(zq; q)m+l+1

×
∞∑
k=0

(q−m, q−l; q)k(zq
m+l+2)k

(q, q; q)k
..

Finally, to get the result, we use that[
m
k

]
q

=
(q−m; q)k

(q; q)k
× (−1)kqmk−k(k−1)/2.

2

Now we need to go from D̃ to D.

Lemma 8 For any sequences s and v of length n

Ds,v(z, q) = D̃s,v(z, q)/(1− zq`n).

Proof. Starting with a = (a1, . . . , a`n) in Ds,v, corresponding to za1qa1+···+a`n , associate
ã = (a1 − a`n , . . . , a`n−1 − a`n , 0) in D̃s,v. corresponding to za1qa1+···a`n/(zq`n)a`n , and
conversely. 2

Finally we decompose the sequences.

Lemma 9 For any n > 1, s = (s1, . . . , sn) and v = (v1, . . . , vn),

Ds,v(z, q) = D̃s1,v1(z, q)Ds′,v′(zq
s1+v1+1, q),

with s′ = (s2, . . . , sn) and v′ = (v2, . . . , vn).

Proof. Starting with a = (a1, a2, . . .) in D̃(s1),(v1), and b = (b1, b2, . . .) in Ds′,v′ , we map
them to the configuration c = (c1, . . . , c`n) with ci = ai + b1 for 1 ≤ i ≤ s1 + v1 + 1 and
ci = bi−s1−v1−1 for s1 +v1 +2 ≤ i ≤ `n. It is easy to check that c ∈ Ds,v, and the mapping
is reversible. 2

Once again, combining the lemmas gives a proof of Theorem 6.

Example 1. The generating function of the plane partition diamonds of length n, is∏n
i=1(1 + zq3i−1)

(zq; q)3n+1

which is Theorem 1 with x1 = zq and xi = q for i > 1.
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Example 2.. The generating function of the plane partition hexagons of length n, that
is si = vi = 2, 1 ≤ i ≤ n is∏n

i=1(1 + zq5i−3(1 + q)2 + z2q10i−4)

(zq; q)5n+1

.

Example 3. The generating function of the plane partition octagons of length n, that
is si = vi = 3, 1 ≤ i ≤ n is∏n

i=1(1 + zq7i−5(1 + q + q2)2 + z2q14i−8(1 + q + q2)2 + z3q21i−9)

(zq; q)7n+1

.

4. Another Generalization : Plane Tree Diamonds

For a plane partition diamond a = (a1, . . . , a3n+1), say that a3n+1 is the least of the dia-
mond because a3n+1 ≤ ai for all i. Suppose we are given n and t = (t1, . . . , t3n+1), a se-
quence of non negative integers. Let a be any plane partition diamond of length n and let
d = (d1, . . . , d3n+1) be any sequence of plane partition diamonds such that for 1 ≤ i ≤ n,
di has length ti and least element ai. Then we construct a plane tree diamond by attaching
di to ai for 1 ≤ i ≤ n. For example, let n = 4 and t = (0, 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0). Let
a = (7, 5, 5, 5, 4, 5, 2, 1, 1, 0, 0, 0, 0). Let d be defined by d1 = (7), d2 = (8, 7, 6, 5, 5, 5, 5),
d3 = (6, 6, 5, 5), d4 = (5), d5 = (4), d6 = (5), d7 = (2), d8 = (1), d9 = (1, 1, 1, 1),
d10 = d11 = d12 = d13 = (0). The figure below shows the corresponding plane tree
diamond, with a shown by solid lines and the di shown by dotted lines.

Let Tn,t(q) be the generating function of these trees. Using the same kind of combi-
natorial arguments as in the previous sections, we get the following.
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Theorem 10 The generating function for plane tree diamonds is :

Tn,t(q) = Dn(q3t1+1, q3t2+1, . . . , q3t3n+1+1)
3n+1∏
i=1

D̃ti(q).

The example given above has the generating function :

T4,(0,2,1,0,0,0,0,0,1,0,0,0,0)(q) =
1

(1− q)(1− q8)(q12; q)6(q21; q)5

·(1− q
14)(1− q28)(1− q37)(1− q46)

(1− q5)(1− q14)(1− q20)(1− q23)
· (1 + q2)3(1 + q5)

(q; q)3
3(q3; q)3

.

Note that this could be carried through with plane partition polygons also.
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